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Notation 

n  Random variables are represented with capital letters,  

n  Values they take are represented with lowercase letters  

n  P(x) : Probability of value x 

n  pX : probability distribution for random variable X 

n  pX(x): represents the probability of value x (according to pX). 

n  pX|Y(x|y): represents the probability of value x given value y 
(according to pX given pY). 

n  X1
n : represent the sequence X1,X2,...,Xn  

n  x1
n : x1, x2, ..., xn  
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Gaussian Mixture Models  

n  A Gaussian mixture model (GMM) is useful for modeling data 
that comes from one of several groups: the groups might be 
different from each other, but data points within the same 
group can be well-modeled by a Gaussian distribution.  

n  The Gaussian PDF is: 

n  For short: 
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Gaussian mixture models and the EM algorithm

Ramesh Sridharan⇤

These notes give a short introduction to Gaussian mixture models (GMMs) and the
Expectation-Maximization (EM) algorithm, first for the specific case of GMMs, and then
more generally. These notes assume you’re familiar with basic probability and basic calculus.
If you’re interested in the full derivation (Section 3), some familiarity with entropy and KL
divergence is useful but not strictly required.

The notation here is borrowed from Introduction to Probability by Bertsekas & Tsitsiklis:
random variables are represented with capital letters, values they take are represented with
lowercase letters, p

X

represents a probability distribution for random variable X, and p

X

(x)
represents the probability of value x (according to p

X

). We’ll also use the shorthand notation
X

n

1

to represent the sequence X

1

, X

2

, . . . , X

n

, and similarly x

n

1

to represent x

1

, x

2

, . . . , x

n

.
These notes follow a development somewhat similar to the one in Pattern Recognition

and Machine Learning by Bishop.

1 Review: the Gaussian distribution

If random variable X is Gaussian, it has the following PDF:

p

X

(x) =
1

�

p
2⇡

e

�(x�µ)

2
/2�

2

The two parameters are µ, the mean, and �

2, the variance (� is called the standard deviation).
We’ll use the terms “Gaussian” and “normal” interchangeably to refer to this distribution.

To save us some writing, we’ll write p

X

(x) = N(x; µ, �

2) to mean the same thing (where the
N stands for normal).

1.1 Parameter estimation for Gaussians: µ

Suppose we have i.i.d observations X

n

1

from a Gaussian distribution with unknown mean
µ and known variance �

2. If we want to find the maximum likelihood estimate for the

⇤Contact: rameshvs@csail.mit.edu
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Estimating the mean 
n  Given a Gaussian X1

n i.i.d observations with unknown mean 
and variance, we can use MLE to estimate the variance. First 
find the Log-likelihood, then differentiation, then set it to 0. 

n  The mean is estimated to be: 

which is the average of the observed sample. 
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parameter µ, we’ll find the log-likelihood, di↵erentiate, and set it to 0.

p

X

n

1
(xn

1

) =
nY

i=1

N(x
i

; µ, �

2) =
nY

i=1

1

�

p
2⇡

e

�(x1�µ)

2
/2�

2

ln p

X

n

1
(xn

1

) =
nX

i=1

ln

✓
1

�

p
2⇡

◆
� 1

2�2

(x
i

� µ)2

d

dµ

ln p

X

n

1
(xn

1

) =
nX

i=1

1

�

2

(x
i

� µ)

Setting this equal to 0, we see that the maximum likelihood estimate is bµ = 1

N

P
i

x

i

: it’s the
average of our observed samples. Notice that this estimate doesn’t depend on the variance
�

2! Even though we started o↵ by saying it was known, its value didn’t matter.

2 Gaussian Mixture Models

A Gaussian mixture model (GMM) is useful for modeling data that comes from one of several
groups: the groups might be di↵erent from each other, but data points within the same group
can be well-modeled by a Gaussian distribution.

2.1 Examples

For example, suppose the price of a randomly chosen paperback book is normally distributed
with mean $10.00 and standard deviation $1.00. Similarly, the price of a randomly chosen
hardback is normally distributed with mean $17 and variance $1.50. Is the price of a ran-
domly chosen book normally distributed?

The answer is no. Intuitively, we can see this by looking at the fundamental property
of the normal distribution: it’s highest near the center, and quickly drops o↵ as you get
farther away. But, the distribution of a randomly chosen book is bimodal: the center of
the distribution is near $13, but the probability of finding a book near that price is lower
than the probability of finding a book for a few dollars more or a few dollars less. This is
illustrated in Figure 1a.

Another example: the height of a randomly chosen man is normally distributed with a
mean around 509.5” and standard deviation around 2.5”. Similarly, the height of a randomly
chosen woman is normally distributed with a mean around 504.5” and standard deviation
around 2.5” 1 Is the height of a randomly chosen person normally distributed?

The answer is again no. This one is a little more deceptive: because there’s so much
overlap between the height distributions for men and for women, the overall distribution is
in fact highest at the center. But it’s still not normally distributed: it’s too wide and flat in
the center (we’ll formalize this idea in just a moment). This is illustrated in Figure 1b. These
are both examples of mixtures of Gaussians : distributions where we have several groups and

1In the metric system, the means are about 177 cm and 164 cm, and the standard deviations are about
6 cm.
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Example 1  

n  The price of a randomly chosen paperback book is normally 
distributed with mean $10.00 and standard deviation $1.00  

n  The price of a randomly chosen hardback is normally 
distributed with mean $17 and variance $1.50  

n  Is the price of any book selected at random from both 
groups, will be normally distributed? 
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(a) Probability density for paperback books (red),
hardback books (blue), and all books (black, solid)

(b) Probability density for heights of women (red),
heights of men (blue), and all heights (black, solid)

Figure 1: Two Gaussian mixture models: the component densities (which are Gaussian) are
shown in dotted red and blue lines, while the overall density (which is not) is shown as a
solid black line.

the data within each group is normally distributed. Let’s look at this a little more formally
with heights.

2.2 The model

Formally, suppose we have people numbered i = 1, . . . , n. We observe random variable
Y

i

2 R for each person’s height, and assume there’s an unobserved label C

i

2 {M, F} for
each person representing that person’s gender 2. Here, the letter c stands for “class”. In
general, we can have any number of possible labels or classes, but we’ll limit ourselves to two
for this example. We’ll also assume that the two groups have the same known variance �

2,
but di↵erent unknown means µ

M

and µ

F

. The distribution for the class labels is Bernoulli:

p

C

i

(c
i

) = q

(c

i

=M)(1 � q) (c

i

=F )

We’ll also assume q is known. To simplify notation later, we’ll let ⇡

M

= q and ⇡

F

= 1 � q,
so we can write

p

C

i

(c
i

) =
Y

c2{M,F}

⇡

(c

i

=c)

c

(1)

The conditional distributions within each class are Gaussian:

p

Y

i

|C
i

(y
i

|c
i

) =
Y

c

N(y
i

; µ
c

, �

2) (c

i

=c) (2)

2Naive Bayes model, this is somewhat similar. However, here our features are always Gaussian, and in
the general case of more than 1 dimension, we won’t assume independence of the features.
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Example 2 

n  The height of a randomly chosen man is normally distributed 
with a mean around 5’9.5” and standard deviation around 
2.5”  

n  The height of a randomly chosen woman is normally 
distributed with a mean around 5’4.5” and standard deviation 
around 2.5”  

n  Is the height of any person selected at random from both 
groups, will be normally distributed? 
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The Model 
n  Given people numbered i = 1, . . . , n, their heights as Yi ∈ R and an 

unobserved label Ci ∈ {M,F} for each person representing that 
person’s gender.  

n  Assuming that the two groups have the same known variance σ2, but 
different unknown means μM and μF . The distribution for the class 
labels is Bernoulli:  

n  Assuming we know q, and replacing πM = q, and πF = (1-q) and for any 
number of classes, we will have: 

 

n  The conditional distributions within each class are Gaussian:  
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Parameter Estimation: μM, μF 

n  Given the model setup in previous slide, compute the joint 
density of all the data points pY1,...,YN(y1,...,yn) in terms of μM, 
μF, σ, and q. Take the log to find the log- likelihood, and then 
differentiate with respect to μM .  

n  density for a  
single data point  
Yi = yi: 

n   The joint density of all the observations is:  

n  The log-likelihood of the parameters is then : 
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2.3 Parameter estimation: a first attempt

Suppose we observe i.i.d. heights Y

1

= y

1

, . . . , Y

n

= y

n

, and we want to find maximum
likelihood estimates for the parameters µ

M

and µ

F

. This is an unsupervised learning problem:
we don’t get to observe the male/female labels for our data, but we want to learn parameters
based on those labels 3

Exercise: Given the model setup in (1) and (2), compute the joint density of all the data
points p

Y1,...,Y
N

(y
1

, . . . , y

n

) in terms of µ

M

, µ

F

, �, and q. Take the log to find the log-
likelihood, and then di↵erentiate with respect to µ

M

. Why is this hard to optimize?
Solution: We’ll start with the density for a single data point Y
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= y

i
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i
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, �

2)

Now, the joint density of all the observations is:

p
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1
(yn

1

) =
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qN(y
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�
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and the log-likelihood of the parameters is then

ln p
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nX
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ln
�
⇡
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N(y
i

; µ
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, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
�
, (3)

We’ve already run into a small snag: the sum prevents us from applying the log to the normal
densities inside. So, we should already be a little worried that our optimization won’t go as
smoothly as it did for the simple mean estimation we did back in Section 1.1. By symmetry,
we only need to look at one of the means; the other will follow almost the same process.
Before we dive into di↵erentiating, we note that

d

dµ

N(x; µ, �

2) =
d

dµ


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�

p
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e
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Di↵erentiating (3) with respect to µ

M

, we obtain
nX
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, �

2) + ⇡

F

N(y
i
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⇡
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N(y
i
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y

i

� µ

M

�

2

= 0 (4)

At this point, we’re stuck. We have a mix of ratios of exponentials and linear terms, and
there’s no way we can solve this in closed form to get a clean maximum likelihood expression!

3Note that in a truly unsupervised setting, we wouldn’t be able to tell which one of the two was male
and which was female: we’d find two distinct clusters and have to label them based on their values after the
fact.
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We’ve already run into a small snag: the sum prevents us from applying the log to the normal
densities inside. So, we should already be a little worried that our optimization won’t go as
smoothly as it did for the simple mean estimation we did back in Section 1.1. By symmetry,
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At this point, we’re stuck. We have a mix of ratios of exponentials and linear terms, and
there’s no way we can solve this in closed form to get a clean maximum likelihood expression!

3Note that in a truly unsupervised setting, we wouldn’t be able to tell which one of the two was male
and which was female: we’d find two distinct clusters and have to label them based on their values after the
fact.

4

2.3 Parameter estimation: a first attempt

Suppose we observe i.i.d. heights Y

1

= y

1

, . . . , Y

n

= y

n

, and we want to find maximum
likelihood estimates for the parameters µ

M

and µ

F

. This is an unsupervised learning problem:
we don’t get to observe the male/female labels for our data, but we want to learn parameters
based on those labels 3

Exercise: Given the model setup in (1) and (2), compute the joint density of all the data
points p

Y1,...,Y
N

(y
1

, . . . , y

n

) in terms of µ

M

, µ

F

, �, and q. Take the log to find the log-
likelihood, and then di↵erentiate with respect to µ

M

. Why is this hard to optimize?
Solution: We’ll start with the density for a single data point Y

i

= y

i

:

p

Y

i

(y
i

) =
X

c

i

p

C

i

(c
i

)p
Y

i

|C
i

(y
i

|c
i

)

=
X

c

i

�
⇡

c

N(y
i

; µ
C

, �

2)
�

(c

i

=c)

= qN(y
i

; µ
M

, �

2) + (1 � q)N(y
i

; µ
F

, �

2)

Now, the joint density of all the observations is:

p

Y

n

1
(yn

1

) =
nY

i=1

�
qN(y

i

; µ
M

, �

2) + (1 � q)N(y
i

; µ
F

, �

2)
�
,

and the log-likelihood of the parameters is then

ln p

Y

n

1
(yn

1

) =
nX

i=1

ln
�
⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
�
, (3)

We’ve already run into a small snag: the sum prevents us from applying the log to the normal
densities inside. So, we should already be a little worried that our optimization won’t go as
smoothly as it did for the simple mean estimation we did back in Section 1.1. By symmetry,
we only need to look at one of the means; the other will follow almost the same process.
Before we dive into di↵erentiating, we note that

d

dµ

N(x; µ, �

2) =
d

dµ


1

�

p
2⇡

e

� (x�µ)2

2�2

�

=
1

�

p
2⇡

e

� (x�µ)2

2�2 · 2(x � µ)

2�2

= N(x; µ, �

2) · (x � µ)

�

2

Di↵erentiating (3) with respect to µ

M

, we obtain
nX

i=1

1

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
⇡

M

N(y
i

; µ
M

, �

2)
y

i

� µ

M

�

2

= 0 (4)

At this point, we’re stuck. We have a mix of ratios of exponentials and linear terms, and
there’s no way we can solve this in closed form to get a clean maximum likelihood expression!

3Note that in a truly unsupervised setting, we wouldn’t be able to tell which one of the two was male
and which was female: we’d find two distinct clusters and have to label them based on their values after the
fact.

4



Using Hidden Variables 

n  The sum prevents the log-likelihood : 

n  This is a mixture of exponential and linear term and difficult to 
get a closed form maximum likelihood.  

n  If we knew the hidden labels Ci exactly, then it would be easy 
to do ML estimates for the parameters: 
n  take all the points for which Ci = M and use those to estimate μM. 

n  repeat for the points where Ci = F to estimate μF . 

n  start with Bayes’ rule: 
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2.4 Using hidden variables and the EM Algorithm
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exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which C
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like we did in Section 1.1, and then
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p

C

i

|Y
i

(c
i

|y
i

) =
p

Y

i

|C
i

(y
i

|c
i

)p
C

i

(c
i

)

p

Y

i

(y
i

)

=

Q
c2{M,F} (⇡

c

N(y
i

; µ
c

, �

2)) (c=c

i

)

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
= q

C

i

(c
i

) (5)

Let’s look at the posterior probability that C
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This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of q
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, and cheat a little by pretending it doesn’t depend on µ
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This looks much better: µ

M

is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µ

F

, we’d compute the
weighted average with weights q
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(F ).
So now we have a circular setup: we could easily compute the posteriors over C

n

1

if we
knew the parameters, and we could easily estimate the parameters if we knew the posterior
over C

n

1

. This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µ

M

and µ

F

of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, q
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i

, the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s q
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class labels), and optimize the parameters (the means µ
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and µ

F

) using the expected
values of the hidden variables (in this case, the probabilities from q
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). This is done
using (4).
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Solving for Ci = M 

n  Rewrite in terms of qCi and set to zero and solve for μM:  

n μM is a weighted average of the heights, where each height is 
weighted by how likely that person is to be male.  

n  By symmetry, solve for μF , creating a circular setup: fix one and 
solve for the other: EM algorithm.    
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Expectation Maximisation 
Algorithm – Informal Steps 

n  Initialize the parameters somehow.  

n  First, fix the parameters (in this case, the means μM and μF 
of the Gaussians) and solve for the posterior distribution for 
the hidden variables (in this case, qCi , the class labels).  

n  Second, fix the posterior distribution for the hidden variables 
(again, that’s qCi, the class labels), and optimize the 
parameters (the means μM and μF ) using the expected 
values of the hidden variables (in this case, the probabilities 
from qCi ).  

n  Repeat the two steps above until the values aren’t changing 
much (i.e., until convergence).  
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Preliminaries: Entropy 

“I thought of calling it "information", but the word was overly 
used, so I decided to call it "uncertainty". [...] Von Neumann 
told me, "You should call it entropy, for two reasons. In the first 
place your uncertainty function has been used in statistical 
mechanics under that name, so it already has a name. In the 
second place, and more important, nobody knows what entropy 
really is, so in a debate you will always have the advantage.” 

 

n Conversation between Claude Shannon and John von 
Neumann regarding what name to give to the attenuation in 
phone-line signals. 
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Shannon Entropy 
n  Entropy is the average amount of information contained in each 

message received. Here, message stands for an event, sample or 
character drawn from a distribution or data stream.  

n  Entropy thus characterizes our uncertainty about our source of 
information. The idea here is that the less likely an event is, the 
more information it provides when it occurs.   

n  Shannon Entropy  H(X) for random variable X with Probability 
distribution P(X) is defined as: 

I is the information content of X. I(X) is itself a random variable, 
defined as the negative of the logarithm of the probability 
distribution.  
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Preliminaries: KL Divergence  
 

n  The Kullback–Leibler divergence (a.k.a information divergence, 
information gain, relative entropy, or KLIC) is a non-symmetric 
measure of the difference between two probability distributions 
P and Q.  

n  The KL divergence of Q from P, denoted DKL(P||Q), is a measure 
of the information lost when Q is used to approximate P. 

n  DKL(P||Q) is not symmetric to DKL(Q||P) 

n  For Discrete Probability: 

i.e. it is the expectation of the logarithmic difference between the probabilities P 
and Q, where the expectation is taken using the probabilities P. The KL divergence 
is only defined if P and Q both sum to 1 and if  implies  for all i  

n  For Continuous Probability: 

where p and q denote the densities of P and Q. 
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Preliminaries: Jensen's Inequality  

n  Generally it relates the value of a convex function of an 
integral to the integral of the convex function.  

n  In our case, we need this form: 

n  For a geometric intuition and a proof and more detail, see 
Wikipedia  
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Figure 2: An illustration of a special case of Jensen’s inequality: for any random variable X,
E[log X] � logE[X]. Let X be a random variable with PDF as shown in red. Let Z = log X.
The center and right figures show how to construct the PDF for Z (shown in blue): because
of the log, it’s skewed towards smaller values compared to the PDF for X. logE[X] is the
point given by the center dotted black line, or E [X]. But E [log X], or E [Z], will always be
smaller (or at least will never be larger) because the log “squashes” the bigger end of the
distribution (where Z is larger) and “stretches” the smaller end (where Z is smaller).

3 The EM Algorithm: a more formal look

Note: This section assumes you have a basic familiarity with measures like entropy and
KL divergence, and how they relate to expectations of random variables. You can still
understand the algorithm itself without knowing these concepts, but the derivations depend
on understanding them.

By this point you might be wondering what the big deal is: the algorithm described
above may sound like a hack where we just arbitrarily fix some stu↵ and then compute other
stu↵. But, as we’ll show in a few short steps, the EM algorithm is actually maximizing a
lower bound on the log likelihood (in other words, each step is guaranteed to improve our
answer until convergence). A bit more on that later, but for now let’s look at how we can
derive the algorithm a little more formally.

Suppose we have observed a random variable Y . Now suppose we also have some hidden
variable C that Y depends on. Let’s say that the distributions of C and Y have some
parameters ✓ that we don’t know, but are interested in finding.

In our last example, we observed heights Y = {Y
1

, . . . , Y

n

} with hidden variables (gender
labels) C = {C

1

, . . . , C

n

} (with i.i.d. structure over Y and C), and our parameters ✓ were
µ

M

and µ

F

, the mean heights for each group.
Before we can actually derive the algorithm, we’ll need a key fact: Jensen’s inequality.

The specific case of Jensen’s inequality that we need says that:

log(E[X]) � E[log(X)] (9)

For a geometric intuition of why this is true, see Figure 2. For a proof and more detail, see
Wikipedia 4 5.

4
http://en.wikipedia.org/wiki/Jensen_inequality

5This figure is based on the one from the Wikipedia article, but for a concave function instead of a convex
one.
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Preliminaries: Marginal 
Distribution 

n  The marginal distribution of a subset of a collection of 
random variables is the probability distribution of the 
variables contained in the subset. It gives the probabilities of 
various values of the variables in the subset without 
reference to the values of the other variables. This contrasts 
with a conditional distribution, which gives the probabilities 
contingent upon the values of the other variables. 

17 

Joint and marginal distributions of a pair of discrete, 
random variables X,Y having nonzero mutual 
information I(X; Y). The values of the joint 
distribution are in the 4×4 square, and the values of 
the marginal distributions are along the right and 
bottom margins.    

    
 



Preliminaries: Marginal 
Distribution – Cont’d 

n  Given two random variables X and Y whose joint distribution is 
known, the marginal distribution of X is simply the probability 
distribution of X averaging over information about Y. It is the 
probability distribution of X when the value of Y is not known. This 
is typically calculated by summing or integrating the joint 
probability distribution over Y. 

n  For Discrete Random Variables: 

where Pr(X = x,Y = y) is the joint distribution of X and Y, while Pr(X = x|Y = y) is the 
conditional distribution of X given Y 

n  For Continuous Random Variables: 

where pX,Y(x,y) gives the joint distribution of X and Y, while pX|Y(x|y) gives the 
conditional distribution for X given Y.  
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EM Formal Algorithm 

n  The EM algorithm is actually maximizing a lower bound on 
the log likelihood (in other words, each step is guaranteed to 
improve our answer until convergence). 
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EM Steps 
1.  Maximize the log-likelihood 

a.  Marginalizing over C and  
introducing qC (c)/qC (c)  

b.  Rewriting as an expectation 

c.  Using Jensen’s inequality  

2.  M-Step:  
a.  Rearrange 

b.  Maximizing with respect to θ: 

3.  E-Step:  
a.  Rearrange 

b.  Maximizing with respect to qC : 
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Now we’re ready to begin: Section 3.1 goes through the derivation quickly, and Section 3.2
goes into more detail about each step.

3.1 The short verion
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3.2 The long version

We’ll try to do maximum likelihood. Just like we did earlier, we’ll try to compute the
log-likelihood by marginalizing over C:
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Just like in Section 2.3, we’re stuck here: we can’t do much with a log of a sum. Wouldn’t
it be nice if we could swap the order of them? Well, an expectation is a special kind of sum,
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So, when maximizing this quantity, we want to make the KL divergence as small as possible.
KL divergences are always greater than or equal to 0, and they’re exactly 0 when the two
distributions are equal. So, the optimal q

C
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6Remember that this is a lower bound on log pY (y; ✓): that is, log pY (y; ✓) � log pY (y; ✓) �
D(qC(·)||pC|Y (·|y; ✓)). From this, we can see that the “gap” in the lower bound comes entirely from the
KL divergence term.
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EM Step 1 
1.  Maximize the log-likelihood: 

a.  Log of sum problem! 

b.  Solution: if we have an expectation for one variable (C here), we can 
swap the order using Jensen’s inequality. 

c.  Introduce a new distribution qC: 

 

d.  Using Jensen’s inequality : 

e.  Using definition of conditional  
probability  

n  Now we have a lower bound on log pY (y; θ) that we can optimize 
pretty easily. Since we’ve introduced qC, we now want to maximize 
this quantity with respect to both θ and qC.  
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Just like in Section 2.3, we’re stuck here: we can’t do much with a log of a sum. Wouldn’t
it be nice if we could swap the order of them? Well, an expectation is a special kind of sum,
and Jensen’s inequality lets us swap them if we have an expectation. So, we’ll introduce a
new distribution q

C

for the hidden variable C:
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Now we have a lower bound on log p

Y

(y; ✓) that we can optimize pretty easily. Since we’ve
introduced q

C

, we now want to maximize this quantity with respect to both ✓ and q

C

.
We’ll use (11) and (12), respectively, to do the optimizations separately. First, using (11)

to find the best parameters:
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In general, q
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doesn’t depend on ✓, so we’ll only care about the first term:
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This is called the M-step: the M stands for maximization, since we’re maximizing with
respect to the parameters. Now, let’s find the best q
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So, when maximizing this quantity, we want to make the KL divergence as small as possible.
KL divergences are always greater than or equal to 0, and they’re exactly 0 when the two
distributions are equal. So, the optimal q

C

is p

C|Y (c|y; ✓):

bq
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(c) p

C|Y (c|y; ✓) (15)

6Remember that this is a lower bound on log pY (y; ✓): that is, log pY (y; ✓) � log pY (y; ✓) �
D(qC(·)||pC|Y (·|y; ✓)). From this, we can see that the “gap” in the lower bound comes entirely from the
KL divergence term.
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EM Step 2 – The M Step. 
2.  The M stands for maximization, since we’re maximizing with 

respect to the parameters. 
a.  Find Best Parameters θ by rearranging using Jensen’s inequality :  

b.  In general, qC doesn’t depend on θ, so we’ll only care about the first 
term: 

 

n  Now we have a lower bound on log pY (y; θ) that we can optimize 
pretty easily. Since we’ve introduced qC, we now want to maximize 
this quantity with respect to both θ and qC.  
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Just like in Section 2.3, we’re stuck here: we can’t do much with a log of a sum. Wouldn’t
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So, when maximizing this quantity, we want to make the KL divergence as small as possible.
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D(qC(·)||pC|Y (·|y; ✓)). From this, we can see that the “gap” in the lower bound comes entirely from the
KL divergence term.
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Repeat Until Convergence 

By alternating between  

and  

we can maximize a lower bound on the log-likelihood. We’ve 
also seen from E-Step that the lower bound is tight (that is, it’s 
equal to the log-likelihood) when we are computing qC .  
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Now we’re ready to begin: Section 3.1 goes through the derivation quickly, and Section 3.2
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The EM Algorithm 
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This is called the E-step: the E stands for expectation, since we’re computing q

C

so that we
can use it for expectations. So, by alternating between (13) and (15), we can maximize a
lower bound on the log-likelihood. We’ve also seen from (15) that the lower bound is tight
(that is, it’s equal to the log-likelihood) when we use (15).

3.3 The algorithm

Inputs: Observation y, joint distribution p

Y,C

(y, c; ✓), conditional distribution p

C|Y (c|y; ✓),
initial values ✓

(0)

1: function EM(p
Y,C

(y, c; ✓), p
C|Y (c|y; ✓), ✓(0))

2: for iteration t 2 1, 2, . . . do
3: q

(t)

C

 p

C|Y (c|y; ✓(t�1)) (E-step)
4: ✓

(t)  argmax
✓

E
q

(t)
C

[p
Y,C

(y, C; ✓)] (M-step)

5: if ✓

(t) ⇡ ✓

(t�1)

then

6: return ✓

(t)

3.4 Example: Applying the general algorithm to GMMs
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Applying the algorithm for GMM 
(again) 
n  Given an observed random variable Y (heights), some hidden 

variable C (gender) that Y depends on.  The distributions of C and 
Y have some parameters θ(the means μM and μF) that we don’t 
know.  

n  The objective is to estimate the parameters θ, given some initial 
value: suppose we set μM = 3′ and μF = 5′. Then the computed posteriors 
qCi would all favor F over M (since most people are closer to 5′ than 3′), and we 
would end up computing μF as roughly the average of all our heights, and μM as 
the average of a few short people.  

n  For the E-step, we have to compute the posterior distribution pC|Y 
(c|y): 

n  For Ci = M:  
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2.4 Using hidden variables and the EM Algorithm

Taking a step back, what would make this computation easier? If we knew the hidden labels
C

i

exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which C

i

= M and use those to estimate µ

M

like we did in Section 1.1, and then
repeat for the points where C

i

= F to estimate µ

F

. Motivated by this, let’s try to compute
the distribution for C

i

given the observations. We’ll start with Bayes’ rule:
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Let’s look at the posterior probability that C
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This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of q

C

i

, and cheat a little by pretending it doesn’t depend on µ
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:
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This looks much better: µ

M

is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µ

F

, we’d compute the
weighted average with weights q

C

i

(F ).
So now we have a circular setup: we could easily compute the posteriors over C

n

1

if we
knew the parameters, and we could easily estimate the parameters if we knew the posterior
over C

n

1

. This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µ

M

and µ

F

of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, q

C

i

, the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s q

C

i

, the
class labels), and optimize the parameters (the means µ

M

and µ

F

) using the expected
values of the hidden variables (in this case, the probabilities from q

C

i

). This is done
using (4).

5

2.4 Using hidden variables and the EM Algorithm

Taking a step back, what would make this computation easier? If we knew the hidden labels
C

i

exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which C

i

= M and use those to estimate µ

M

like we did in Section 1.1, and then
repeat for the points where C

i

= F to estimate µ

F

. Motivated by this, let’s try to compute
the distribution for C

i

given the observations. We’ll start with Bayes’ rule:

p

C

i

|Y
i

(c
i

|y
i

) =
p

Y

i

|C
i

(y
i

|c
i

)p
C

i

(c
i

)

p

Y

i

(y
i

)

=

Q
c2{M,F} (⇡

c

N(y
i

; µ
c

, �

2)) (c=c

i

)

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
= q

C

i

(c
i

) (5)

Let’s look at the posterior probability that C

i

= M :

p

C

i

|Y
i

(M |y
i

) =
⇡

M

N(y
i

; µ
M

, �

2)

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
= q

C

i

(M) (6)

This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of q

C

i

, and cheat a little by pretending it doesn’t depend on µ

M

:

nX

i=1

q

C

i

(M)
y

i

� µ

M

�

2

= 0 (7)

µ

M

=

nX

i=1

q

C

i

(M)y
i

nX

i=1

q

C

i

(M)

(8)

This looks much better: µ

M

is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µ

F

, we’d compute the
weighted average with weights q

C

i

(F ).
So now we have a circular setup: we could easily compute the posteriors over C

n

1

if we
knew the parameters, and we could easily estimate the parameters if we knew the posterior
over C

n

1

. This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µ

M

and µ

F

of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, q

C

i

, the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s q

C

i

, the
class labels), and optimize the parameters (the means µ

M

and µ

F

) using the expected
values of the hidden variables (in this case, the probabilities from q

C

i

). This is done
using (4).

5

2.4 Using hidden variables and the EM Algorithm

Taking a step back, what would make this computation easier? If we knew the hidden labels
C

i

exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which C

i

= M and use those to estimate µ

M

like we did in Section 1.1, and then
repeat for the points where C

i

= F to estimate µ

F

. Motivated by this, let’s try to compute
the distribution for C

i

given the observations. We’ll start with Bayes’ rule:

p

C

i

|Y
i

(c
i

|y
i

) =
p

Y

i

|C
i

(y
i

|c
i

)p
C

i

(c
i

)

p

Y

i

(y
i

)

=

Q
c2{M,F} (⇡

c

N(y
i

; µ
c

, �

2)) (c=c

i

)

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
= q

C

i

(c
i

) (5)

Let’s look at the posterior probability that C

i

= M :

p

C

i

|Y
i

(M |y
i

) =
⇡

M

N(y
i

; µ
M

, �

2)

⇡

M

N(y
i

; µ
M

, �

2) + ⇡

F

N(y
i

; µ
F

, �

2)
= q

C

i

(M) (6)

This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of q

C

i

, and cheat a little by pretending it doesn’t depend on µ

M

:

nX

i=1

q

C

i

(M)
y

i

� µ

M

�

2

= 0 (7)

µ

M

=

nX

i=1

q

C

i

(M)y
i

nX

i=1

q

C

i

(M)

(8)

This looks much better: µ

M

is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µ

F

, we’d compute the
weighted average with weights q

C

i

(F ).
So now we have a circular setup: we could easily compute the posteriors over C

n

1

if we
knew the parameters, and we could easily estimate the parameters if we knew the posterior
over C

n

1

. This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µ

M

and µ

F

of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, q

C

i

, the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s q

C

i

, the
class labels), and optimize the parameters (the means µ

M

and µ

F

) using the expected
values of the hidden variables (in this case, the probabilities from q

C

i

). This is done
using (4).

5



Applying the algorithm for GMM 
(again) – Cont’d 
n  To do the M-Step: 

n                              is the probability that Ci is c, according to q. 
Now, we can differentiate with respect to μM :  
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This is called the E-step: the E stands for expectation, since we’re computing q

C

so that we
can use it for expectations. So, by alternating between (13) and (15), we can maximize a
lower bound on the log-likelihood. We’ve also seen from (15) that the lower bound is tight
(that is, it’s equal to the log-likelihood) when we use (15).

3.3 The algorithm

Inputs: Observation y, joint distribution p
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(y, c; ✓), conditional distribution p

C|Y (c|y; ✓),
initial values ✓

(0)

1: function EM(p
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(t)  argmax
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(y, C; ✓)] (M-step)

5: if ✓
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then

6: return ✓

(t)

3.4 Example: Applying the general algorithm to GMMs

Now, let’s revisit our GMM for heights and see how we can apply the two steps. We have
the observed variable Y = {Y

1

, . . . , Y

n

}, and the hidden variable C = {C
1

, . . . , C

n

}. For the
E-step, we have to compute the posterior distribution p

C|Y (c|y), which we already did in (5)
and (6). For the M-step, we have to compute the expected joint probability.
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(that is, it’s equal to the log-likelihood) when we use (15).

3.3 The algorithm

Inputs: Observation y, joint distribution p

Y,C

(y, c; ✓), conditional distribution p

C|Y (c|y; ✓),
initial values ✓

(0)

1: function EM(p
Y,C

(y, c; ✓), p
C|Y (c|y; ✓), ✓(0))

2: for iteration t 2 1, 2, . . . do
3: q

(t)

C

 p

C|Y (c|y; ✓(t�1)) (E-step)
4: ✓

(t)  argmax
✓

E
q

(t)
C

[p
Y,C

(y, C; ✓)] (M-step)

5: if ✓

(t) ⇡ ✓

(t�1)

then

6: return ✓

(t)

3.4 Example: Applying the general algorithm to GMMs

Now, let’s revisit our GMM for heights and see how we can apply the two steps. We have
the observed variable Y = {Y

1

, . . . , Y

n

}, and the hidden variable C = {C
1

, . . . , C

n

}. For the
E-step, we have to compute the posterior distribution p

C|Y (c|y), which we already did in (5)
and (6). For the M-step, we have to compute the expected joint probability.

E
q

C

[ln p

Y,C

(y, C)] = E
q

C

[ln p

Y |C(y|C)p
C

(C)]

= E
q

C

2

4ln
nY

i=1

Y

c2{M,F}

�
⇡

c

N(y
i

; µ
c

, �

2)
�

(C

i

=c)

3

5

= E
q

C

2

4
nX

i=1

X

c2{M,F}

(C
i

= c)
�
ln ⇡

c

+ lnN(y
i

; µ
c

, �

2)
�
3

5

=
nX

i=1

X

c2{M,F}

E
q

C

[ (C
i

= c)]

✓
ln ⇡

c

+ ln
1

�

p
2⇡
� (y

i

� µ

c

)2

2�2

◆

E
q

C

[ (C
i

= c)] is the probability that C

i

is c, according to q. Now, we can di↵erentiate with
respect to µ

M

:

d

dµ

M

E
q

C

[ln p

Y |C(y|C)p
C

(C)] =
nX

i=1

q

C

i

(M)

✓
y

i

� µ

M

�

2

◆
= 0

10

This is called the E-step: the E stands for expectation, since we’re computing q
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so that we
can use it for expectations. So, by alternating between (13) and (15), we can maximize a
lower bound on the log-likelihood. We’ve also seen from (15) that the lower bound is tight
(that is, it’s equal to the log-likelihood) when we use (15).
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n  Using the last form: 

n  The solution will be the weighted average as follows: 

28 Applying the algorithm for GMM 
(again) – Cont’d 

2.4 Using hidden variables and the EM Algorithm

Taking a step back, what would make this computation easier? If we knew the hidden labels
C

i

exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which C

i

= M and use those to estimate µ

M

like we did in Section 1.1, and then
repeat for the points where C

i

= F to estimate µ

F

. Motivated by this, let’s try to compute
the distribution for C

i

given the observations. We’ll start with Bayes’ rule:
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Let’s look at the posterior probability that C
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= M :
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2)
= q
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This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of q

C

i

, and cheat a little by pretending it doesn’t depend on µ

M

:

nX

i=1

q
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i

(M)
y
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= 0 (7)
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(8)

This looks much better: µ

M

is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µ

F

, we’d compute the
weighted average with weights q

C

i

(F ).
So now we have a circular setup: we could easily compute the posteriors over C

n

1

if we
knew the parameters, and we could easily estimate the parameters if we knew the posterior
over C

n

1

. This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µ

M

and µ

F

of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, q

C

i

, the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s q

C

i

, the
class labels), and optimize the parameters (the means µ

M

and µ

F

) using the expected
values of the hidden variables (in this case, the probabilities from q

C

i

). This is done
using (4).
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This is exactly the same as what we found earlier in (7), so we know the solution will again
be the weighted average from (8):
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be
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E-step

Compute “expected” classes of all datapoints for each class
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M-step.  

Compute Max. like µ given our data’s class membership distributions
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Just evaluate 

a Gaussian at 

x
k

Copyright © 2001, 2004, Andrew W. Moore Clustering with Gaussian Mixtures: Slide 40

Gaussian 
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Example: 

Start

Advance apologies: in Black 

and White this example will be 

incomprehensible
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After 2nd 
iteration
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iteration
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After 5th 
iteration 
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After 6th 
iteration
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After 6th 
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After 20th 
iteration 
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Some Bio 
Assay 
data
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Categorical 
inputs only  
 

Real-valued 
inputs only  
 

Mixed 
Real / Cat 
okay  
 

Methods 

       Inputs 
 
 
 
 
     P(E1|E2) 

Joint DE, Bayes Net Structure 
Learning  
 

       Inputs 
 
 
 
      Predict  
    Category  

Joint BC  
Naïve BC 

Gauss BC Dec Tree Dec Tree, Sigmoid Perceptron, 
Sigmoid N.Net, Gauss/Joint BC, 
Gauss Naïve BC, N.Neigh, Bayes 
Net Based BC, Cascade 
Correlation, GMM-BC 

     Inputs 
 
 
 
 
   Probability 

Joint DE 
Naïve DE 

Gauss DE Joint DE, Naïve DE, Gauss/Joint 
DE, Gauss Naïve DE, Bayes Net 
Structure Learning, GMMs 
 

     Inputs 
 
 
 
  Predict real 
         no. 

Linear Regression, Polynomial 
Regression, Perceptron, Neural 
Net, N.Neigh, Kernel, LWR, RBFs, 
Robust Regression, Cascade 
Correlation, Regression Trees, 
GMDH, Multilinear Interp, MARS 

Classifier 

Density 
Estimator 

Regressor 

Inference 
Engine 



Assignment 2 

n  Repeat Exercise 1.6.1 not using a generated data as shown, 
but using data you decided for your project. 

38 


