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Notation

m Random variables are represented with capital letters,

m Values they take are represented with lowercase letters

m P(x) : Probability of value x

m Dy : probability distribution for random variable X

m py(X): represents the probability of value x (according to py).

B Py y(X|y): represents the probability of value x given value y
(according to py given py).

m X," : represent the sequence X,,X,,...,X_

n
WX, XXX,




Gaussian Mixture Models

m A Gaussian mixture model (GMM) is useful for modeling data
that comes from one of several groups: the groups might be
different from each other, but data points within the same
group can be well-modeled by a Gaussian distribution.

m The Gaussian PDF is:

1
pX(x) — O'\/%

m For short:

o~ (T—p)? /207

px(x) = N(z; i1, 0%)



Estimating the mean

m Given a Gaussian X," i.1.d observations with unknown mean
and variance, we can use MLE to estimate the variance. First
find the Log-likelihood, then differentiation, then set it to O.
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m The mean is estimated to be: ﬁ — % Zz X

which is the average of the observed sample.



Example 1

m The price of a randomly chosen paperback book is normally
distributed with mean $10.00 and standard deviation $1.00

m The price of a randomly chosen hardback is normally
distributed with mean $17 and variance $1.50

m Is the price of any book selected at random from both
groups, will be normally distributed?
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Example 2

m The height of a randomly chosen man is normally distributed
with a mean around 5’9.5” and standard deviation around

2.5”

m The height of a randomly chosen woman is normally
distributed with a mean around 5’°4.5” and standard deviation

around 2.5”

m Is the height of any person selected at random from both

groups, will be normally distributed?
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The Model

m Given people numberedi=1,...,n,their heightsasY. € Rand a
unobserved label Ci € {M,F} for each person representing that
person’s gender.

m Assuming that the two groups have the same known variance 0 2, but
different unknown means (,, and U . .The distribution for the class
labels is Bernoulli:

pe, (i) = ¢" =M (1 — g) =D

m Assuming we know q, and replacing 1My, = q, and 1 = (1-q) and for any
number of classes, We vv111 have:

pe; ( H rlei=e)

ce{M,F'}
m The conditional distributions within each class are Gaussian:

pyiic, (yile:) HNyz,uc, ) e



Parameter Estimation: u( ;, U ¢

m Given the model setup in previous slide, compute the joint
density of all the data points pY,,...,Yy(V;;...,¥,) 10 terms of u
U, O,and q.Take the log to find the log- likelihood, and then
differentiate with respectto u ;.

a density fora 7 (1) = ZpCi(Ci)PEICi (yilei)

single data point

Yi = yis =3 (7 N(ys; ey 0%))

= qN(yi; par, 0°) + (1 — ¢)N(yi; por, 0°)

m The joint density of all the observations is:
n

pyr (i) = 1T (N par, 0%) + (1 = QN (ys; pr, 0°))

i=1
m The log-likelihood of the parameters is then :

In pyp (y7) Zh’l TuN(Yis e, 07) + 7N (yis o, %))

=1



Using Hidden Variables

In py= (y7') Zlﬂ TN (Yi; par, 0°) + 7N (yss pr, 0%))
1=1

m The sum prevents the log-likelihood : log,(a+ c) = log, a + log, (1 + g)

m This is a mixture of exponential and linear term and difficult to
get a closed form maximum likelihood.

m If we knew the hidden labels C, exactly, then it would be easy
to do ML estimates for the parameters:

m take all the points for which C;, = M and use those to estimate ( ;.
m repeat for the points where C, = F to estimate (.

Pyiic, (ilci)pe, (ci)

B HCG{M,F} (TN (s phe, 0
N par, 02) + 7N (Y pr, 02

m start with Bayes’ rule:

Pc,ly; (C’L‘yz) -

I(c=c;
2)) (c=c;)

) = qc; (C@)



Solving for C, = M

7T N y’w 70-2
. - (2 . ) . 9 :qci(M)
WMN(yi,,LLM,U )—|—7TFN(?J757MF>U)

m Rewrite in terms of qC; and set to zero and solve for u

- Yi — |
ZQCz(M) 72 = =0
1=1

> ac,(M)y;
1=1

peyy; (Mly;) =

MM =

chi(M)

m [, 1s a weighted average of the heights, where each height is
weighted by how likely that person is to be male.

m By symmetry, solve for U ., creating a circular setup: fix one and
solve for the other: EM algorithm.



Expectation Maximisation
Algorithm — Informal Steps

m Initialize the parameters somehow.

m First, fix the parameters (in this case, the means (¢, and U
of the Gaussians) and solve for the posterior distribution for
the hidden variables (in this case, qC; , the class labels).

m Second, fix the posterior distribution for the hidden variables
(again, that’s qC,, the class labels), and optimize the
parameters (the means (,, and U ;) using the expected
values of the hidden variables (in this case, the probabilities
from qC,).

m Repeat the two steps above until the values aren’t changing
much (i.e., until convergence).



Preliminaries: Entropy

“I thought of calling it "information", but the word was overly
used, so I decided to call it "uncertainty". [...] Von Neumann
told me, "You should call it entropy, for two reasons. In the first
place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the
second place, and more important, nobody knows what entropy
really is, so in a debate you will always have the advantage.”

mConversation between Claude Shannon and John von
Neumann regarding what name to give to the attenuation in
phone-line signals.



Shannon Entropy

m Entropy is the average amount of information contained in each
message received. Here, message stands for an event, sample or
character drawn from a distribution or data stream.

m Entropy thus characterizes our uncertainty about our source of
information. The idea here is that the less likely an event is, the
more information it provides when it occurs.

m Shannon Entropy H(X) for random variable X with Probability
distribution P(X) is defined as:

=¥ P(@)(x) =~ ¥ Pla:)log, P(x)

I is the information content of X. I(X) is itself a random variable,
defined as the negative of the logarithm of the probability
distribution.



Preliminaries: KL Divergence

m The Kullback-Leibler divergence (a.k.a information divergence,
information gain, relative entropy, or KLIC) is a non-symmetric
measure of the difference between two probability distributions
P and Q.

m The KL divergence of Q from P, denoted D, (P| | Q), is a measure
of the information lost when Q is used to approximate P

m D (P||Q) is not symmetric to D (Q| | P)

m For Discrete Probability: Dy (P||Q) =

1.e.1t is the expectation of the logarithmic difference between the probab111t1es P
and Q, where the expectation is taken using the probabilities P. The KL divergence
is only defined if P and Q both sum to 1 and if implies for all i

o pz
m For Continuous Probability: DxiL(P||Q) = / p(z) In q(( i

o0

where p and g denote the densities of P and Q.



Preliminaries: Jensen's Inequality

m Generally it relates the value of a convex function of an
integral to the integral of the convex function.

m In our case, we need this form:

log(E[X]) > E[log(X)]

m For a geometric intuition and a proof and more detail, see
Wikipedia




Preliminaries: Marginal
Distribution

m The marginal distribution of a subset of a collection of
random variables is the probability distribution of the
variables contained in the subset. It gives the probabilities of
various values of the variables in the subset without
reference to the values of the other variables. This contrasts
with a conditional distribution, which gives the probabilities
contingent upon the values of the other variables.
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Preliminaries: Marginal
Distribution — Cont'd

m Given two random variables X and Y whose joint distribution is
known, the marginal distribution of X is simply the probability
distribution of X averaging over information aboutY. It is the
probability distribution of X when the value ofY is not known. This
is typically calculated by summing or integrating the joint
probability distribution overY.

m For Discrete Random Variables:
Pr(X=2)=) Pr(X=2,Y=y)=) Pr(X =z|Y =y)Pr(Y =y),
y y

where Pr(X = x,Y = y) is the joint distribution of X and Y, while Pr(X = x|Y = y) is the
conditional distribution of X givenY

m For Continuous Random Variables:

px(z) = / pxy(z,y) dy = / pxyy(z|y) py (y) dy,

Y
where py (x,y) gives the joint distribution of X and Y, while py (x| y) gives the

conditional distribution for X given Y.



EM Formal Algorithm

m The EM algorithm is actually maximizing a lower bound on
the log likelihood (in other words, each step is guaranteed to
improve our answer until convergence).



EM Steps

1.  Maximize the log-likelihood log py (y; 6)

a. Marginalizing over C and pyc Yy, c;0)
introducing . (¢)/q¢ (¢) gc(c)
Py.c y,C 0)
b. Rewriting as an expectation
C’ 0
| | | > By |log Yc(y’ )
c. Using Jensen’s inequality qC(C )
-Step: pyc(y,C; 0
2 M-Step By 1o 00 | — B g pyce(y. C36)] - Eug ogac(C)
a. Rearrange qc(C)

b. Maximizing with respect to 0 : é\ — argmax Eq o [log py’c(y, C; 9)]
0

,C:0) py (3 O)pcyy (Cly; 0)
3. E-Step: E [1 prcly ]:E [1
R . © [ 4e(0) [ 4c(C)
a. earrange
QC(C) ]
=1 0) —E, |1
ogpy(y ) ! long|Y(C|y§‘9)

= log py (y;0) — D(qc()llpcyy (+y; 0))

b. Maximizing with respect to qC : Go () ]?C|Y('| y; 0)



EM Step 1

1. Maximize the log-likelihood:

log py (; 8) = log (Zpyc e )

a. Log of sum problem!

b. Solution: if we have an expectation for one variable (C here), we can
swap the order using Jensen’s inequality.

c. Introduce a new distribution qC: pyc(y, c;0)
= log Z qc(c

ge(c)
C 0
i : C 6)
> E,. |log pr.o( ?J ]
d. Using Jensen’s inequality : .
e. Using definition of conditional —E,. |log Py ( 0)pc |y(C|y,
probability “l qc(C)

m Now we have a lower bound on log py (y; 6) that we can optimize
pretty easily. Since we’ve introduced qC, we now want to maximize
this quantity with respect to both 6 and qC.



EM Step 2 — The M Step.

2. 'The M stands for maximization, since we’re maximizing with
respect to the parameters.

a. Find Best Parameters 0 by rearranging using Jensen’s inequality :

pYC(Z/;C; 9)
E lo ’
[ SI(e)

] = E,. [logpy,c(y, C;0)] — Eqc log gc(C)]

b. In general, qC doesn’t depend on 6 ,so we’ll only care about the first
term:

f + argmax E,. [logpy.c(y, C;0)]
0

m Now we have a lower bound on log py (y; 6) that we can optimize
pretty easily. Since we’ve introduced qC, we now want to maximize
this quantity with respect to both 6 and qC.



we can use it for expectations.

a. Find Best gqC by rearranging using definition of conditional
probability:

EM Step 3 — The E Step.
3. the E stands for expectation, since we’re computing qC so that

Pcly C|CU;
qc(C)

E

1 pY(y; 9)P0|Y(C|y; ‘9)
0og

qc QC(C) ] — ECIC’ [longQJ; 9)] + EQC 1 0g

b. The first term doesn’t depend on ¢, and the second term almost
looks like a KL divergence:
qc(C) ]

= lo 0) —E,. |lo
ng(y ) QC[ ng|Y(C|y§9)

= log py (y; 0) — D(qc()||pcyy (+|y; 0))

c.  When maximizing this quantity, we want to make the KL divergence
as small as possible. KL divergences are always greater than or
equal to 0, and they’re exactly O when the two distributions are
equal. So, the optimal qCis  pey (cly; 0)

go(+) < pey (+ly; 0)




Repeat Until Convergence

By alternating between

f + argmax E,. [logpyc(y, C;0)]
0
and

qc () < pcy (-|y; 0)

we can maximize a lower bound on the log-likelihood. We've
also seen from E-Step that the lower bound is tight (that is, it’s
equal to the log-likelihood) when we are computing qC .



The EM Algorithm |I

Inputs: Observation y, joint distribution py.c(y, c; @), conditional distribution peyy (cly; 0)
initial values 6

1: function EM(py.c(y, ¢;0), poyy (cly; 0),09)

2 for iteration t € 1,2,... do

3: () <_pC|Y(C|y7 @(t 1)) (E-step)

4: H(t) ¢ argmax, ]qu) pvie(y,C;0)] (M-step)
5 if 0 ~ 91 then

6 return 6@




Applying the algorithm for GMM
(again)

m Given an observed random variableY (heights), some hidden
variable C (gender) thatY depends on. The distributions of C and
Y have some parameters 0 (the means (,; and U ;) that we don’t
know.

m The objective is to estimate the parameters 8, given some initial

value: suppose weset tM=3" and ¢F=5" .Thenthe computed posteriors
gCi would all favor F over M (since most people are closer to 5" than 3" ), and we
would end up computing ¢ F as roughly the average of all our heights, and ¢ M as
the average of a few short people.

m For the E-step, we have to compute the posterior distribution p¢ |y

(cly): py;c; (Yilci)pe, (ci)
qu;|Yi(Ci‘yi) —
Py, (Yi)

1(c=c;
- eepprry (meNis pe, 0°)) =)
m For C,=M: TN (yi; par, 02) + 7Ny pip, 02

TN (yis finr, 02)
TN (yi; iar, 02) + mpN(y;; pir, 02)

) = {qc; (C’L)

pe,y,(Mly;) = = qc, (M)



Applying the algorithm for GMM
(again) — Cont'd

m To do the M-Step:
Eqo [ln pY,C(ya C)] = Eqc [ln pY\C(y|C)pC(C)]

= ch th H y’w:uC) ))H(Ci:(:)
1=1 ce{M,F} i
—E,. S‘ Y 1(C (In7e + In N(y;; e, 0°))
1=1 ce{M, F} ( )2
1 Yi __:uc
— K Inm, +1 N
ZCEZF} oo [HE =) (M Tlovar | 208 )

n Eq [1(C; = ¢)]is the probability that Ci is ¢, according to q.
Now, we can differentiate with respectto y M :

duiMch[lanIdmC)pc(C)] = 7Z:;q(;i(]\f) (yz ’LLM) — 0




Applying the algorithm for GMM
(again) — Cont'd

m Using the last form:

- Yi — UM
Z qc; (M) 52 0
i=1

m The solution will be the weighted average as follows:

> ac(M)y, > ac.(F)y,
1=1 g = i:;J
Z qci(F)
1=1

Har =

chq:(M)
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Assignment 2

m Repeat Exercise 1.6.1 not using a generated data as shown,
but using data you decided for your project.



