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Bayesian Decision Theory  

n The Basic Idea  
n To minimize errors, choose the least risky class, 

i.e. the class for which the expected loss is 
smallest  

n Assumptions  
n Problem posed in probabilistic terms, and all 

relevant probabilities are known  
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Probability Mass vs. Probability 
Density Functions  

n  Probability Mass Function, P(x)  
n  Probability for values of discrete random variable x.  

n  Each value has its own associated probability  

 

n  Probability Density, p(x)   
n  Probability for values of continuous random variable x.  

n  Probability returned is for an interval within which the value lies 
(intervals defined by some unit distance)  
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Prior Probability  

n Definition (P(w))  
n The likelihood of a value for a random variable 

representing the state of nature (true class w for the 
current input), in the absence of other information  

n Informally, “what percentage of the time state X 
occurs” 

n Example  
n The prior probability that an instance taken from 

two classes is provided as input, in the absence of 
any features (e.g. P(cat) = 0.3, P(dog) = 0.7)  
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Class-Conditional Probability Density 
Function (for Continuous Features)  
 

n Definition (p( x|w))  
n The probability of a value for continuous 

random variable x, given a state of nature 
w  

n For each value of x, we have a different 
class-conditional pdf for each class in w 
(example next slide)  
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Example: Class-Conditional 
Probability Densities  

7 Example: Class-Conditional 
Probability Densities
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category ωi . If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c⃝ 2001 by John Wiley & Sons,
Inc.



Bayes Formula  

n Purpose  
n Convert class prior and class-conditional densities to 

a posterior probability for a class: the probability of a 
class given the input features (‘post-observation’)  
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Example: Posterior Probabilities  
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Example: Posterior Probabilities
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FIGURE 2.2. Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2)

= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum
to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c⃝ 2001 by John Wiley & Sons, Inc.



Choosing the Most Likely Class  
 

n  What happens if we do the following?  

 

n  A. We minimize the average probability of error. Consider the 
two-class case from previous slide  
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Expected Loss or Conditional Risk 
of an Action 

v 11 

n Explanation 
n The expected (“average”) loss for taking 

an action (choosing a class) given an input 
vector, for a given conditional loss 
function (lambda) 
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vector,  for a given conditional loss function 
(lambda)
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n For M=2 
n  Define the loss matrix 
 
n          penalty term for deciding class        , 

although the pattern belongs to       ,  etc. 

n Risk with respect to 

n Risk with respect to  

 
n Average risk 
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n  Choose     and      so that r is minimized 

n  Then assign      to       if  

n  Equivalently: 

assign x in          if 

   :  likelihood ratio 
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Decision Function and Overall Risk 

n Decision Function or Decision Rule 
n ( alpha(x) ): takes on the value of exactly one action for 

each input vector x 

n Overall Risk 
n The expected (average) loss associated with a decision 

rule 

15 Decision Functions and 
Overall Risk

Decision Function or Decision Rule

( alpha(x) ): takes on the value of exactly one 
action for each input vector x

Overall Risk

The expected (average) loss associated with 
a decision rule
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Bayes Decision Rule 

n Idea 
n Minimize the overall risk, by choosing the action 

with the least conditional risk for input vector x 

n Bayes Risk (R*) 
n The resulting overall risk produced using this 

procedure. This is the best performance that can 
be achieved given available information. 
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Bayes Decision Rule: Two Category 
Case 

n  Bayes Decision Rule 
n  For each input, select class with least conditional risk, i.e. choose 

class one if: 

n  where 
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Alternate Equivalent Expressions of 
Bayes Decision Rule (“Choose Class 1 
if … ”)  

n Posterior Class Probabilities 

 

n Class Priors and Conditional Densities 
n Produced by applying Bayes Formula to the above, 

multiplying both sides by p(x) 

n Likelihood Ratio 
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FIGURE 1.1

Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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Solution. Use the function comp_gauss_dens_val to compute the value of the Gaussian pdf. Specifi-
cally, type

m=[0 1]'; S=eye(2);
x1=[0.2 1.3]'; x2=[2.2 -1.3]';
pg1=comp_gauss_dens_val(m,S,x1);
pg2=comp_gauss_dens_val(m,S,x2);

The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.

Example 1.3.2. Consider a 2-class classification task in the 2-dimensional space, where the data in
both classes, ω1, ω2, are distributed according to the Gaussian distributionsN (m1,S1) and N (m2,S2),
respectively. Let

m1 = [1, 1]T , m2 = [3, 3]T , S1 = S2 =
[

1 0
0 1

]

Assuming that P(ω1) = P(ω2) = 1/2, classify x = [1.8, 1.8]T into ω1 or ω2.

Solution. Utilize the function comp_ gauss_dens_val by typing

P1=0.5;
P2=0.5;
m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';
p1=P1*comp_gauss_dens_val(m1,S,x);
p2=P2*comp_gauss_dens_val(m2,S,x);

The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].

Example 1.3.3. Generate N = 500 2-dimensional data points that are distributed according to the

Gaussian distribution N (m,S), with mean m = [0, 0]T and covariance matrix S =
[

σ 2
1 σ12

σ12 σ2
2

]
, for the

following cases:

σ 2
1 = σ2

2 = 1, σ12 = 0

σ 2
1 = σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 2, σ12 = 0
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1 = σ2

2 = 1, σ12 = 0

σ 2
1 = σ2
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σ 2
1 = σ2

2 = 2, σ12 = 0

Spherically Shaped Data:  
When the two coordinates of x are uncorrelated (σ

12 
= 0) and their variances are 

equal, 

Run Example  1.3.3 
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The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].
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The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.

Example 1.3.2. Consider a 2-class classification task in the 2-dimensional space, where the data in
both classes, ω1, ω2, are distributed according to the Gaussian distributionsN (m1,S1) and N (m2,S2),
respectively. Let

m1 = [1, 1]T , m2 = [3, 3]T , S1 = S2 =
[

1 0
0 1

]

Assuming that P(ω1) = P(ω2) = 1/2, classify x = [1.8, 1.8]T into ω1 or ω2.

Solution. Utilize the function comp_ gauss_dens_val by typing

P1=0.5;
P2=0.5;
m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';
p1=P1*comp_gauss_dens_val(m1,S,x);
p2=P2*comp_gauss_dens_val(m2,S,x);

The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].

Example 1.3.3. Generate N = 500 2-dimensional data points that are distributed according to the

Gaussian distribution N (m,S), with mean m = [0, 0]T and covariance matrix S =
[

σ 2
1 σ12

σ12 σ2
2

]
, for the

following cases:

σ 2
1 = σ2

2 = 1, σ12 = 0

σ 2
1 = σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 2, σ12 = 0

Ellipsoidally Shaped Data:  
When the two coordinates of x are uncorrelated (σ

12 
= 0) and their variances are 

UNequal, 
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σ 2
1 = 0.2, σ2

2 = 2, σ12 = 0

σ 2
1 = 2, σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 1, σ12 = 0.5

σ 2
1 = 0.3, σ2

2 = 2, σ12 = 0.5

σ 2
1 = 0.3, σ2

2 = 2, σ12 = −0.5

Plot each data set and comment on the shape of the clusters formed by the data points.

Solution. To generate the first data set, use the built-in MATLAB function mvnrnd by typing

randn('seed',0) %Initialization of the randn function
m=[0 0]';
S=[1 0;0 1];
N=500;
X = mvnrnd(m,S,N)';

where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).

To plot the data set, type

figure(1), plot(X(1,:),X(2,:),'.');
figure(1), axis equal
figure(1), axis([-7 7 -7 7])

Working similarly for the second data set, type

m=[0 0]';
S=[0.2 0;0 0.2];
N=500;
X = mvnrnd(m,S,N)';
figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
corresponds to its “minor axis.” In addition, the major and minor axes of the cluster are parallel to
the axes (Figure 1.1(d, e)).
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where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).

To plot the data set, type
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figure(1), axis equal
figure(1), axis([-7 7 -7 7])

Working similarly for the second data set, type
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N=500;
X = mvnrnd(m,S,N)';
figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
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FIGURE 1.1

Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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1.3 The Gaussian Probability Density Function 3

Solution. Use the function comp_gauss_dens_val to compute the value of the Gaussian pdf. Specifi-
cally, type

m=[0 1]'; S=eye(2);
x1=[0.2 1.3]'; x2=[2.2 -1.3]';
pg1=comp_gauss_dens_val(m,S,x1);
pg2=comp_gauss_dens_val(m,S,x2);

The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.

Example 1.3.2. Consider a 2-class classification task in the 2-dimensional space, where the data in
both classes, ω1, ω2, are distributed according to the Gaussian distributionsN (m1,S1) and N (m2,S2),
respectively. Let

m1 = [1, 1]T , m2 = [3, 3]T , S1 = S2 =
[

1 0
0 1

]

Assuming that P(ω1) = P(ω2) = 1/2, classify x = [1.8, 1.8]T into ω1 or ω2.

Solution. Utilize the function comp_ gauss_dens_val by typing

P1=0.5;
P2=0.5;
m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';
p1=P1*comp_gauss_dens_val(m1,S,x);
p2=P2*comp_gauss_dens_val(m2,S,x);

The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].

Example 1.3.3. Generate N = 500 2-dimensional data points that are distributed according to the

Gaussian distribution N (m,S), with mean m = [0, 0]T and covariance matrix S =
[

σ 2
1 σ12

σ12 σ2
2

]
, for the

following cases:

σ 2
1 = σ2

2 = 1, σ12 = 0

σ 2
1 = σ2

2 = 0.2, σ12 = 0

σ 2
1 = σ2

2 = 2, σ12 = 0
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The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.
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respectively. Let

m1 = [1, 1]T , m2 = [3, 3]T , S1 = S2 =
[

1 0
0 1

]

Assuming that P(ω1) = P(ω2) = 1/2, classify x = [1.8, 1.8]T into ω1 or ω2.

Solution. Utilize the function comp_ gauss_dens_val by typing

P1=0.5;
P2=0.5;
m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';
p1=P1*comp_gauss_dens_val(m1,S,x);
p2=P2*comp_gauss_dens_val(m2,S,x);

The resulting values for p1 and p2 are 0.042 and 0.0189, respectively, and x is classified to ω1 according
to the Bayesian classifier.

Exercise 1.3.1
Repeat Example 1.3.2 for P(ω1) = 1/6 and P(ω2) = 5/6, and for P(ω1) = 5/6 and P(ω2) = 1/6. Observe the
dependance of the classification result on the a priori probabilities [Theo 09, Section 2.4.2].

Example 1.3.3. Generate N = 500 2-dimensional data points that are distributed according to the

Gaussian distribution N (m,S), with mean m = [0, 0]T and covariance matrix S =
[
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Spherically Shaped Data clustered unparalleled to the 
axes:  
When the two coordinates of x are correlated (σ

12 
≠ 0) , The degree of rotation with 

 
 respect to the axes depends on the value of σ
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 , 

1.3 The Gaussian Probability Density Function 5
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FIGURE 1.1

Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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FIGURE 1.1

Eight data sets of Example 1.3.3.

• When the two coordinates of x are correlated (σ12 ̸= 0), the major and minor axes of the ellipsoidally
shaped cluster are no longer parallel to the axes. The degree of rotation with respect to the axes
depends on the value of σ12 (Figure 1.1(f–h)). The effect of the value of σ12, whether positive or
negative, is demonstrated in Figure 1.1(g, h). Finally, as can be seen by comparing Figure 1.1(a, f ),
when σ12 ̸= 0, the data form ellipsoidally shaped clusters despite the fact that the variances of each
coordinate are the same.
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Plot each data set and comment on the shape of the clusters formed by the data points.

Solution. To generate the first data set, use the built-in MATLAB function mvnrnd by typing

randn('seed',0) %Initialization of the randn function
m=[0 0]';
S=[1 0;0 1];
N=500;
X = mvnrnd(m,S,N)';

where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).

To plot the data set, type

figure(1), plot(X(1,:),X(2,:),'.');
figure(1), axis equal
figure(1), axis([-7 7 -7 7])

Working similarly for the second data set, type

m=[0 0]';
S=[0.2 0;0 0.2];
N=500;
X = mvnrnd(m,S,N)';
figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
corresponds to its “minor axis.” In addition, the major and minor axes of the cluster are parallel to
the axes (Figure 1.1(d, e)).
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Plot each data set and comment on the shape of the clusters formed by the data points.

Solution. To generate the first data set, use the built-in MATLAB function mvnrnd by typing

randn('seed',0) %Initialization of the randn function
m=[0 0]';
S=[1 0;0 1];
N=500;
X = mvnrnd(m,S,N)';

where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).
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figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
corresponds to its “minor axis.” In addition, the major and minor axes of the cluster are parallel to
the axes (Figure 1.1(d, e)).
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Plot each data set and comment on the shape of the clusters formed by the data points.

Solution. To generate the first data set, use the built-in MATLAB function mvnrnd by typing

randn('seed',0) %Initialization of the randn function
m=[0 0]';
S=[1 0;0 1];
N=500;
X = mvnrnd(m,S,N)';

where X is the matrix that contains the data vectors in its columns.
To ensure reproducibility of the results, the randn MATLAB function, which generates random

numbers following the Gaussian distribution, with zero mean and unit variance, is initialized to a
specific number via the first command (in the previous code randn is called by the mvnrnd MATLAB
function).

To plot the data set, type

figure(1), plot(X(1,:),X(2,:),'.');
figure(1), axis equal
figure(1), axis([-7 7 -7 7])

Working similarly for the second data set, type

m=[0 0]';
S=[0.2 0;0 0.2];
N=500;
X = mvnrnd(m,S,N)';
figure(2), plot(X(1,:),X(2,:),'.');
figure(2), axis equal
figure(2), axis([-7 7 -7 7])

The rest of the data sets are obtained similarly. All of them are depicted in Figure 1.1, from which one
can observe the following:

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are equal, the data
vectors form “spherically shaped” clusters (Figure 1.1(a–c)).

• When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal, the data
vectors form “ellipsoidally shaped” clusters. The coordinate with the highest variance corresponds
to the “major axis” of the ellipsoidally shaped cluster, while the coordinate with the lowest variance
corresponds to its “minor axis.” In addition, the major and minor axes of the cluster are parallel to
the axes (Figure 1.1(d, e)).
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n  The Euclidean Distance Classifier is the optimal Bayesian 
Classifier when: 
n  The optimal Bayesian classifier is significantly simplified under 

the following assumptions: 

n  The classes are equiprobable. 

n  The data in all classes follow Gaussian distributions. 

n  The covariance matrix is the same for all classes. 

n  The covariance matrix is diagonal and all elements across the 
diagonal are equal. That is, S = σ 2 I , where I is the identity 
matrix. 
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1.4 MINIMUM DISTANCE CLASSIFIERS
1.4.1 The Euclidean Distance Classifier
The optimal Bayesian classifier is significantly simplified under the following assumptions:

• The classes are equiprobable.
• The data in all classes follow Gaussian distributions.
• The covariance matrix is the same for all classes.
• The covariance matrix is diagonal and all elements across the diagonal are equal. That is, S = σ 2I ,

where I is the identity matrix.

Under these assumptions, it turns out that the optimal Bayesian classifier is equivalent to the minimum
Euclidean distance classifier. That is, given an unknown x, assign it to class ωi if

||x − mi|| ≡
√

(x − mi)T (x − mi) < ||x − mj||, ∀i ̸= j

It must be stated that the Euclidean classifier is often used, even if we know that the previously
stated assumptions are not valid, because of its simplicity. It assigns a pattern to the class whose mean
is closest to it with respect to the Euclidean norm.

1.4.2 The Mahalanobis Distance Classifier
If one relaxes the assumptions required by the Euclidean classifier and removes the last one, the one
requiring the covariance matrix to be diagonal and with equal elements, the optimal Bayesian classifier
becomes equivalent to the minimum Mahalanobis distance classifier. That is, given an unknown x, it is
assigned to class ωi if

√
(x − mi)T S−1(x − mi) <

√
(x − mj)T S−1(x − mj), ∀j ̸= i

where S is the common covariance matrix. The presence of the covariance matrix accounts for the shape
of the Gaussians [Theo 09, Section 2.4.2].

Example 1.4.1. Consider a 2-class classification task in the 3-dimensional space, where the
two classes, ω1 and ω2, are modeled by Gaussian distributions with means m1 = [0, 0, 0]T and
m2 = [0.5, 0.5, 0.5]T , respectively. Assume the two classes to be equiprobable. The covariance matrix
for both distributions is

S =

⎡

⎢⎣
0.8 0.01 0.01
0.01 0.2 0.01
0.01 0.01 0.2

⎤

⎥⎦

Given the point x = [0.1, 0.5, 0.1]T , classify x (1) according to the Euclidean distance classifier and
(2) according to the Mahalanobis distance classifier. Comment on the results.
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n  The Mahalanobis Distance Classifier is the optimal Bayesian 
Classifier when the covairance matrix is not diagonal with 
equal elements: 
n  The optimal Bayesian classifier is significantly simplified under 

the following assumptions: 

n  The classes are equiprobable. 

n  The data in all classes follow Gaussian distributions. 

n  The covariance matrix is the same for all classes. 
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1.4 MINIMUM DISTANCE CLASSIFIERS
1.4.1 The Euclidean Distance Classifier
The optimal Bayesian classifier is significantly simplified under the following assumptions:

• The classes are equiprobable.
• The data in all classes follow Gaussian distributions.
• The covariance matrix is the same for all classes.
• The covariance matrix is diagonal and all elements across the diagonal are equal. That is, S = σ 2I ,

where I is the identity matrix.

Under these assumptions, it turns out that the optimal Bayesian classifier is equivalent to the minimum
Euclidean distance classifier. That is, given an unknown x, assign it to class ωi if

||x − mi|| ≡
√

(x − mi)T (x − mi) < ||x − mj||, ∀i ̸= j

It must be stated that the Euclidean classifier is often used, even if we know that the previously
stated assumptions are not valid, because of its simplicity. It assigns a pattern to the class whose mean
is closest to it with respect to the Euclidean norm.

1.4.2 The Mahalanobis Distance Classifier
If one relaxes the assumptions required by the Euclidean classifier and removes the last one, the one
requiring the covariance matrix to be diagonal and with equal elements, the optimal Bayesian classifier
becomes equivalent to the minimum Mahalanobis distance classifier. That is, given an unknown x, it is
assigned to class ωi if

√
(x − mi)T S−1(x − mi) <

√
(x − mj)T S−1(x − mj), ∀j ̸= i

where S is the common covariance matrix. The presence of the covariance matrix accounts for the shape
of the Gaussians [Theo 09, Section 2.4.2].

Example 1.4.1. Consider a 2-class classification task in the 3-dimensional space, where the
two classes, ω1 and ω2, are modeled by Gaussian distributions with means m1 = [0, 0, 0]T and
m2 = [0.5, 0.5, 0.5]T , respectively. Assume the two classes to be equiprobable. The covariance matrix
for both distributions is

S =

⎡

⎢⎣
0.8 0.01 0.01
0.01 0.2 0.01
0.01 0.01 0.2

⎤

⎥⎦

Given the point x = [0.1, 0.5, 0.1]T , classify x (1) according to the Euclidean distance classifier and
(2) according to the Mahalanobis distance classifier. Comment on the results.

Run Example  1.4.1 



Maximum Likelihood Parameter 
Estimation of Gaussian pdfs 

n  The maximum likelihood (ML) is a popular method for the 
estimation of an unknown mean value and the associated 
covariance matrix of a known pdf. 

n  Given N points, xi ∈ Rl, i = 1,2,...,N, which are known to be 
normally distributed, the ML estimates of the unknown mean 
value and the associated covariance matrix are given by:  

and 
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Run Example  1.4.2 

1.4 Minimum Distance Classifiers 7

Solution. Take the following steps:

Step 1. Use the function euclidean_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
z=euclidean_classifier(m,x)

The answer is z = 1; that is, the point is classified to the ω1 class.

Step 2. Use the function mahalanobis_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
S=[0.8 0.01 0.01;0.01 0.2 0.01; 0.01 0.01 0.2];
z=mahalanobis_classifier(m,S,x);

This time, the answer is z = 2, meaning the point is classified to the second class. For this case, the
optimal Bayesian classifier is realized by the Mahalanobis distance classifier. The point is assigned
to class ω2 in spite of the fact that it lies closer to m1 according to the Euclidean norm.

1.4.3 Maximum Likelihood Parameter Estimation of Gaussian pdfs
One problem often met in practice is that the pdfs describing the statistical distribution of the data in the
classes are not known and must be estimated using the training data set. One approach to this function
estimation task is to assume that a pdf has a specific functional form but we do not know the values of
the parameters that define it. For example, we may know that the pdf is of Gaussian form but not the
mean value and/or the elements of its covariance matrix.

The maximum likelihood (ML) technique [Theo 09, Section 2.5.1] is a popular method for such a
parametric estimation of an unknown pdf. Focusing on Gaussian pdfs and assuming that we are given
N points, xi ∈ Rl , i = 1,2, . . . ,N , which are known to be normally distributed, the ML estimates of the
unknown mean value and the associated covariance matrix are given by

mML = 1
N

N∑

i=1

xi

and

SML = 1
N

N∑

i=1

(xi − mML)(xi − mML)T

Often, instead of N , the summation associated with the covariance matrix is divided by N − 1 since
this provides an unbiased estimate [Theo 09, Section 2.5.1]. The next example focuses on the estimation
of the unknown parameters of the Gaussian pdf.

1.4 Minimum Distance Classifiers 7

Solution. Take the following steps:

Step 1. Use the function euclidean_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
z=euclidean_classifier(m,x)

The answer is z = 1; that is, the point is classified to the ω1 class.

Step 2. Use the function mahalanobis_classifier by typing

x=[0.1 0.5 0.1]';
m1=[0 0 0]'; m2=[0.5 0.5 0.5]';
m=[m1 m2];
S=[0.8 0.01 0.01;0.01 0.2 0.01; 0.01 0.01 0.2];
z=mahalanobis_classifier(m,S,x);

This time, the answer is z = 2, meaning the point is classified to the second class. For this case, the
optimal Bayesian classifier is realized by the Mahalanobis distance classifier. The point is assigned
to class ω2 in spite of the fact that it lies closer to m1 according to the Euclidean norm.

1.4.3 Maximum Likelihood Parameter Estimation of Gaussian pdfs
One problem often met in practice is that the pdfs describing the statistical distribution of the data in the
classes are not known and must be estimated using the training data set. One approach to this function
estimation task is to assume that a pdf has a specific functional form but we do not know the values of
the parameters that define it. For example, we may know that the pdf is of Gaussian form but not the
mean value and/or the elements of its covariance matrix.

The maximum likelihood (ML) technique [Theo 09, Section 2.5.1] is a popular method for such a
parametric estimation of an unknown pdf. Focusing on Gaussian pdfs and assuming that we are given
N points, xi ∈ Rl , i = 1,2, . . . ,N , which are known to be normally distributed, the ML estimates of the
unknown mean value and the associated covariance matrix are given by

mML = 1
N

N∑

i=1

xi

and

SML = 1
N

N∑

i=1

(xi − mML)(xi − mML)T

Often, instead of N , the summation associated with the covariance matrix is divided by N − 1 since
this provides an unbiased estimate [Theo 09, Section 2.5.1]. The next example focuses on the estimation
of the unknown parameters of the Gaussian pdf.


