
Pattern Recognition and 
Image Analysis 

Dr. Manal Helal – Fall 2014 
Lecture 7 
 
 
 

Non-Parameteric Classifiers 



Overview 

n  Density Estimation 

n  Parzen Windows 

n  Kn Nearest Neighbours 

 

2 



Non-Parametric Probability 
Distributions 

n  The common parametric forms rarely fit the densities actually 
encountered in practice, because they are unimodal (having a 
single local maximum), while practical problems are multi-
modal densities. 

n  Furthermore, representing a high dimensional density as the 
product of one-dimensional densities is not accurate for 
practical problems. 

n  Nonparametric procedures assume arbitrary empirical 
distributions with unknown densities to provide estimates of 
probability density functions (pdf) or cumulative distribution 
functions (cdf) based on sample data.  

n  You can use these approaches when the data cannot be 
described accurately by the supported parametric 
distributions. 
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Non-Parametric Methods Types 

1.  To estimate the density functions p(x|ωj)  
n  If these estimates are satisfactory, they can be substituted for the 

true densities when designing the classifier (generative model). 

2.  To estimate the a posteriori probabilities P(ωj|x).  
n  This is closely related to nonparametric design procedures such 

as the nearest-neighbor rule, which bypass probability estimation 
and go directly to decision functions (discriminative model). 
Probabilistic neural networks will be covered later on. 

3.  To transform the feature space in the hope that it may 
be possible to employ parametric methods in the 
transformed space.  

n  For Example the Fisher linear discriminant, which provides an 
important link between the parametric techniques and the 
adaptive non-parametric techniques. 
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Histograms vs. Density Estimation 
n  Histograms: 

n  To draw a histogram of a given 6 data points: x1 = −2.1, x2 = −1.3,  
x3 = −0.4, x4 = 1.9, x5 = 5.1, x6 = 6.2. The x-axis is divided in bins of  
size 2, the y axis is incremented by 1/12 each time an x value falls in the x-axis 
interval. 

n  The histogram estimate is not a very good way to estimate densities, especially 
so when there are many features. Particularly, it leads to discontinuous density 
estimates  

n  For the kernel density estimate, we place a normal kernel with variance 
2.25 (indicated by the  
red dashed lines)  
on each of the data  
points xi. The kernels  
are summed to make  
the kernel density  
estimate (solid blue  
curve). 
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Histograms

Histograms are the simplest way to density estimation.
The feature space is divided into m equal sized cells or
bins Bi.
Then, the number of the training samples ni, i = 1, . . . n
falling to each bin is computed and the estimate within
each bin is

p̂(x) =
ni

V n
,

where V is the volume of the cell. (All cells have equal
volume so the index is not needed.)
The histogram estimate is not a very good way to
estimate densities, especially so when there are many
features. Particularly, it leads to discontinuous density
estimates.
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Background - combinations

Consider the problem of selecting k labeled balls
without replacement from an urn containing n balls.
In how many different ways may we select those k
balls?

The answer is C(n, k) =

(

n

k

)

= n!
k!(n−k)!

n! = n · (n − 1) · · · 2 · 1, (convention 0! = 1)
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Background - combinations

More formally: If a set contains n elements, then there exist

C(n, k) =
n!

k!(n − k)!

combinations (subsets) containing k elements.

Proof: Consider fi rst selecting a subset in the case the order of
selection is important. For the fi rst element a1 in a subset there exist
n possible choices. For the second elements a2, there are n − 1

possible choices and so on. Finally, for the kth element, there are
n − k + 1 choices left. Putting this all together, there exist
n · (n − 1) · · · (n − k + 1) ordered subsets. Now, since an unordered
set of k elements corresponds to k! ordered subsets, the number of
possible subsets is n·(n−1)···(n−k+1)

k! = n!
k!(n−k)! .
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Density Estimation 

n  The probability P that a vector x will fall in a region R is given by:  

 

 

n  For n i.i.d samples of x, the probability that k of these n fall in R is 
given by the binomial law: 

 

n  The expected value for k is:  

n   ML estimation of  P = θ              is reached for   

n  Therefore, the ratio k/n is a good estimate for the probability P and 
hence for the density function p.  
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4 CHAPTER 4. NONPARAMETRIC TECHNIQUES

P =
∫

R

p(x′) dx′. (1)

Thus P is a smoothed or averaged version of the density function p(x), and we can
estimate this smoothed value of p by estimating the probability P . Suppose that n
samples x1, ...,xn are drawn independently and identically distributed (i.i.d.) accord-
ing to the probability law p(x). Clearly, the probability that k of these n fall in R is
given by the binomial law

Pk =
(

n

k

)

P k(1− P )n−k, (2)

and the expected value for k is

E [k] = nP. (3)

P = .7 1
k/n
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Figure 4.1: The probability Pk of finding k patterns in a volume where the space
averaged probability is P as a function of k/n. Each curve is labelled by the total
number of patterns n. For large n, such binomial distributions peak strongly at
k/n = P (here chosen to be 0.7).

Moreover, this binomial distribution for k peaks very sharply about the mean, so that
we expect that the ratio k/n will be a very good estimate for the probability P , and
hence for the smoothed density function. This estimate is especially accurate when n
is very large (Fig. 4.1). If we now assume that p(x) is continuous and that the region
R is so small that p does not vary appreciably within it, we can write

∫

R

p(x′) dx′ ≃ p(x)V, (4)

where x is a point within R and V is the volume enclosed by R. Combining Eqs. 1,
3 & 4, we arrive at the following obvious estimate for p(x):
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Max
θ
(Pk |θ ) θ̂ =

k
n
≅ P

Density estimation - general formulation

Let us generalize our view to the density estimation. Assume that we
wish to estimate the value of the density function p at x based on
training samples x1, . . . ,xn.

If we think a region R around x, then the probability that a training
sample xj will fall in the region R is

P =

∫

R

p(x)dx.(1)

P is an averaged version of the density function p(x).

Assume that there are k̂ (of n) training samples in the region R.

The probability of k of the training samples falling into region R is

given by the binomial density Pk =

⎛

⎝

n

k

⎞

⎠ P k(1 − P )n−k.
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Density estimation - general formulation

The expected value for k is
E[k] =

∑n
k=0 kPk = nP .(Based on the binomial

theorem.) Estimation of the E[k] by the observed k̂

leads to the estimate P̂ = k̂/n.
Assuming that p(x) is continuous and that the region R
is small enough, we can write

∫

R
p(x)dx ≃ p(x)V,

where V is the volume of R.
This leads to the estimate p̂(x) = k̂

nV =
R

R
p(x)dx

R

R
dx

.
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Density estimation - General formulation

We can see from the previous slide that the density
estimate is a space averaged version of the true density.
In practice, this will always be the case with any density
estimator since the number of training samples is finite.
However, if we would have an unlimited number of
training samples what would happen?
Or how to design density estimator that works correctly
with an unlimited number of training samples?
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Unlimited number of samples

To estimate the density p(x) at x, we create a sequence
of regions R1, R2, . . . containing x - the first region to be
used with one training sample, the second with two and
so on. (Don’t confuse these Ri with decision regions.)
Moreover, let Vn denote the volume of Rn, kn is the
number of samples falling into Rn, and nth estimate of
the density is

pn(x) =
kn

nVn
.
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n  If we now assume that p(x) is continuous and that the region R 
is so small that p does not vary appreciably within it, we can 
write  

 

 
where x is a point within R and V is the volume enclosed by R.  

n  Combining the previous equations, we can estimate p(X) as: 
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4.2. DENSITY ESTIMATION 5

p(x) ≃ k/n

V
. (5)

There are several problems that remain — some practical and some theoretical.
If we fix the volume V and take more and more training samples, the ratio k/n will
converge (in probability) as desired, but we have only obtained an estimate of the
space-averaged value of p(x),

P

V
=

∫

R
p(x′) dx′

∫

R
dx′ . (6)

If we want to obtain p(x) rather than just an averaged version of it, we must be
prepared to let V approach zero. However, if we fix the number n of samples and let
V approach zero, the region will eventually become so small that it will enclose no
samples, and our estimate p(x) ≃ 0 will be useless. Or if by chance one or more of
the training samples coincide at x, the estimate diverges to infinity, which is equally
useless.

From a practical standpoint, we note that the number of samples is always limited.
Thus, the volume V can not be allowed to become arbitrarily small. If this kind of
estimate is to be used, one will have to accept a certain amount of variance in the
ratio k/n and a certain amount of averaging of the density p(x).

From a theoretical standpoint, it is interesting to ask how these limitations can
be circumvented if an unlimited number of samples is available. Suppose we use the
following procedure. To estimate the density at x, we form a sequence of regions
R1,R2, ..., containing x — the first region to be used with one sample, the second
with two, and so on. Let Vn be the volume of Rn, kn be the number of samples falling
in Rn, and pn(x) be the nth estimate for p(x):

pn(x) =
kn/n

Vn
. (7)

If pn(x) is to converge to p(x), three conditions appear to be required:

• lim
n→∞

Vn = 0

• lim
n→∞

kn =∞

• lim
n→∞

kn/n = 0.

The first condition assures us that the space averaged P/V will converge to p(x),
provided that the regions shrink uniformly and that p(·) is continuous at x. The
second condition, which only makes sense if p(x) ̸= 0, assures us that the frequency
ratio will converge (in probability) to the probability P . The third condition is clearly
necessary if pn(x) given by Eq. 7 is to converge at all. It also says that although a
huge number of samples will eventually fall within the small region Rn, they will form
a negligibly small fraction of the total number of samples.

There are two common ways of obtaining sequences of regions that satisfy these
conditions (Fig. 4.2). One is to shrink an initial region by specifying the volume Vn

as some function of n, such as Vn = 1/
√

n. It then must be shown that the random
variables kn and kn/n behave properly, or more to the point, that pn(x) converges to



n  If we fix V and increase the samples, the ratio k/n will converge (in 
probability) as desired, but we have only obtained an estimate of  
the space-averaged value of p(x),  

 

 

n  As V approaches 0, we are obtaining p(x) not an estimate of it. So, fixing 
n, and let V approaches zero, will create regions with no samples (p(x) ≃ 
0) is useless, and regions with one or more samples coincide at x, the 
estimate diverges to infinity, which is useless as well.  

n  Practically, we have to accept a certain amount of variance in the ratio k/
n and a certain amount of averaging of the density p(x).  

n  To estimate the density at x for unlimited samples, we form a sequence 
of regions R1,R2,..., containing x — the first region to be used with one 
sample, the second with two, and so on. Let Vn be the volume of Rn, kn be 
the number of samples falling in Rn, and pn(x) be the nth estimate for 
p(x):  
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Density estimation - general formulation

The expected value for k is
E[k] =

∑n
k=0 kPk = nP .(Based on the binomial

theorem.) Estimation of the E[k] by the observed k̂

leads to the estimate P̂ = k̂/n.
Assuming that p(x) is continuous and that the region R
is small enough, we can write

∫

R
p(x)dx ≃ p(x)V,

where V is the volume of R.
This leads to the estimate p̂(x) = k̂
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Density estimation - General formulation

We can see from the previous slide that the density
estimate is a space averaged version of the true density.
In practice, this will always be the case with any density
estimator since the number of training samples is finite.
However, if we would have an unlimited number of
training samples what would happen?
Or how to design density estimator that works correctly
with an unlimited number of training samples?
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Unlimited number of samples

To estimate the density p(x) at x, we create a sequence
of regions R1, R2, . . . containing x - the first region to be
used with one training sample, the second with two and
so on. (Don’t confuse these Ri with decision regions.)
Moreover, let Vn denote the volume of Rn, kn is the
number of samples falling into Rn, and nth estimate of
the density is

pn(x) =
kn

nVn
.
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n  Three conditions for limnè∞ pn(x) is to converge to p(x)  
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provided that the regions shrink uniformly and that p(·) is continuous at x. The
second condition, which only makes sense if p(x) ̸= 0, assures us that the frequency
ratio will converge (in probability) to the probability P . The third condition is clearly
necessary if pn(x) given by Eq. 7 is to converge at all. It also says that although a
huge number of samples will eventually fall within the small region Rn, they will form
a negligibly small fraction of the total number of samples.

There are two common ways of obtaining sequences of regions that satisfy these
conditions (Fig. 4.2). One is to shrink an initial region by specifying the volume Vn

as some function of n, such as Vn = 1/
√

n. It then must be shown that the random
variables kn and kn/n behave properly, or more to the point, that pn(x) converges to

assures us that the space averaged P/V will converge to 
p(x), provided that the regions shrink uniformly and that 
p(·) is continuous at x. 

only makes sense if p(x) ≠ 0, assures us that the 
frequency ratio will converge (in probability) to the 
probability P . 

necessary if pn(x) is to converge at all. Although a huge 
number of samples will eventually fall within the small 
region Rn, they will form a negligibly small fraction of the 
total number of samples.  



How to Obtain the sequence of Regions? 

n  Parzen Windows:  
n  Shrink an initial region by specifying the volume Vn as some function 

of n, such as Vn = 1/√n.  

n  Check if the random variables kn and kn/n behaves properly, such that 
pn(x) converges to p(x).  

n  kn-Nearest- Neighbor Estimation  
n  Specify kn as some function of n, such as kn = √n.  

n  The volume Vn is grown until it encloses kn neighbors of x  

11 
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Parzen Windows 
n  Also called kernel density estimation (KDE) and Parzen–

Rosenblatt window.  

n  Assume that the region Rn is a d-dimensional hypercube.  

n  If hn is the length of the side of the hypercube, its volume is given 
by  

n  We can obtain an analytic expression for kn - the number of 
samples falling into the hypercube - by defining the following 
window function: 

  

n  That is φ has the value one inside and the value zeros outside the unit 
hypercube centered at origin. ϕ((x-xi)/hn) is equal to unity if xi falls 
within the hypercube of volume Vn centered at x and equal to zero 
otherwise. It is the kernel function k(.) that is typically unimodal  

n  h > 0 is a smoothing parameter called the bandwidth (window or kernel 
width).  

Unlimited number of samples

If we would like to limn→∞ pn(x) = p(x), three conditions
are required:
1. limn→∞ Vn = 0

2. limn→∞ kn = ∞
3. limn→∞ kn/n = 0.
The first condition assures us that the space averaged
P/V will converge to p(x).
The second one assures us that the frequency ratio will
converge (in probability) to the probability P .
The third one states that the number of samples falling
to a region Rn is always a negligibly small portion of the
total number of samples. This is required if pn(x) is to
converge at all.
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Unlimited number of samples

There are two ways of obtaining the sequence of regions
that satisfy these constraints.
1. Shrink an initial region by specifying Vn as some

function of n. (Parzen windows)
2. Specify kn as some function of n and let Vn grow until it

encloses kn neighbors of x (kn nearest neighbors).
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Unlimited number of samples
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Parzen windows - An example

Assume that the region Rn is a d-dimensional
hypercube.
If hn is the length of the side of the hypercube, its
volume is given by Vn = hd

n.
We can obtain an analytic expression for kn - the
number of samples falling into the hypercube - by
defining the following window function:

ϕ(u) =

{

1 |uj | ≤ 1/2

0 otherwise
(2)

That is ϕ has the value one inside and the value zeros
outside the unit hypercube centered at origin.
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Unlimited number of samples

If we would like to limn→∞ pn(x) = p(x), three conditions
are required:
1. limn→∞ Vn = 0

2. limn→∞ kn = ∞
3. limn→∞ kn/n = 0.
The first condition assures us that the space averaged
P/V will converge to p(x).
The second one assures us that the frequency ratio will
converge (in probability) to the probability P .
The third one states that the number of samples falling
to a region Rn is always a negligibly small portion of the
total number of samples. This is required if pn(x) is to
converge at all.
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Unlimited number of samples

There are two ways of obtaining the sequence of regions
that satisfy these constraints.
1. Shrink an initial region by specifying Vn as some

function of n. (Parzen windows)
2. Specify kn as some function of n and let Vn grow until it

encloses kn neighbors of x (kn nearest neighbors).
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Unlimited number of samples
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Parzen windows - An example

Assume that the region Rn is a d-dimensional
hypercube.
If hn is the length of the side of the hypercube, its
volume is given by Vn = hd

n.
We can obtain an analytic expression for kn - the
number of samples falling into the hypercube - by
defining the following window function:

ϕ(u) =

{

1 |uj | ≤ 1/2

0 otherwise
(2)

That is ϕ has the value one inside and the value zeros
outside the unit hypercube centered at origin.
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n  The number of samples in this hypercube 
is: 
 

 
 

  
 
By substituting kn, we obtain the following 

Parzen-window density estimate: 
 

 
 
 
Pn(x) estimates p(x) as an average of functions of 

x and the samples (xi) (i = 1,… ,n). These 
functions ϕ can be general! 

The estimate pn(x) is an average of (window) 
functions. Usually the window function has its 
maximum at the origin and its values become 
smaller when we move further away from the 
origin. Then each training sample is 
contributing to the estimate in accordance 
with its distance from x.  

 
 

 

kn = φ
x − xi
hn

"

#
$

%

&
'

i=1

i=n

∑

Parzen windows - An example

It follows that ϕ((x − xi)/hn) = 1 if xi falls in the
hypercube of volume Vn centered at x. And
ϕ((x− xi)/hn) = 0 otherwise.
The number of samples in this hypercube is therefore
given by

kn =
n
∑

i=1

ϕ(
x− xi

hn
).

Leading to pn(x) = kn

nVn
= 1

n

∑n
i=1

1
Vn

ϕ(x−xi

hn
).
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Parzen windows

If we consider also other window functions, we obtain a
more general approach to density estimation.
The Parzen-window density estimate using n training
samples and the window function ϕ is defined by

pn(x) =
1

n

n
∑

i=1

1

Vn
ϕ(

x − xi

hn
),

The estimate pn(x) is an average of (window) functions.
Usually the window function has its maximum at the
origin and its values become smaller when we move
further away from the origin. Then each training sample
is contributing to the estimate in accordance with its
distance from x.
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Parzen windows
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Window functions

We want pn(x) to be legitimate density, i.e. 1) pn(x) ≥ 0
for all x and 2)

∫

pn(x)dx = 1.
If we maintain the relation hd

n = Vn, this is guaranteed if
the window function is a legitimate density:
1. ϕ(x) ≥ 0 for all x
2.
∫

ϕ(x)dx = 1

A popular choice for the window function is the
Gaussian: ϕ(u) = 1

(2π)(d/2)
exp[−0.5uT

u].

Note that Vn and hn do not have a geometric
interpretation anymore, they are related to the window
function whose support usually spans the entire feature
space.

8001652 Introduction to Pattern Recognition. Lecture 7: Density Estimation and Parzen Windows – p.20/29
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Parzen windows - An example

It follows that ϕ((x − xi)/hn) = 1 if xi falls in the
hypercube of volume Vn centered at x. And
ϕ((x− xi)/hn) = 0 otherwise.
The number of samples in this hypercube is therefore
given by

kn =
n
∑

i=1

ϕ(
x− xi

hn
).

Leading to pn(x) = kn

nVn
= 1

n

∑n
i=1

1
Vn

ϕ(x−xi

hn
).
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Parzen windows

If we consider also other window functions, we obtain a
more general approach to density estimation.
The Parzen-window density estimate using n training
samples and the window function ϕ is defined by

pn(x) =
1

n

n
∑

i=1

1

Vn
ϕ(

x − xi

hn
),

The estimate pn(x) is an average of (window) functions.
Usually the window function has its maximum at the
origin and its values become smaller when we move
further away from the origin. Then each training sample
is contributing to the estimate in accordance with its
distance from x.
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Parzen windows
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Window functions

We want pn(x) to be legitimate density, i.e. 1) pn(x) ≥ 0
for all x and 2)

∫

pn(x)dx = 1.
If we maintain the relation hd

n = Vn, this is guaranteed if
the window function is a legitimate density:
1. ϕ(x) ≥ 0 for all x
2.
∫

ϕ(x)dx = 1

A popular choice for the window function is the
Gaussian: ϕ(u) = 1

(2π)(d/2)
exp[−0.5uT

u].

Note that Vn and hn do not have a geometric
interpretation anymore, they are related to the window
function whose support usually spans the entire feature
space.

8001652 Introduction to Pattern Recognition. Lecture 7: Density Estimation and Parzen Windows – p.20/29



Gaussian Kernel Parzen Window 
Estimation: 

16 

The Parzen-window 
PDF estimate 
(dotted curve), for 
a Gaussian PDF 
(solid curve) with 
zero mean and unit 
variance, with a 
Gaussian kernel of    

 and a 
sample size of 
(a) 1, (b) 10, 
(c) 100, and 
(d) 1000. The 
circles indicate the 
observations in the 
sample. 



Window functions 

n  We want pn(x) ︎to be legitimate density, i.e. 1) pn(x) ≥ 0 for all 
x, and 2) ∫ pn(x)dx = 1. 

n  If we maintain the relation hd
n = Vn, this is guaranteed if the 

window function is a legitimate density:  

n  A popular choice for the window function is the Gaussian: 

n  Note that Vn and hn do not have a geometric interpretation 
anymore, they are related to the window function whose 
support usually spans the entire feature space.  

17 

Parzen windows - An example

It follows that ϕ((x − xi)/hn) = 1 if xi falls in the
hypercube of volume Vn centered at x. And
ϕ((x− xi)/hn) = 0 otherwise.
The number of samples in this hypercube is therefore
given by

kn =
n
∑

i=1

ϕ(
x− xi

hn
).

Leading to pn(x) = kn

nVn
= 1

n

∑n
i=1

1
Vn

ϕ(x−xi

hn
).
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Parzen windows

If we consider also other window functions, we obtain a
more general approach to density estimation.
The Parzen-window density estimate using n training
samples and the window function ϕ is defined by

pn(x) =
1

n

n
∑

i=1

1

Vn
ϕ(

x − xi

hn
),

The estimate pn(x) is an average of (window) functions.
Usually the window function has its maximum at the
origin and its values become smaller when we move
further away from the origin. Then each training sample
is contributing to the estimate in accordance with its
distance from x.
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Parzen windows
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Window functions

We want pn(x) to be legitimate density, i.e. 1) pn(x) ≥ 0
for all x and 2)

∫

pn(x)dx = 1.
If we maintain the relation hd

n = Vn, this is guaranteed if
the window function is a legitimate density:
1. ϕ(x) ≥ 0 for all x
2.
∫

ϕ(x)dx = 1

A popular choice for the window function is the
Gaussian: ϕ(u) = 1

(2π)(d/2)
exp[−0.5uT

u].

Note that Vn and hn do not have a geometric
interpretation anymore, they are related to the window
function whose support usually spans the entire feature
space.
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Window width 

n  How should we select the window width hn? 
If hn is too large, the density estimate pn(x) will be very 
smooth and ‘out-of-focus’.  

n  If hn is too small, the estimate pn(x) will be just superposition 
of n sharp pulses centered at training samples, i.e. an erratic 
noisy estimate of the true density.  

n  In practice, we have to seek some acceptable compromise 
since the number of training samples is always limited and 
we may not be able to affect the number of available training 
samples.  

n  In practice, one selects h1 and then asserts that hn = h1/ √n. 
The selection of h1 can be problematic.  

18 



Convergence of Parzen window 
estimates 

n  With an unlimited number of training samples it is possible to 
let Vn approach zero, and have pn(x) converge to p(x). 

n  By convergence we mean the convergence in mean-square 
sense i.e. that for all x  

n  That means we want to obtain correct estimates on the 
average, and the variance within these estimates should be 
negligible as the number of training samples approaches 
infinity. Expectations are taken with respect to the sequence 
(of length n) of training samples. 
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Window width

How should we select the window width hn?
If hn is too large, the density estimate pn(x) will be very
smooth and ‘out-of-focus’.
If hn is too small, the estimate pn(x) will be just
superposition of n sharp pulses centered at training
samples, i.e. an erratic noisy estimate of the true
density.
In practice, we have to seek some acceptable
compromise since the number of training samples is
always limited and we may not be able to affect the
number of available training samples.
In practice, one selects h1 and then asserts that
hn = h1/

√
n. The selection of h1 can be problematic.
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Convergence of Parzen window estimates

With an unlimited number of training samples it is
possible to let Vn approach zero, and have pn(x)
converge to p(x).
By convergence we mean the convergence in
mean-square sense i.e. that for all x
1. limn→∞ E[pn(x)] = p(x),
2. limn→∞ V ar[pn(x)] = 0.
That means we want to obtain correct estimates on the
average, and the variance within these estimates
should be negligible as the number of training samples
approaches infinity. Expectations are taken with respect
to the sequence (of length n) of training samples.
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Convergence of Parzen window estimates

In order to guarantee the convergence, we must place
conditions on the unknown density, the window function
ϕ(x), and the window width hn:
The density function must be continuous.
The window function must be bounded and legitimate
density.
The values of the window function must be negligible at
infinity.
Vn → 0 when n → ∞.
nVn → ∞ when n → ∞.
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Probabilistic neural networks

We consider now the direct estimation of the posterior
probability functions and classification using Parzen
windows.
Probabilistic neural networks (PNNs) implement the
classification using Parzen windows.
Assume that we have n training samples, each
d-dimensional feature vector, sampled randomly from c
categories.
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Convergence of Parzen window 
estimates 

In order to guarantee the convergence, we must place 
conditions on the unknown density, the window function φ(x), 
and the window width hn:  

n The density function must be continuous.  

n The window function must be bounded and legitimate 
density.  

n The values of the window function must be negligible at 
infinity.  

n  Vn →0 when n → ∞. 

n  nVn →∞ when n → ∞.  
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n  Illustration 
 

n   The behavior of the Parzen-window method 
 
n  Case where p(x) àN(0,1) 

  Let ϕ(u) = (1/√(2π) exp(-u2/2) and hn = h1/√n (n>1)  

                                                                     (h1: known parameter) 

  Thus: 
 
 

  is an average of normal densities centered at the  
  samples xi. 
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n Numerical results: 

 For n = 1 and h1=1 
 
 
 
 
 
 

 
 For n = 10 and h = 0.1, the contributions of the 
individual samples are clearly observable ! 
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4.3. PARZEN WINDOWS 11

h = 1 h = .5 h = .1

n = 1

n = 10

n = 100

n = ∞

Figure 4.5: Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating function), regardless of window width h.

Parzen-window 
estimates of a 
univariate normal 
density using 
different window 
widths and 
numbers of 
samples. The 
vertical axes have 
been scaled to 
best show the 
structure in each 
graph. Note 
particularly that 
the n = ∞ 
estimates are the 
same (and match 
the true 
generating 
function), 
regardless of 
window width h. 



24 Analogous results are also obtained in two dimensions as illustrated: 
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Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.
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Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.
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Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.
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Figure 4.6: Parzen-window estimates of a bivariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best
show the structure in each graph. Note particularly that the n =∞ estimates are the
same (and match the true generating distribution), regardless of window width h.

Parzen-window estimates of a bivariate normal density using 
different window widths and numbers of samples. The vertical axes 
have been scaled to best show the structure in each graph. Note 
particularly that the n = ∞ estimates are the same (and match the 
true generating distribution), regardless of window width h. 
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n  Classification example 
 
In classifiers based on Parzen-window estimation: 

 
n We estimate the densities for each category and classify 

a test point by the label corresponding to the maximum 
posterior 
 

n The decision region for a Parzen-window classifier 
depends upon the choice of window function as 
illustrated in the following figure. 



27 



K-Nearest Neighbor Estimation 
•  Goal: a solution for the problem of the unknown “best” window  

function. 

•  Approach: Estimate density using real data points. 

•  Let the cell volume be a function of the training data. 

•  Center a cell about x and let it grow until it captures kn samples: kn = f(n) 

•  kn are called the kn nearest-neighbors of x. 

•  Two possibilities can occur: 

§  Density is high near x; therefore the cell will be small which provides 
good resolution. 

§  Density is low; therefore the cell will grow large and stop until higher 
density regions are reached. 

•  We can obtain a family of estimates by setting kn=k1/√n and choosing 
different values for k1.   



Estimation of A Posteriori 
Probabilities 
 •  Goal: estimate P(ωi|x) from a set of n labeled samples. 

•  Let’s place a cell of volume V around x and capture k samples. 

•  ki samples amongst k turned out to be labeled ωi then: pn(x, ωi) = (ki/
n)/V. 

•  A reasonable estimate for P(ωi|x) is:                                              . 

•  ki/k is the fraction of the samples within the cell that are labeled ωi . 

•  For minimum error rate, the most frequently represented category 
within the cell is selected. 

•  If k is large and the cell sufficiently small, the performance will 
approach the best possible.   
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The Nearest-Neighbor Rule 
 

  

•  Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes. 

•  Let x’ ∈ Dn be the closest prototype to a test point x. 

•  The nearest-neighbor rule for classifying x is to assign it the label 
associated with x’ 

•  The nearest-neighbor rule leads to an error rate greater than the minimum 
possible: the Bayes rate (see the textbook for the derivation). 

•  If the number of prototypes is large (unlimited), the error rate of the 
nearest-neighbor classifier is never worse than twice the Bayes rate. 

•  If n → ∞, it is always possible to find x’ sufficiently close so that: 

 P(ωi | x’) ≅ P(ωi | x)  •  This produces a Voronoi tesselation of 
the space, and the individual decision 
regions are called Voronoi cells. 

•  For large data sets, this approach can 
be very effective but not 
computationally efficient. 



The K-Nearest-Neighbor Rule 
n  The k-nearest neighbor rule is a  

straightforward modification of the  
nearest neighbor rule that builds  
on the concept of majority voting. 

n  Query starts at the data point, x, and grows a 
spherical region until it encloses k training 
samples. 

n  The point is labeled by a majority vote of the 
class assignments for the k samples. 

n  For very large data sets, the performance 
approaches the Bayes error rate. 

  

•  The computational complexity of this approach can be high. Each distance 
calculation is O(d), and thus the search is O(dn2). 

•  A parallel implementation exists that is O(1) in time and O(n) in space. 

•  Tree-structured searches can gain further efficiency, and the training set can be 
“pruned” to eliminate “useless” prototypes (complexity: O(d3n(d/2)ln(n))). 



Properties of Metrics 
 •  Nonnegativity: 

•  Reflexivity: 

•  Symmetry: 

•  Triangle Inequality: 

•  Euclidean Distance: 

•  The Minkowski metric is a generalization of a Euclidean distance: 

 and is often referred to as the Lk norm. 

•  The L1 norm is often called the city block distance because it gives 
the shortest path between a and b, each segment of which is 
parallel to a coordinate axis. 
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Summary 

•  Motivated nonparameteric density estimation. 

•  Introduced Parzen windows. 

•  Introduced k-nearest neighbor approaches. 

•  Discussed properties of a good distance metric. 



Exercise 

n  Do Example 1.7.1:3, and 1.8.1:2,  not using a randomly 
generated data as shown, but on your project’s dataset. 
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