

Pattern Recognition and Image Analysis

Dr. Manal Helal – Fall 2014 Lecture 2

BAYES DECISION THEORY In Action 1

Bayesian Decision Theory

The Basic Idea

To minimize errors, choose the least risky class, i.e. the class for which the expected loss is smallest

Assumptions

Problem posed in probabilistic terms, and all relevant probabilities are known

Probability Mass vs. Probability Density Functions

- Probability Mass Function, P(x)
 - Probability for values of discrete random variable *x*.
 - Each value has its own associated probability

$$\chi = \{v_1, \dots, v_n \\ P(x) \ge 0, \text{ and } \sum_{x \in \chi} F$$

- Probability Density, p(x)
 - Probability for values of continuous random variable *x*.
 - Probability returned is for an *interval* within which the value lies (intervals defined by some unit distance) $P_{m}[m \in (a, b)] = \int_{-\infty}^{b} p(a) db$

$$Pr[x \in (a, b)] = \int_{a}^{\infty} p(x) \, dx$$
$$p(x) \ge 0 \text{ and } \int_{-\infty}^{\infty} p(x) \, dx = 1$$

Prior Probability

Definition (P(w))

- The likelihood of a value for a random variable representing the state of nature (true class w for the current input), in the absence of other information
- Informally, "what percentage of the time state X occurs"

Example

The prior probability that an instance taken from two classes is provided as input, in the absence of any features (e.g. P(cat) = 0.3, P(dog) = 0.7) Class-Conditional Probability Density Function (for Continuous Features)

Definition (p(x|w))

- The probability of a value for continuous random variable x, given a state of nature w
- For each value of x, we have a different class-conditional pdf for each class in w (example next slide)

Example: Class-Conditional Probability Densities

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_i . If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Bayes Formula

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(w_j)}{p(x)}$$
 posterior = likelihood x prior
evidence
where $p(x) = \sum_{j=1}^{c} p(x|\omega_j)P(\omega_j)$

Purpose

Convert class prior and class-conditional densities to a *posterior probability* for a class: the probability of a class given the input features ('post-observation')

Example: Posterior Probabilities

FIGURE 2.2. Posterior probabilities for the particular priors $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value x = 14, the probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every *x*, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Choosing the Most Likely Class

• What happens if we do the following?

Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$; otherwise decide ω_2

A. We minimize the average probability of error. Consider the two-class case from previous slide

Expected Loss or Conditional Risk of an Action

$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$

Explanation

The expected ("average") loss for taking an action (choosing a class) given an input vector, for a given conditional loss function (lambda)

- For M=2• Define the loss matrix $L = \begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$
 - λ_{12} penalty term for deciding class ω_2 , although the pattern belongs to ω_1 , etc.
- **Risk with respect to** ω_1

$$r_1 = \lambda_{11} \int_{R_1} p(\underline{x} | \omega_1) d\underline{x} + \lambda_{12} \int_{R_2} p(\underline{x} | \omega_1) d\underline{x}$$

Risk with respect to ω_2

$$r_{2} = \lambda_{21} \int_{R_{1}} p(\underline{x}|\omega_{2}) d\underline{x} + \lambda_{22} \int_{R_{2}} p(\underline{x}|\omega_{2}) d\underline{x}$$
Probabilities of wrong decisions, weighted by the penalty terms

Average risk

$$r = r_1 P(\omega_1) + r_2 P(\omega_2)$$

• Choose R_1 and R_2 so that r is minimized

• Then assign \underline{X} to \mathcal{O}_i if

$$\ell_{1} \equiv \lambda_{11} p(\underline{x} | \omega_{1}) P(\omega_{1}) + \lambda_{21} p(\underline{x} | \omega_{2}) P(\omega_{2}) <$$

$$\ell_{2} \equiv \lambda_{12} p(\underline{x} | \omega_{1}) P(\omega_{1}) + \lambda_{22} p(\underline{x} | \omega_{2}) P(\omega_{2})$$

• Equivalently:

assign \underline{X} in $\omega_1(\omega_2)$ if $\ell_{12} = \frac{p(\underline{x}|\omega_1)}{p(\underline{x}|\omega_2)} > (<) \frac{P(\omega_2)}{P(\omega_1)} \frac{\lambda_{21} - \lambda_{22}}{\lambda_{12} - \lambda_{11}}$ ℓ_{12} : likelihood ratio ★ If
$$P(\omega_1) = P(\omega_2) = \frac{1}{2} \text{ and } \lambda_{11} = \lambda_{22} = 0$$

 $\underline{x} \rightarrow \omega_1 \text{ if } P(\underline{x} | \omega_1) > P(\underline{x} | \omega_2) \frac{\lambda_{21}}{\lambda_{12}}$
 $\underline{x} \rightarrow \omega_2 \text{ if } P(\underline{x} | \omega_2) > P(\underline{x} | \omega_1) \frac{\lambda_{12}}{\lambda_{21}}$

if $\lambda_{21} = \lambda_{12} \Rightarrow$ Minimum classification error probability

Decision Function and Overall Risk

$$R = \int R(\alpha(x)|x)p(x) \ dx$$

Decision Function or Decision Rule

 (alpha(x)): takes on the value of exactly one action for each input vector x

Overall Risk

The expected (average) loss associated with a decision rule

Bayes Decision Rule

Idea

Minimize the overall risk, by choosing the action with the least conditional risk for input vector x

Bayes Risk (R*)

The resulting overall risk produced using this procedure. This is the best performance that can be achieved given available information.

Bayes Decision Rule: Two Category Case

- Bayes Decision Rule
 - For each input, select class with least conditional risk, i.e. choose class one if:

$$\lambda_{ij} = \lambda(\alpha_i | \omega_j)$$

where

$$< R(\alpha_2 | \mathbf{x})$$
$$R(\alpha_1 | \mathbf{x}) = \lambda_{11} P(\omega_1 | \mathbf{x}) + \lambda_{12} P(\omega_2 | \mathbf{x})$$
$$R(\alpha_2 | \mathbf{x}) = \lambda_{21} P(\omega_1 | \mathbf{x}) + \lambda_{22} P(\omega_2 | \mathbf{x})$$

Alternate Equivalent Expressions of Bayes Decision Rule ("Choose Class 1 if ... ")

Posterior Class Probabilities

Class Priors and Conditional Densities

Produced by applying Bayes Formula to the above, multiplying both sides by p(x)

$$(\lambda_{21} - \lambda_{11})p(\mathbf{x}|\omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x})$$

 $\textbf{Likelihood Ratio} \quad \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}} \; \frac{P(\omega_2)}{P(\omega_1)}$

Gaussian Distributions for $S = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}^T$ and $m = [0, 0]^T$

Spherically Shaped Data: When the two coordinates of x are uncorrelated ($\sigma_{12} = 0$) and their variances are equal,

Run Example 1.3.3

Gaussian Distributions for $S = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}^T$ and $m = [0, 0]^T$

Ellipsoidally Shaped Data: When the two coordinates of x are uncorrelated ($\sigma_{12} = 0$) and their variances are UNequal,

Run Example 1.3.3

Gaussian Distributions for $S = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{bmatrix}$ and $m = [0, 0]^T$

Spherically Shaped Data clustered unparalleled to the axes: When the two coordinates of yore correlated $(a \rightarrow 0)$. The degree of rotation w

When the two coordinates of x are correlated ($\sigma_{12} \neq 0)$, The degree of rotation with

respect to the axes depends on the value of σ_{12} ,

Run Example 1.3.3

MINIMUM DISTANCE CLASSIFIERS

- The Euclidean Distance Classifier is the optimal Bayesian Classifier when:
 - The optimal Bayesian classifier is significantly simplified under the following assumptions:
 - The classes are equiprobable.
 - The data in all classes follow Gaussian distributions.
 - The covariance matrix is the same for all classes.
 - The covariance matrix is diagonal and all elements across the diagonal are equal. That is, $S = \sigma^2 I$, where I is the identity matrix.

$$||x - m_i|| \equiv \sqrt{(x - m_i)^T (x - m_i)} < ||x - m_j||, \quad \forall i \neq j$$

MINIMUM DISTANCE CLASSIFIERS

- The Mahalanobis Distance Classifier is the optimal Bayesian Classifier when the covairance matrix is not diagonal with equal elements:
 - The optimal Bayesian classifier is significantly simplified under the following assumptions:
 - The classes are equiprobable.
 - The data in all classes follow Gaussian distributions.
 - The covariance matrix is the same for all classes.

$$\sqrt{(x-m_i)^T S^{-1}(x-m_i)} < \sqrt{(x-m_j)^T S^{-1}(x-m_j)}, \quad \forall j \neq i$$

Run Example 1.4.1

Maximum Likelihood Parameter Estimation of Gaussian pdfs

The maximum likelihood (ML) is a popular method for the estimation of an unknown mean value and the associated covariance matrix of a known pdf.

Given N points, $x_i \in \mathbb{R}^l$, i = 1, 2, ..., N, which are known to be normally distributed, the ML estimates of the unknown mean value and the associated covariance matrix are given by:

$$m_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

and

$$S_{ML} = \frac{1}{N} \sum_{i=1}^{N} (x_i - m_{ML}) (x_i - m_{ML})^T$$

Run Example 1.4.2