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BAYES DECISION THEORY

In Action 1




Bayesian Decision Theory

mThe Basic Idea

m To minimize errors, choose the least risky class,
1.e. the class for which the expected loss is
smallest

mAssumptions

m Problem posed in probabilistic terms, and all
relevant probabilities are known



Probability Mass vs. Probability
Density Functions

m Probability Mass Function, P(x)
m Probability for values of discrete random variable x.
m Each value has its own associated probability

m Probability Density, p(x)
m Probability for values of continuous random variable x.

m Probability returned is for an interval within which the value lies
(intervals defined by some unit distance) Pri € (a,b)] = /bp(x) .
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Prior Probability

mDefinition (P(w))
m The likelihood of a value for a random variable

representing the state of nature (true class w for the
current input), in the absence of other information

m Informally, “what percentage of the time state X
occurs”

mExample

m The prior probability that an instance taken from
two classes is provided as input, in the absence of
any features (e.g. P(cat) = 0.3, P(dog) = 0.7)



Class-Conditional Probability Density
Function (for Continuous Features)

mDefinition (p( x|w))
m'The probability of a value for continuous

random variable x, given a state of nature
W

mFor each value of x, we have a different
class-conditional pdf for each class in w
(example next slide)



Example: Class-Conditional
Probability Densities

p(x|w)

047

037

0.2

/1,
9 10
FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-

ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,

and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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Bayes Formula |I

Pl ) — ple|w;)P(w;) posterior = likelihood x prior
(wjlz) = , '
p(x) evidence

C

where p(x) = ZP($|Wj)P(Wj)

j=1

mPurpose

m Convert class prior and class-conditional densities to
a posterior probability for a class: the probability of a
class given the input features (‘post-observation’)



Example: Posterior Probabilities

P(w|x)
] A

9 10 11 12 13 14 15

FIGURE 2.2. Posterior probabilities for the particular priors P(w) = 2/3 and P(w,)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category w, is roughly 0.08, and that it is in wq is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.




Choosing the Most Likely Class

m What happens if we do the following?

Decide wy if P(wi|x) > P(ws|x); otherwise decide ws

m A.We minimize the average probability of error. Consider the
two-class case from previous slide

(wr]z) if we choose wy

P
P(error|x) = { P(ws|z) if we choose w

P(error) = / P(error|x)p(z) dx (average error)

© ]




Expected Loss or Conditional Risk
of an Action

C

R(oix) =)  Mai|w;) P(w;|x)

J=1

mExplanation

mThe expected (“average”) loss for taking
an action (choosing a class) given an input
vector, for a given conditional loss
function (lambda)



= For M=2 A, An
m Define the loss matrix L= ( ) /1
21 22

qu penalty term for deciding class (W,
although the pattern belongs to @, , etc

m Risk with respect to @),
= A”fp(J_C‘CUI)dJ_C +

= Risk with respect to @,

m Average risk

ﬂ]zfp()_C‘a)l)d)_C

= @1fp(3_c‘wz)dx+Azzfp(x‘wz)dx

Probabilities of wrong
—>| decisions, weighted by
the penalty terms

r=nP(w)+nP(w,)



m Choose Rland sto that r is minimized

m Then assign )_C to a)l. if

(= 2, p(3@)P() + 2oy p(x|o, ) P(@;) <
l, = ﬂ’lzp()_c‘a)l)P(a)l) T Azzp()_c‘wz )P(w,)

m Equivalently:

assign X in , (a)z) if
p()_c‘wl) > (<) P(w,) A, =4,
p(xjw,) P(w) Ay -4y,

f 12K likelihood ratio

€12




o If

1

P(w) =P(w,)=—and 4, =4, =0

2

x—=> o 1t P(x

x—>w, 1f P(x

w,) > P(x|w,)—

w,) > P(Xjw) ==

if A,, = A, = Mmimum classification

error probability




Decision Function and Overall Risk

R = /R(oz(:z:)\a:)p(x) dx

mDecision Function or Decision Rule

m ( alpha(x) ): takes on the value of exactly one action for
each input vector x

m Overall Risk

m The expected (average) loss associated with a decision
rule



Bayes Decision Rule

mldea

= Minimize the overall risk, by choosing the action
with the least conditional risk for input vector x

mBayes Risk (R¥)
m The resulting overall risk produced using this

procedure. This is the best performance that can
be achieved given available information.




Bayes Decision Rule: Two Category
Case

m Bayes Decision Rule

m For each input, select class with least conditional risk, i.e. choose
class one if:

R(an[x) < R(ag|x)

m where
Nij = Mag|w;)
R(a1|x) = A1 P(w1]x) + A2 P(wo|x)

R(ag|x) = A1 P(w1]x) + A2 P(wo|x)



Alternate Equivalent Expressions of

Bayes Decision Rule (“Choose Class 1
if... ")

mPosterior Class Probabilities

()\21 — All)P(wl‘X) > ()\12 — AQQ)P(WQ’X)

mClass Priors and Conditional Densities

m Produced by applying Bayes Formula to the above,
multiplying both sides by p(x)

(A21 — A1)p(x|wr) P(wi) > (A2 — Ag2)p(x|wa) P(ws)

mLikelihood Ratio  p(x|w) . A2 — Moo P(wo)
p(x|wa) ~ Asp — A Plwi)




. . . . 2 )
Gaussian Distributions for S=[;’1 ‘”22}. and m=10, 01"
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VS\/Eherlcally Shaped Data:

equal,

Run Example 1.3.3
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. . . . 2 )
Gaussian Distributions for S=[§1 “122}. and m=10,0]"
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Ellipsoidally Shaped Data:

When the two coordinates of x are uncorrelated (o _ = 0) and their variances are
UNequal, 12

T T T T T T T | | | | | | |
6 - 6 -
4+ . 4+ :
2 b . 2+ . -
(1} “o’. Anan ® o &
of — of ‘."vm“ ‘
-2 _ -2 ’ -
-4+ .:.. _ —4 | ]
—6} ¢ _ 6| _
| | | | | | | l 1 1 1 1 1 1
6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 o
07 =02,00=2,01p=0 0f=2,05=02,012=0

Run Example 1.3.3



. . . . 2 T
Gaussian Distributions for S:["l 2l and m=1[0,0]"

012 05 |

Spherically Shaped Data clustered unparalleled to the

dXxes.
When the two coordinates of x are correlated (012 # 0) , The degree of rotation with

respect to the axes depends on the value of 012 ,
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Run Example 1.3.3



MINIMUM DISTANCE
CLASSIFIERS

m The Euclidean Distance Classifier is the optimal Bayesian
Classifier when:

m The optimal Bayesian classifier is significantly simplified under
the following assumptions:

m The classes are equiprobable.
m The data in all classes follow Gaussian distributions.
m The covariance matrix is the same for all classes.

m The covariance matrix is diagonal and all elements across the
diagonal are equal. Thatis,S = 0 21, where I is the identity
matrix.

x —mil| =+ (x —mp)T (x —my) < ||x —mj||, Vi)



MINIMUM DISTANCE
CLASSIFIERS

m The Mahalanobis Distance Classifier is the optimal Bayesian
Classifier when the covairance matrix is not diagonal with
equal elements:

m The optimal Bayesian classifier is significantly simplified under
the following assumptions:

m The classes are equiprobable.
m The data in all classes follow Gaussian distributions.

m The covariance matrix is the same for all classes.

Va—m)TS T —my) </ (c—m)TS=x —my), Vj#i

Run Example 1.4.1



Maximum Likelihood Parameter
Estimation of Gaussian pdfs

m The maximum likelihood (ML) is a popular method for the
estimation of an unknown mean value and the associated
covariance matrix of a known pdif.

m Given N points, x; € R/,i = 1,2,...,N, which are known to be
normally distributed, the ML estimates of the unknown mean
value and the associated covariance matrix are given by:

1 N
mmr = N;xi

and

N
1
Swr = 7 2 G =) (i —my)
Run Example 1.4.2 ME N;’C mmr ) (Xi — MuL



