

> Pattern Recognition and Image Analysis

> Dr. Manal Helal - Fall 2014
> Lecture 2

BAYES DECISION THEORY In Action 1

Bayesian Decision Theory

■ The Basic Idea

- To minimize errors, choose the least risky class, i.e. the class for which the expected loss is smallest
$■$ Assumptions
- Problem posed in probabilistic terms, and all relevant probabilities are known

Probability Mass vs. Probability Density Functions

- Probability Mass Function, P(x)
- Probability for values of discrete random variable x.
- Each value has its own associated probability

$$
\begin{gathered}
\chi=\left\{v_{1}, \ldots, v_{m}\right\} \\
P(x) \geq 0, \text { and } \sum_{x \in \chi} P(x)=1
\end{gathered}
$$

- Probability Density, p(x)
- Probability for values of continuous random variable x.
- Probability returned is for an interval within which the value lies (intervals defined by some unit distance)

$$
\begin{gathered}
\operatorname{Pr}[x \in(a, b)]=\int_{a}^{b} p(x) d x \\
p(x) \geq 0 \text { and } \int_{-\infty}^{\infty} p(x) d x=1
\end{gathered}
$$

Prior Probability

- Definition ($\mathrm{P}(\mathrm{w})$)
- The likelihood of a value for a random variable representing the state of nature (true class w for the current input), in the absence of other information
■ Informally, "what percentage of the time state X occurs"

■Example

- The prior probability that an instance taken from two classes is provided as input, in the absence of any features (e.g. $\mathrm{P}($ cat $)=0.3, \mathrm{P}(\mathrm{dog})=0.7$)

Class-Conditional Probability Density Function (for Continuous Features)

-Definition ($\mathrm{p}(\mathrm{x} \mid \mathrm{w})$)
-The probability of a value for continuous random variable x , given a state of nature w
-For each value of x , we have a different class-conditional pdf for each class in w (example next slide)

Example: Class-Conditional Probability Densities

FIGURE 2.1. Hypothetical class-conditional probability density functions show the probability density of measuring a particular feature value x given the pattern is in category ω_{i}. If x represents the lightness of a fish, the two curves might describe the difference in lightness of populations of two types of fish. Density functions are normalized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

Bayes Formula

$$
P\left(\omega_{j} \mid x\right)=\frac{p\left(x \mid \omega_{j}\right) P\left(w_{j}\right)}{p(x)} \quad \text { posterior }=\frac{\text { likelihood } \mathrm{x} \text { prior }}{\text { evidence }}
$$

where $p(x)=\sum_{j=1}^{c} p\left(x \mid \omega_{j}\right) P\left(\omega_{j}\right)$

■Purpose

- Convert class prior and class-conditional densities to a posterior probability for a class: the probability of a class given the input features ('post-observation')

Example: Posterior Probabilities

FIGURE 2.2. Posterior probabilities for the particular priors $P\left(\omega_{1}\right)=2 / 3$ and $P\left(\omega_{2}\right)$ $=1 / 3$ for the class-conditional probability densities shown in Fig. 2.1. Thus in this case, given that a pattern is measured to have feature value $x=14$, the probability it is in category ω_{2} is roughly 0.08 , and that it is in ω_{1} is 0.92 . At every x, the posteriors sum to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley \& Sons, Inc.

Choosing the Most Likely Class

- What happens if we do the following?

$$
\text { Decide } \omega_{1} \text { if } P\left(\omega_{1} \mid x\right)>P\left(\omega_{2} \mid x\right) ; \text { otherwise decide } \omega_{2}
$$

- A. We minimize the average probability of error. Consider the two-class case from previous slide

$$
\begin{gathered}
P(\text { error } \mid x)= \begin{cases}P\left(\omega_{1} \mid x\right) & \text { if we choose } \omega_{2} \\
P\left(\omega_{2} \mid x\right) & \text { if we choose } \omega_{1}\end{cases} \\
P(\text { error })=\int_{-\infty}^{\infty} P(\text { error } \mid x) p(x) d x \quad \text { (average error) }
\end{gathered}
$$

Expected Loss or Conditional Risk

 of an Action$$
R\left(\alpha_{i} \mid \mathbf{x}\right)=\sum_{j=1}^{c} \lambda\left(\alpha_{i} \mid \omega_{j}\right) P\left(\omega_{j} \mid \mathbf{x}\right)
$$

-Explanation
■The expected ("average") loss for taking an action (choosing a class) given an input vector, for a given conditional loss function (lambda)

- For $M=2$
- Define the loss matrix $\quad L=\left(\begin{array}{ll}\lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22}\end{array}\right)$
- λ_{12} penalty term for deciding class ω_{2}, although the pattern belongs to ω_{1}, etc.
- Risk with respect to ω_{1}

$$
r_{1}=\lambda_{11} \int_{R_{1}} p\left(\underline{x} \mid \omega_{1}\right) d \underline{x}+\lambda_{12} \int_{R_{2}} p\left(\underline{x} \mid \omega_{1}\right) d \underline{x}
$$

- Risk with respect to ω_{2}

$$
\begin{array}{r}
r_{2}=\lambda_{21} \int_{R_{1}} p\left(\underline{x} \mid \omega_{2}\right) d \underline{x}+\lambda_{22} \int_{R_{2}} p\left(\underline{x} \mid \omega_{2}\right) d \underline{x} \\
\square
\end{array} \Rightarrow \begin{aligned}
& \text { Probabilities of wrong } \\
& \text { decisions, weighted by } \\
& \text { the penalty terms }
\end{aligned}
$$

■ Average risk

$$
r=r_{1} P\left(\omega_{1}\right)+r_{2} P\left(\omega_{2}\right)
$$

- Choose R_{1} and R_{2} so that r is minimized
- Then assign \underline{x} to ω_{i} if

$$
\begin{aligned}
\ell_{1} & \equiv \lambda_{11} p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)+\lambda_{21} p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right) \\
\ell_{2} & \equiv \lambda_{12} p\left(\underline{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)+\lambda_{22} p\left(\underline{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
\end{aligned}
$$

- Equivalently:

$$
\begin{aligned}
& \text { assign } \underline{x} \text { in } \omega_{1}\left(\omega_{2}\right) \text { if } \\
& \ell_{12} \equiv \frac{p\left(\underline{x} \mid \omega_{1}\right)}{p\left(\underline{x} \mid \omega_{2}\right)}>(<) \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)} \frac{\lambda_{21}-\lambda_{22}}{\lambda_{12}-\lambda_{11}} \\
& \ell_{1 \text { likelihood ratio }}
\end{aligned}
$$

* If

$$
\begin{gathered}
P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\frac{1}{2} \text { and } \lambda_{11}=\lambda_{22}=0 \\
\underline{x} \rightarrow \omega_{1} \text { if } P\left(\underline{x} \mid \omega_{1}\right)>P\left(\underline{x} \mid \omega_{2}\right) \frac{\lambda_{21}}{\lambda_{12}} \\
\underline{x} \rightarrow \omega_{2} \text { if } P\left(\underline{x} \mid \omega_{2}\right)>P\left(\underline{x} \mid \omega_{1}\right) \frac{\lambda_{12}}{\lambda_{21}} \\
\text { if } \lambda_{21}=\lambda_{12} \Rightarrow \text { Minimum classification } \\
\text { error probability }
\end{gathered}
$$

Decision Function and Overall Risk

$$
R=\int R(\alpha(x) \mid x) p(x) d x
$$

-Decision Function or Decision Rule

- (alpha(x)): takes on the value of exactly one action for each input vector x
- Overall Risk
$■$ The expected (average) loss associated with a decision rule

Bayes Decision Rule

■Idea
■ Minimize the overall risk, by choosing the action with the least conditional risk for input vector x

■ Bayes Risk (R^{*})

- The resulting overall risk produced using this procedure. This is the best performance that can be achieved given available information.

Bayes Decision Rule: Two Category Case

- Bayes Decision Rule
- For each input, select class with least conditional risk, i.e. choose class one if:

$$
R\left(\alpha_{1} \mid \mathbf{x}\right)<R\left(\alpha_{2} \mid \mathbf{x}\right)
$$

- where

$$
\begin{gathered}
\lambda_{i j}=\lambda\left(\alpha_{i} \mid \omega_{j}\right) \\
R\left(\alpha_{1} \mid \mathbf{x}\right)=\lambda_{11} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{12} P\left(\omega_{2} \mid \mathbf{x}\right) \\
R\left(\alpha_{2} \mid \mathbf{x}\right)=\lambda_{21} P\left(\omega_{1} \mid \mathbf{x}\right)+\lambda_{22} P\left(\omega_{2} \mid \mathbf{x}\right)
\end{gathered}
$$

Alternate Equivalent Expressions of Bayes Decision Rule ("Choose Class 1 if ... ')

- Posterior Class Probabilities

$$
\left(\lambda_{21}-\lambda_{11}\right) P\left(\omega_{1} \mid \mathbf{x}\right)>\left(\lambda_{12}-\lambda_{22}\right) P\left(\omega_{2} \mid \mathbf{x}\right)
$$

- Class Priors and Conditional Densities

■ Produced by applying Bayes Formula to the above, multiplying both sides by $\mathrm{p}(\mathrm{x})$

$$
\left(\lambda_{21}-\lambda_{11}\right) p\left(\mathbf{x} \mid \omega_{1}\right) P\left(\omega_{1}\right)>\left(\lambda_{12}-\lambda_{22}\right) p\left(\mathbf{x} \mid \omega_{2}\right) P\left(\omega_{2}\right)
$$

■Likelihood Ratio

$$
\frac{p\left(\mathbf{x} \mid \omega_{1}\right)}{p\left(\mathbf{x} \mid \omega_{2}\right)}>\frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}} \frac{P\left(\omega_{2}\right)}{P\left(\omega_{1}\right)}
$$

Gaussian Distributions for $s=\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]$, and $m=[0,0]^{T}$

Spherically Shaped Data:

When the two coordinates of x are uncorrelated $\left(\sigma_{12}=0\right)$ and their variances are equal,

$\sigma_{1}^{2}=\sigma_{2}^{2}=0.2, \sigma_{12}=0$

$\sigma_{1}^{2}=\sigma_{2}^{2}=2, \sigma_{12}=0$

Run Example 1.3.3

Gaussian Distributions for $S=\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]$, and $m=[0,0]^{T}$

Ellipsoidally Shaped Data:

When the two coordinates of x are uncorrelated $\left(\sigma_{12}=0\right)$ and their variances are UNequal,

Run Example 1.3.3

Gaussian Distributions for $s=\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right]$, and $m=[0,0]^{T}$
Spherically Shaped Data clustered unparalleled to the axes:
When the two coordinates of x are correlated $\left(\sigma_{12} \neq 0\right)$, The degree of rotation with
respect to the axes depends on the value of σ_{12},

Run Example 1.3.3

MINIMUM DISTANCE CLASSIFIERS

- The Euclidean Distance Classifier is the optimal Bayesian Classifier when:
- The optimal Bayesian classifier is significantly simplified under the following assumptions:
- The classes are equiprobable.
- The data in all classes follow Gaussian distributions.
- The covariance matrix is the same for all classes.
- The covariance matrix is diagonal and all elements across the diagonal are equal. That is, $\mathrm{S}=\sigma^{2} \mathrm{I}$, where I is the identity matrix.

$$
\left\|x-m_{i}\right\| \equiv \sqrt{\left(x-m_{i}\right)^{T}\left(x-m_{i}\right)}<\left\|x-m_{j}\right\|, \quad \forall i \neq j
$$

MINIMUM DISTANCE CLASSIFIERS

- The Mahalanobis Distance Classifier is the optimal Bayesian Classifier when the covairance matrix is not diagonal with equal elements:
- The optimal Bayesian classifier is significantly simplified under the following assumptions:
- The classes are equiprobable.
- The data in all classes follow Gaussian distributions.
- The covariance matrix is the same for all classes.

$$
\sqrt{\left(x-m_{i}\right)^{T} S^{-1}\left(x-m_{i}\right)}<\sqrt{\left(x-m_{j}\right)^{T} S^{-1}\left(x-m_{j}\right)}, \quad \forall j \neq i
$$

Maximum Likelihood Parameter Estimation of Gaussian pdfs

- The maximum likelihood (ML) is a popular method for the estimation of an unknown mean value and the associated covariance matrix of a known pdf.

■ Given N points, $x_{i} \in \mathrm{R}^{l}, i=1,2, \ldots, N$, which are known to be normally distributed, the ML estimates of the unknown mean value and the associated covariance matrix are given by:

$$
m_{M L}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

and

$$
S_{M L}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-m_{M L}\right)\left(x_{i}-m_{M L}\right)^{T}
$$

