Arab Academy For Science and Technology & Maritime Transport

College of Engineering & Technology

Computer Engineering Department

EXAMINATION PAPER - Week 7
Course Title: Data Structures
Course Code: CC215
Date: Mon. Nov, 10-2014 Lecturer: Dr. Manal Helal

Time allowed: 60 mins Start Time: 10:30 a.m.

Student's name: Reg.#:

Question #

Available

Lists 4

Stacks 8

Queues 8

Total 20

Name : Dr. Manal Helal

Lecturer Signature :

Date:

MPC6/1-1

Lists: [4 points]

1) Explain one benefit that:
A) [0.5 points] arrays have over linked lists.
Ans. 1) O(1) access time, (using indices to specify a location in the contagious array memory blocks)
B) [0.5 points] linked lists have over arrays.
Ans. O(1) insertion and deletion (changing links only, not shifting backward or forward)
2) Swap two adjacent elements by adjusting only the links (and not the data) using:

A) [1.5 points] Singly linked lists

head

temp node

>

temp node

\

temp node

\

B) [1.5 points] Doubly linked lists

1)

head

!

—>
e

—>|
e

temp node

—>
e

e

final) head temp node

S5
r

SN

The final step illustration is approximating the reverse (previous pointers) in the temporary node
from the bottom links, but using red for next pointers, and blue for previous pointers.

Anything resembling these steps will take the marks for the count of correct links.

th
Stacks: [8 points]

2) [6 points] Write routines to implement two stacks using only one array. Your stack routines should
not declare an overflow unless every slot in the array is used.

_:—

Topl Top2

#ifndef _Stack_h
#define _Stack_h
struct StackRecord;

#define MaxElements 100
struct StackRecord ({
int Capacity;
int Topl;
int Top2;
ElementType Array[MaxElements];
}
typedef struct StackRecord Stack;

int IsEmpty(Stack S, int Stacknum);

int IsFull(Stack S);

Stack CreateStack(int MaxElements) ;

void Push(ElementType X, Stack S, int Stacknum);
ElementType Top(Stack S, int Stacknum);

void Pop(Stack S, int Stacknum);

#endif /* _Stack_h */

/* The main idea is that the bottom of the first stack is at Array[0] */
/* The bottom of the second stack is at Array[MaxElement] */
/* Topl and Top2 point to the top elements of two stacks respectively */
Stack CreateStack (int MaxElements) {
Stack S;
/* create an array for stack elements */
S.Capacity = MaxElements;
S.Topl = -1;
S.Top2 = MaxElements;
/* initialize 2 empty stacks */
return (S);
}
}
int IsEmpty (Stack S, int Stacknum) {
if (Stacknum ==1) /* check stack 1 */
return S.Topl == -1;
else {
if (Stacknum == 2) /* check stack 2 */
return S.Top2 == S.Capacity;
else
return Error (“stack number error”) ;
}
}
int IsFull(Stack S) {
return S.Topl+l == S.Top2;
}

void Push(ElementType X, Stack S, int Stacknum) ({
if (IsFull(S)) FatalError(“Stack is full”);
if (Stacknum == 1) /* push onto stack 1 */
S.Array[++S.Topl] = X;
else {
if (Stacknum == 2) /* push onto stack 2 */
S.Array[- -S.Top2] = X;
else
Error (“stack number error”);
}
}
void Pop(Stack S, int Stacknum) {
if (IsEmpty(S, Stacknum))
FatalError (“Stack is empty”);
if (Stacknum==1) /*popstackl*/
S.Topl --;
else {
if (Stacknum==2) /*popstack2*/
S.Top2 ++;
else
Error (“stack number error”);

3) [2 points] Show how to implement a program to store new actions by users to be able to undo and
redo them when required, taking into considerations actions bounds, such as no history of actions, or
reaching the limit of actions to store.

Ans:
bool insert_Action(ActionType action) {
return undoStack.push(action);

}

bool undo_Action(ActionType action) {
ActionType = action;
If (undoStack.pop(&action) != true)
return false;
If (redoStack.push(action)) != true)
return false;
execute(reverse(action)); /* model the reverse of the execution of the action*/

return true;

}

bool redo_Action(ActionType action) {
ActionType = action;
If (redoStack.pop(&action) != true)
return false;
execute(action); /* model the execution of the action*/
return true;

Queues: [8 points]

4) [6 points] After executing the following code:

Queue<int> gy
.enqueue (1);
.enqueue (2);
.enqueue (3
.enqueue (4
.enqueue (5);
cout << g.get front();
cout << g.get front();

g.enqueue (6);

A. Suppose that q is represented by a partially filled array with a CAPACITY of 5. Draw the state of
the private member variables of q after the above code:

front data

rear

1.5 marks for the right front and rear and 1.5 points for the right contents of the array

B. Suppose that q is represented by a linked list. Draw the linked list after the above code:

head_ptr rear_ptr
1 6
2 5
\\(3

1.5 marks for the right front and rear pointers and 1.5 points for the right contents of the linked list

5) [2 points] Describe two ““real life”” applications of a queue.

Anything that will be processed later (will take time) and reqyure First in First Out ordering, such as
print jobs spooling to the printer, task priority queues to be processed by the processor, restaurants’
orders,

