

## Pattern Recognition and Image Analysis

Dr. Manal Helal – Fall 2014 Lecture 1

#### **Tentative Course Contents**

- 1. Introduction
- 2. Random variables, probability definitions
- 3. Bayesian decision theory
- 4. The Gaussian classifier
- 5. The Gaussian mixture model (GMM) and EM algorithm
- 6. Non-Parametric classifiers (PNN, NNC, and KNN)
- 7. Hidden Markov models (HMMs)
- 8. Applications of HMM (OCR, Speech, Face recognition)
- 9. Neural Network models (linear perceptrons, MLP, RBF)
- 10. Support Vector Machines (SVM)
- 11. Clustering (such as K-means)

### Grading

■ Week 7 30%:

■ Assignments 10%

■ Midterm 20%

■Week 12 30%:

■ Assignments 10%

■ Project presented in Week 12: 20%

■Final 40%

■ Seminar presented in Week 15: 20%

■ Final Exam in Week 16: 20%

#### Textbook & References

- Pattern Recognition, by S. Theodoridis and K. Koutroumbas, second edition available on moodle,
  - Book Website: http://cgi.di.uoa.gr/~stpatrec/welcome3d.html
- MATLAB-based examples accompanying the book: An Introduction to Pattern Recognition, by S. Theodoridis and K. Koutroumbas

■ More will be added on moodle as we need them.

#### **Tools and Datasets**

- Matlab Book examples.
- The PRTools MATLAB toolkit (prtools.org)
- Other tools that can be useful such as Apache Mahout.
- Datasets:
  - Public datasets for Statistical Pattern Recognition
    - http://homepages.inf.ed.ac.uk/rbf/IAPR/researchers/PPRPAGES/pprdat.htm
  - Machine Learning Repository Centre for Machine Learning and Intelligent Systems
    - https://archive.ics.uci.edu/ml/datasets.html
  - Pattern Recognition Tools Datasets
    - http://www.37steps.com/prtools/examples/datasets/
  - Pattern Recognition and Neural Networks
    - http://www.stats.ox.ac.uk/pub/PRNN/
  - Test Images & Speech Segments:
    - http://cgi.di.uoa.gr/~stpatrec/welcome3d.html

### **Project topics**

#### **■ Applications:**

- Handwritten Digit Recognizer
- **Face Recognition**
- Speech Recognition
- **Fingerprint Recognition**
- Land Cover Identification

#### **■ Classifier Implementation:**

- Sequential Implementation of Any classifier of your choice and testing it on a dataset of your choice.
- Running a Parallel Implementation of a classifier of your choice, such as on Apache Mahout on a data set of your choice.



Sergios Theodoridis

**Konstantinos Koutroumbas** 

**\***8

- Machine vision
- Character recognition (OCR)
- Computer aided diagnosis
- Speech recognition
- Face recognition
- Fingerprint identification
- ❖The task: Assign unknown objects patterns into the correct class. This is known as classification.
- Biometrics: voice, iris, finger print, face, and gait recognition
- Smell recognition: e-nose, sensor networks
- Image Data Base retrieval
- Data mining
- Bionformatics: DNA sequence identification
- Automatic diacritization
- Defect detection in chip manufacturing
- Network traffic modeling, intrusion detection
- Biomedical signal classification (EEG) (BCI)

Classification of the type and category of a natural scene or creature









❖ Face detection, face recognition, emotion classification, etc.









#### **\***11

# Examples of Patterns: Car-plate Recognition





Pattern discovery and association







❖Statistics show connections between the shape of one's face (adults) and his/her Character. There is also evidence that the outline of children's face is related to alcohol abuse during pregnancy.

#### **\***13

### **Examples of Patterns**

❖Patterns of brain activities:







•We may understand patterns of brain activity and find relationships between brain activities, cognition, and behaviors

- ❖Patterns with variations:
- 1. Expression –geometric deformation
- 2. Lighting --- photometric deformation
- 3. 3D pose transform
- 4. Noise and occlusion



❖Speech signal and Hidden Markov model



❖ Natural language and stochastic grammar.



❖Building Automaton and parsing languages will not be covered in this course.

- ❖ Features: These are measurable quantities obtained from the patterns, and the classification task is based on their respective values.
- Feature vectors: A number of features

$$X_1, \ldots, X_l$$

constitute the feature vector

$$\underline{x} = [x_1, ..., x_l]^T \in \mathbb{R}^l$$

Feature vectors are treated as random vectors.

#### An example:







**\***19

■ The classifier consists of a set of functions, whose values, computed at , determine the class to which the corresponding pattern belongs

■ Classification system overview



### PR Different Paradigms

- Template matching and nearest neighbor approach
- Statistical techniques
- Syntactic (Structural) techniques
- Neural networks and SVMs
- HMMs
- Hybrid approaches

### Two Schools of Thinking

#### 1. Generative methods:

Bayesian school, pattern theory.

- 1). Define patterns and regularities (graph spaces),
- 2). Specify likelihood model for how signals are generated from hidden structures
- 3). Learning probability models from ensembles of signals
- 4). Inferences.

#### 2. Discriminative methods:

The goal is to tell apart a number of patterns, say 100 people in a company, 10 digits for zip-code reading. These methods hit the discriminative target directly, without having to understand the patterns (their structures) or to develop a full mathematical description.

For example, we may tell someone is speaking English or Chinese in the hallway without understanding the words he is speaking.

"You should not solve a problem to an extent more than what you need"

#### Levels of task

- For example, there are many levels of tasks related to human face patterns
  - 1. Face authentication (hypothesis test for one class)
  - 2. Face detection (yes/no for many instances).
  - 3. Face recognition (classification)
  - 4. Expression recognition (smile, disgust, surprise, angry) identifiability problem.

\_\_\_\_\_

- 5. Gender and age recognition
- 6. Face sketch and from images to cartoon
  - --- needs generative models.
- 7. Face caricature

. . . . . .

The simple tasks 1-4 may be solved effectively using discriminative methods, but the difficult tasks 5-7 will need generative methods.

Schools for pattern recognition can be divided in three axes:

❖ Axis I: generative vs discriminative

(Bayesian vs non-Bayesian)

(--- modeling the patterns or just want to tell them

apart)

❖ Axis II: deterministic vs stochastic

(logic vs statistics)

(have rigid regularity and hard thresholds or have soft constraints on regularity and soft thresholding)

- ❖ Axis III: representation---algorithm---implementation
- ❖Examples:

Bayesian decision theory, neural networks, syntactical pattern recognition (AI), decision trees, Support vector machines, boosting techniques,



- Supervised unsupervised pattern recognition: The two major directions
  - **Supervised**: Patterns whose class is known a-priori are used for training.
  - **Unsupervised**: The number of classes is (in general) unknown and no training patterns are available.

#### **BAYES DECISION THEORY**

Introduction

## CLASSIFIERS BASED ON BAYES DECISION THEORY

■ Statistical nature of feature vectors

$$\underline{x} = \left[x_1, x_2, \dots, x_l\right]^T$$

$$\omega_1, \omega_2, ..., \omega_M$$

■ Assign the pattern represented by feature vector to the most probable of the available classes

That is 
$$\underline{x} \to \omega_i : P(\omega_i | \underline{x})$$

maximum

Known as M conditional probabilities (*a posteriori probabilities*)

Posterior probability ∝ Likelihood × Prior probability

#### ■ Computation of a-posteriori probabilities

- Assume known
  - a-priori probabilities

$$P(\omega_1), P(\omega_2)..., P(\omega_M)$$

if N is the total number of available training patterns, and  $N_1, N_2$  of them belong to  $w_1$  and  $w_2$  respectively, then  $P(w_1) \approx N_1/N$  and  $P(w_2) \approx N_2/N$ .

$$p(\underline{x}|\omega_i), i = 1,2...M$$

class-conditional probability density functions. This is also known as the likelihood of

$$\underline{x}$$
 w.r. to  $\omega_i$ .

### Example

Suppose there is a mixed school having 60% boys and 40% girls as students. The girls wear trousers or skirts in equal numbers; the boys all wear trousers. An observer sees a (random) student from a distance; all the observer can see is that this student is wearing trousers. What is the probability this student is a girl?

The event G is that the student observed is a girl, and the event T is that the student observed is wearing trousers. To compute P(G|T), we first need to know:

$$P(G) = 0.4$$
  
 $P(B) = 0.6$   
 $P(T|G) = 0.5$   
 $P(T|B) = 1$   
 $P(T) = P(T|G) P(G) + P(T|B)P(B) = 0.5 \times 0.4 + 1 \times 0.6 = 0.8$ 

Therefore:  $P(G|T) = P(T|G)P(G) / P(T) = 0.5 \times 0.4 / 0.8 = 0.25$ 

#### **\***29

#### $\gt$ The Bayes rule (M=2)

$$P(\omega_i | \underline{x}) = \frac{p(\underline{x} | \omega_i) P(\omega_i)}{p(\underline{x})}$$

where

$$p(\underline{x}) = \sum_{i=1}^{2} p(\underline{x} | \omega_i) P(\omega_i)$$

- $\clubsuit$  The Bayes classification rule (for two classes M=2)
  - $\triangleright$  Given x classify it according to the rule

If 
$$P(\omega_1|\underline{x}) > P(\omega_2|\underline{x}) \ \underline{x} \rightarrow \omega_1$$
  
If  $P(\omega_2|\underline{x}) > P(\omega_1|\underline{x}) \ \underline{x} \rightarrow \omega_2$ 

 $\triangleright$  Equivalently: classify  $\underline{x}$  according to the rule

$$p(\underline{x}|\omega_1)P(\omega_1)(><)p(\underline{x}|\omega_2)P(\omega_2)$$

> For equiprobable classes the test becomes

$$p(\underline{x}|\omega_1)(><)P(\underline{x}|\omega_2)$$



## THE GAUSSIAN PROBABILITY DENSITY FUNCTION

The multidimensional Gaussian pdf has the form

$$p(x) = \frac{1}{(2\pi)^{l/2} |S|^{1/2}} \exp\left(-\frac{1}{2}(x-m)^T S^{-1}(x-m)\right)$$

where m = E[x] is the mean vector, S is the covariance matrix defined as  $S = E[(x - m)(x - m)^T]$ , |S| is the determinant of S. Often we refer to the Gaussian pdf as the *normal* pdf and we use the notation N(m,S). For the I-dimensional case,  $x \in R$ , the above becomes

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$

where  $\sigma^2$  is the variance of the random variable x.

#### **\***33

#### Matlab Exercise 1

■ Compute the value of a Gaussian pdf, N (m, S), at  $x_1 = [0.2, 1.3]^T$  and  $x_2 = [2.2, -1.3]^T$ , where

$$m=[0,1]^T$$
,  $S=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ 

■ *Solution.* Use the function *comp\_gauss\_dens\_val* to compute the value of the Gaussian pdf. Specifically, type

```
m=[0 1]'; S=eye(2);
x1=[0.2 1.3]';
x2=[2.2-1.3]';
pg1=comp_gauss_dens_val(m,S,x1);
pg2=comp_gauss_dens_val(m,S,x2);
```

■ The resulting values for pg1 and pg2 are 0.1491 and 0.001, respectively.

#### Matlab Exercise 2

■ Consider a 2-class classification task in the 2-dimensional space, where the data in both classes,  $\omega_1$ ,  $\omega_2$ , are distributed according to the Gaussian distributions  $N(m_1,S_1)$  and  $N(m_2,S_2)$ , respectively. Let:



$$m_1 = [1,1]^T, m_2 = [3,3]^T, S_1 = S_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Assuming that  $P(\omega_1) = P(\omega_2) = 1/2$ , classify  $x = [1.8, 1.8]^T$  into  $\omega_1$  or  $\omega_2$ .

■ Solution. Utilize the function comp\_gauss\_dens\_val by typing

```
P1=0.5;

P2=0.5;

m1=[1 1]'; m2=[3 3]'; S=eye(2); x=[1.8 1.8]';

p1=P1*comp_gauss_dens_val(m1,S,x);

p2=P2*comp_gauss_dens_val(m2,S,x);
```

■ The resulting values for  $p_1$  and  $p_2$  are 0.042 and 0.0189, respectively, and x is classified to  $\omega_1$  according to the Bayesian classifier.