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Overview 

n  Decision Trees   (This Lecture – Week 11) 

n  Next Week – Midterm Exam  (Week 12) 

n  Polynomial Classifier, RBF  (Week 13) 

n  Nonlinear SVM   (Week 13) 

n  Multi Layer Neural Networks  (Week 14) 
n  Two Layer Perceptron 

n  Three Layer Perceptron 

n  Project Presentations  (Week 15) 

n  Final Exam    (Week 16) 
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Linearly Separable Data  

n A dataset is linearly separable iff ∃ a separating 
hyperplane w, such that: 
n  w0 + ∑i wi xi > 0; if x={x1,...,xn} is a positive example 

n  w0 + ∑i wi xi < 0; if x={x1,...,xn} is a negative example  

n  Typical linear features: w0 + ∑i wi xi  

n Example of non-linear features: 
n  Degree 2 polynomials, w0 + ∑i wi xi + ∑ij wij xi xj  

n  Classifier hw(x) still linear in parameters w, Data is linearly 
separable in higher dimensional spaces  
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non-linearly separable data  
n  Linear models are linear in the parameters 

which have to be estimated, but not 
necessarily in the independent variables.  

n  In the parabolic example, the parameters a, b, 
and c are linear.  

n  Multiple linear regression can be used to 
estimate the parameters of "curved" models. 
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Multiple Linear Regression 

n  Given  

y = a0 + a1x1 + a2x2 + ... + anxn + ε 

n  Or 

n  Defining a hyper-plane in n dimensions, The parameter e 
defines the error, or the residual,  with a mean of zero. 

n  MLR adjusts the parameters a1 … an, such that the sum of the 
squared errors is minimised to best fit the data. 
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non-linearly separable data – non-
linear classifier  

n  Choose a classifier hw(x) that is non-linear in parameters w, 
e.g.,  
n  Decision trees, neural networks, nearest neighbor,...  

n  More general than linear classifiers  

n  But, can often be harder to learn (non-convex/concave 
optimization required)  
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1D Non-Linear Example 

Starting from x = 998123456789, next 
x is computed using the non-linear 
mapping: 
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Power (Series1) 

1.1. ONE-DIMENSIONAL MAPS 3

The one-dimensionial maps we consider in our examples are:

1) the logistic map
2) the tent map
3) the Bernoulli map
4) the Gauss map
5) a bungalow-tent map
6) the circle map

1.1.1 Exact and Numerical Trajectories
In this section we calculate trajectories for one-dimensional maps. In our first ex-
ample we consider the map / : N -» N denned by

ti \ _ / 2/2 if a: is even
J[X) : ~ \3x + 1 ifx is odd

where N denotes the natural numbers. For this map it is conjectured that for all
initial values the trajectory finally tends to the period orbit

. . . 4 2 1 4 2 1 . . .

The data type unsigned long (4 bytes) in C++ is restricted to the range

0...4294967295

and the data type long (4 bytes) in C++ is restricted to the range

-2147483648...+2147483647

To check the conjecture for larger initial values we use the abstract data type
Verylong in SymbolicC++ (Tan Kiat Shi et al [91]). In this class all arithmetic
operators are overloaded. The overloaded operators are

+, - , *, / , X, +=, -=, •=. /=

For the initial value 56 we find the sequence

28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, .

Thus the orbit is eventually periodic.

Two different initial values are considered in the program trajecl .cpp, namely 56
and 998123456789.

The Henon map is the most studied 
two-dimensional map with chaotic 
behaviour.  
f : R2 —> R2 which is 
given by 
f{x, y):=(y + l - ax2, bx) 

2D Non-Linear Example 



Conic Sections 

n  F (the focus), L (the directrix Line) not 
containing F  

n  A nonnegative real number e  (the 
eccentricity: a measure of how much the conic 
section deviates from being circular) 

n  The corresponding conic section consists  
of the locus of all points whose distance to F 
equals e  times their distance to L.  
n  For e = 0, we obtain a circle,  

n  For 0 < e < 1 we obtain an ellipse,  

n  for e = 1 a parabola,  

n  for e > 1 a hyperbola. 
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Ellipse: Closed curve. 
Circle: closed and perpendicular to the 
symmetry axis 
Parabola: parallel to exactly one 
generating line of the cone 
Hyperbola: intersects both halves, 
producing two separate unbounded 
curves.  

Cutting Planes: 



Learning and Decision Trees to 
learning 

n  What is learning? 
n  more than just memorizing facts 

n  learning the underlying structure of the problem or data  

n  A fundamental aspect of learning is generalization: 
n   given a few examples, can you generalize to others?  

n  Learning is ubiquitous:  
n  medical diagnosis: identify new disorders from observations  

n  loan applications: predict risk of default  

n  prediction: (climate, stocks, etc.) predict future from current and 
past data  

n  speech/object recognition: from examples, generalize to others 
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Representation 

n  How do we model or represent the world?  

n  All learning requires some form of representation.  

n  Learning:  
n  adjust model parameters to match data  
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Representation

• How do we model or represent the 
world?

• All learning requires some form of 
representation.

• Learning:

adjust model parameters to match data

3

world
(or data)

model
{�1, . . . , �n}
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The complexity of learning

• Fundamental trade-off in learning:

complexity of model

          vs 

amount of data required to learn parameters

• The more complex the model, the more it can describe,

but the more data it requires to constrain the parameters.

• Consider a hypothesis space of N models:

- How many bits would it take to identify which of the N models is ‘correct’?

- log2(N) in the worst case

• Want simple models to explain examples and generalize to others

- Ockham’s (some say Occam) razor
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The complexity of learning 

n  Fundamental trade-off in learning:  
n  complexity of model vs. amount of data required to learn 

parameters  

n  The more complex the model, the more it can describe, but 
the more data it requires to constrain the parameters.  

n  Consider a hypothesis space of N models: 
n  How many bits would it take to identify which of the N models is 

‘correct’? 

n  log2(N) in the worst case  

n  Want simple models to explain examples and generalize to 
others 
n  Ockham’s (some say Occam) razor  
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Complex learning example: curve 
fitting  
 
n  How do we model the data? 
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Complex learning example: curve fitting

5

example from Bishop (2006), Pattern Recognition and Machine Learning

t = sin(2�x) + noise
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Polynomial curve fitting
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Polynomial curve fitting  13 
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Decision trees: classifying from a 
set of attributes  
 n  Each level splits the data according to different attributes 

n  goal: achieve perfect classification with minimal number of 
decisions  

n  not always possible due to noise or inconsistencies in the data 
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Decision Trees
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Decision trees: classifying from a set of attributes
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Decision Trees for Classification 

n  Input: Set of attribute-value pairs (same)  

n  ︎Output: Set of classes (not a binary valued outcome of 'N' and 'P')  

n  Effectively dividing input space into decision regions  

n  ︎Cuts in regions are parallel to input axes  
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Decision Trees and Decision Regions
! Effectively dividing input space into 

decision regions
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Observations  

n  Any boolean function can be represented by a decision tree. 

n  Not good for all functions, e.g.:  
n  parity function: return 1 iff an even number of inputs are 1 

n  majority function: return 1 if more than half inputs are 1 
 

n  best when a small number of attributes provide a lot of 
information 

n  Note: finding optimal tree for arbitrary data is NP-hard.  
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Decision trees with continuous values 
n  Now tree corresponds to order and placement of boundaries 

n  General case:  
n  arbitrary number of attributes: binary, multi-valued, or continuous 

n  output: binary, multi-valued (decision or axis-aligned classification 
trees), or continuous (regression trees) 
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Decision trees with continuous values
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Examples 
n  loan applications 

n  medical diagnosis 

n  movie preferences (Netflix contest) 

n  spam filters 

n  security screening 

n  many real-word systems, and AI success  

n  In each case, we want 
n  accurate classification, i.e. minimize error 

n  efficient decision making, i.e. fewest # of decisions/tests  

n  decision sequence could be further complicated  
n  want to minimize false negatives in medical diagnosis or minimize 

cost of test sequence  

n  don’t want to miss important email 
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Decision Trees 
n  Simple example of inductive learning  

1.  learn decision tree from training examples  

2.  predict classes for novel testing examples  

n  Generalization is how well we do on the testing examples.  

n  Only works if we can learn the underlying structure of the data.  

19 
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Decision Trees

• simple example of inductive learning

1. learn decision tree from training 
examples

2. predict classes for novel testing 
examples

• Generalization is how well we do on 
the testing examples.

• Only works if we can learn the 
underlying structure of the data.
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Choosing the attributes 
n How do we find a decision tree that agrees with the 

training data?  

n Could just choose a tree that has one path to a leaf for 
each example 
n  but this just memorizes the observations (assuming data are 

consistent) 

n  we want it to generalize to new examples  

n Ideally, best attribute would partition the data into 
positive and negative examples 

n Strategy (greedy):  
n  choose attributes that give the best partition first 

n Want correct classification with fewest number of tests  
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Problems 

n How do we choose which attribute or value to split 
on? 

n When should we stop splitting? 

n What do we do when we can’t achieve perfect 
classification? 

n What if tree is too large? Can we approximate with a 
smaller tree?  
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Basic algorithm for learning 
decision trees  
 

1.  starting with whole training data  

2.  select attribute or value along 
dimension that gives “best” split  

3.  create child nodes based on split  

4.  recurse on each child using child data 
until a stopping criterion is reached  

n  all examples have same class 

n  amount of data is too small 

n  tree too large  

n Central problem: How do we choose the 
“best” attribute?  
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Measuring uncertainty 

n  Good split if we are more certain about classification after 
split  
n  Deterministic is good (all true or all false)  

n  Uniform distribution is bad  
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Measuring information  

n A convenient measure to use is based on 
information theory. 
n How much “information” does an attribute give us 

about the class?  
n attributes that perfectly partition should given 

maximal information 
n unrelated attributes should give no information  

n Information of symbol w:  

24 
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Measuring information

• A convenient measure to use is based on information theory.

• How much “information” does an attribute give us about the class?

- attributes that perfectly partition should given maximal information

- unrelated attributes should give no information

• Information of symbol w:

18

I(w) ⇥ � log2 P (w)

P (w) = 1/2
⇥ I(w) = � log2 1/2 = 1 bit

P (w) = 1/4
⇥ I(w) = � log2 1/4 = 2 bits
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Information and Entropy

• For a random variable X with probability P(x), the entropy is the average (or 
expected) amount of information obtained by observing x:

• Note: H(X) depends only on the probability, not the value.

• H(X) quantifies the uncertainty in the data in terms of bits

• H(X) gives a lower bound on cost (in bits) of coding (or describing) X
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Entropy of a binary random variable

• Entropy is maximum at p=0.5

• Entropy is zero and p=0 or p=1.
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Example

A single random variable X with X = 1 with probability p and X = 0 with
probability 1� p. Note that H(p) is 1 bit when p = 1/2.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !
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probability 1� p. Note that H(p) is 1 bit when p = 1/2.
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Information and Entropy

• For a random variable X with probability P(x), the entropy is the average (or 
expected) amount of information obtained by observing x:

• Note: H(X) depends only on the probability, not the value.

• H(X) quantifies the uncertainty in the data in terms of bits

• H(X) gives a lower bound on cost (in bits) of coding (or describing) X

19

I(w) ⇥ � log2 P (w)

H(X) =
�

x

P (x)I(x) = �
�

x

P (x) log2 P (x)

H(X) = �
�

x

P (x) log2 P (x)

P (heads) = 1/2 ⇥ �1
2

log2
1
2
� 1

2
log2

1
2

= 1 bit

P (heads) = 1/3 ⇥ �1
3

log2
1
3
� 2

3
log2

2
3

= 0.9183 bits

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Entropy of a binary random variable

• Entropy is maximum at p=0.5

• Entropy is zero and p=0 or p=1.

20

Example

A single random variable X with X = 1 with probability p and X = 0 with
probability 1� p. Note that H(p) is 1 bit when p = 1/2.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 9



English character strings “A-Z” and 
space  
 The entropy increases as the data become less ordered. 
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English character strings revisited: A-Z and space

21

Example of symbols in english: A-Z and space
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A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
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•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Credit risk revisited

22

• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813
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Credit Risk Revisited 
n  How many bits does it take to specify the attribute of ‘defaulted?’  

n  P(defaulted = Y) = 3/10 

n  P(defaulted = N) = 7/10  

 

 

 

n  How much can we reduce the entropy  
(or uncertainty) of ‘defaulted’ by knowing  
the other attributes?  

n  Ideally, we could reduce it to zero, in  
which case we classify perfectly.  
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English character strings revisited: A-Z and space
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
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• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
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defaulted?

N N N

Y N Y
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Predicting credit risk

H(Y ) = �
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Decision Trees

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees: classifying from a set of attributes

10

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

• each level splits the data according to different attributes

• goal: achieve perfect classification with minimal number of decisions

- not always possible due to noise or inconsistencies in the data



Conditional Entropy 

n H(Y|X) is the remaining entropy of Y given X  

or  

n The expected (or average) entropy of P(y|x)  

 

n H(Y|X=x) is the specific conditional entropy, i.e. the 
entropy of Y knowing the value of a specific attribute x.  

29 
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Conditional entropy

• H(Y|X) is the remaining entropy of Y given X

or

The expected (or average) entropy of P(y|x)

• H(Y|X=x) is the specific conditional entropy, i.e. the entropy of Y knowing the value 
of a specific attribute x.
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H(Y |X) ⇥ �
�

x

P (x)
�

y

P (y|x) log2 P (y|x)

= �
�

x

P (x)
�

y

P (Y = y|X = x) log2 P (Y = y|X = x)

= �
�

x

P (x)
�

y

H(Y |X = x)
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Back to the credit risk example

24

<2 yrs missed def?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y |X) ⇥ �
�

x

P (x)
�

y

P (y|x) log2 P (y|x)

= �
�

x

P (x)
�

y

P (Y = y|X = x) log2 P (Y = y|X = x)

= �
�

x

P (x)
�

y

H(Y |X = x)

H(defaulted|missed = N) = �6
7

log2
6
7
� 1

7
log2

1
7

= 0.5917

H(defaulted|missed = Y) = �1
3

log2
1
3
� 2

3
log2

2
3

= 0.9183

H(defaulted|missed) =
7
10

0.5917 +
3
10

0.9183 = 0.6897

H(defaulted|< 2years = N) = � 4
4 + 2

log2
4

4 + 2
� 2

6
log2

2
6

= 0.9183

H(defaulted|< 2years = Y) = �3
4

log2
3
4
� 1

4
log2

1
4

= 0.8133

H(defaulted|missed) =
6
10

0.9183 +
4
10

0.8133 = 0.8763



Mutual Information 

n  We now have the entropy - the minimal number of bits required 
to specify the target attribute:  

n  The conditional entropy - the remaining entropy of Y knowing X  

n  So we can now define the reduction of the entropy after 
learning Y.  

n  This is known as the mutual information between Y and X  

31 
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Mutual information

• We now have the entropy - the minimal number of bits required to 
specify the  target attribute:

• The conditional entropy - the remaining entropy of Y knowing X

• So we can now define the reduction of the entropy after learning Y.

• This is known as the mutual information between Y and X

25

I(Y ;X) = H(Y )�H(Y |X)

H(Y ) =
�

y

P (y) log2 P (y)

H(Y |X) = �
�

x

P (x)
�

y

P (y|x) log2 P (y|x)
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Properties of mutual information

• Mutual information is symmetric

• In terms of probability distributions, it is written as

• It is zero, if Y provides no information about X:

• If Y = X then

26

I(Y ;X) = I(X;Y )

I(X;Y ) = �
�

x,y

P (x, y) log2
P (x, y)

P (x)P (y)

I(X;X) = H(X)�H(X|X) = H(X)

I(X;Y ) = 0 � P (x) and P (y) are independent
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Mutual information
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Information Gain 

n  Advantage of attribute – decrease in uncertainty  
n  Entropy of Y before you split 

n  Entropy after split  

n  Weight by probability of following each branch, i.e., normalized 
number of records  

n  Information gain is difference 
 

33 

©2005-2007 Carlos Guestrin 20

Information gain

 Advantage of attribute – decrease in uncertainty

 Entropy of Y before you split

 Entropy after split

 Weight by probability of following each branch, i.e.,

normalized number of records

 Information gain is difference

TTT

TFT

FFF

TTF

TFT

TTT

YX2X1

©2005-2007 Carlos Guestrin 20

Information gain

 Advantage of attribute – decrease in uncertainty

 Entropy of Y before you split

 Entropy after split

 Weight by probability of following each branch, i.e.,

normalized number of records

 Information gain is difference

TTT

TFT

FFF

TTF

TFT

TTT

YX2X1



Information Gain 34 

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Information gain

27

bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916
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Example (from Andrew Moore): Predicting miles per gallon

28
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Copyright © Andrew W. Moore Slide 31

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 
Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe
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Learning Decision Trees 

n  Start from empty decision tree  

n  Split on next best attribute (feature) 
n  Use, for example, information gain to select attribute  

n  Split on  

n  Recurse  
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Example (from Andrew Moore): Predicting 
miles per gallon  http://www.autonlab.org/tutorials/dtree.html  
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bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916
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Example (from Andrew Moore): Predicting miles per gallon
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A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)
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mpg cylinders displacement horsepower weight acceleration modelyear maker
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: : : : : : : :

: : : : : : : :

: : : : : : : :
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bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe
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predict MPG.
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First step: calculate 
information gains 
n  Compute for information gain for each 

attribute 

n   In this case cylinders provide the most 
gain, because it nearly partitions the data.  
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• In this case, cylinders provides the 
most gain, because it nearly partitions 
the data.
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First decision: partition on cylinders
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A Decision Stump
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Recursion Step

Take the
Original
Dataset..

And partition it 
according
to the value of 
the attribute 
we split on

Records 
in which 
cylinders 

= 4 

Records 
in which 
cylinders 

= 5

Records 
in which 
cylinders 

= 6 

Records 
in which 
cylinders 

= 8

Note the lopsided mpg class distribution.



First decision: partition on cylinders  
 n  Note the lopsided mpg class distribution.  
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Recurse on child nodes to expand tree
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Expanding the tree: data is partitioned for each child

32

18

Copyright © Andrew W. Moore Slide 35

Recursion Step

Records in 
which 

cylinders = 4 

Records in 
which 

cylinders = 5

Records in 
which 

cylinders = 6 

Records in 
which 

cylinders = 8

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..

Build tree from
These records..
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Second level of tree

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia

(Similar recursion in the 
other cases)

Exactly the same, but with a smaller, conditioned datasets.
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Expanding the tree: data is partitioned 
for each child 
n  Exactly the same, but with a smaller, conditioned datasets.  
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Second level of tree

Recursively build a tree from the seven 
records in which there are four cylinders and 
the maker was based in Asia

(Similar recursion in the 
other cases)
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The final tree
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Base Case 
One

Don’t split a 
node if all 
matching 

records have 
the same 

output value
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n  Base Case 1: Don’t split a node if all matching records have 
the same output value  
 

n  Base Case 2: Don’t split a node if none of the attributes can 
create multiple non-empty children  
n  If all records have exactly the same set of input attributes then 

don’t recurse  

n  Proposed Base Case 3:  
n  If all attributes have zero information gain then don’t recurse  
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Is this a good idea? 



The problem with Base Case 3  
43 
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The problem with Base Case 3

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b

The information gains:
The resulting decision
tree:



If we omit Base Case 3:  
44 
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If we omit Base Case 3:

a b y

0 0 0

0 1 1

1 0 1

1 1 0

y = a XOR b

The resulting decision tree:



Basic Decision Tree Building 
Summarized 

BuildTree(DataSet,Output)  

n  If all output values are the same in DataSet, return a leaf node that 
says  

 “predict this unique output”  

n  If all input values are the same, return a leaf node that says 
 “predict the majority output”  

n  Else find attribute X with highest Info Gain  

n  Suppose X has nX distinct values (i.e. X has arity nX).  
n  Create and return a non-leaf node with nX children. 

n  The ith child should be built by calling: BuildTree(DSi,Output)  

 Where DSi built consists of all those records in DataSet for  
  which X = ith distinct value of X.  

45 
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Decision trees & Learning Bias 

n  Decision trees will overfit 

n  Standard decision trees have no learning bias  
n  Training set error is always zero!  

n  (If there is no label noise)  

n  Lots of variance 

n  Will definitely overfit!!! 

n  Must bias towards simpler trees  

n  Many strategies for picking simpler trees:  
n  Fixed depth 

n  Fixed number of leaves 

n  Or something smarter...  

47 



Decision Trees for Classification 

n  To classify a new example – traverse tree and report leaf 
label  

n  Many trees can represent the same concept  

n  But, not all trees will have the same size!  
n  e.g., φ = A ⋀ B ⋁ ¬A⋀C ((A and B) or (not A and C))  

48 
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MPG Test set
error

The test set error is much worse than the 
training set error…   ...why? 



A chi-square test  

n  Suppose that mpg was completely uncorrelated with maker. 
n  What is the chance we’d have seen data of at least this apparent 

level of association anyway?  

By using a particular kind of chi-square test, the answer is 7.2%  

 

(Such simple hypothesis tests are very easy to compute, 
unfortunately, not enough time to cover in the lecture, but in your 
homework, you’ll have fun! :)) 
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A chi-square test

 Suppose that mpg was completely uncorrelated with maker.

 What is the chance we’d have seen data of at least this apparent
level of association anyway?

By using a particular kind of chi-square test, the answer is
7.2%

(Such simple hypothesis tests are very easy to compute,
unfortunately, not enough time to cover in the lecture,

but in your homework, you’ll have fun! :))



Using Chi-squared to avoid 
overfitting 

n Build the full decision tree as before  

n But when you can grow it no more, start to prune:  
n  Beginning at the bottom of the tree, delete splits in which 

pchance > MaxPchance  

n  Continue working your way up until there are no more 
prunable nodes  

 

MaxPchance is a magic parameter you must specify to 
the decision tree, indicating your willingness to risk 
fitting noise  

51 



Pruning example  
n  With MaxPchance = 0.1, you will see the following MPG decision 

tree:  
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Pruning example

 With MaxPchance = 0.1, you will see the

following MPG decision tree:

Note the improved
test set accuracy

compared with the
unpruned tree



MaxPchance 

n  Technical note MaxPchance is a regularization parameter 
that helps us bias towards simpler models  
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MaxPchance

 Technical note MaxPchance is a regularization parameter

that helps us bias towards simpler models

High Bias High Variance
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 We’ll learn to choose the value of these magic parameters soon!



Decision Trees for Regression 

n  Move from Discrete outcomes -> Continuous valued functions  

n  ︎How do you measure the goodness of your classifier? ︎  
n  Loss = Number of misclassified inputs/data points  

n  ︎ How do you measure the goodness of your regression 
hypothesis?  
n  Loss = Square Loss  

n  Loss = Absolute Loss  

n  ︎ There are greedy heuristic based algorithms that build 
regression trees iteratively  
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Decision Trees in Practice  

n  Deal with Overfitting : Pruning away low information gain, or 
statistically insignificant attributes  

n  ︎ k-fold cross-validation: To deal with overfitting  

n  ︎Advantages: 
n  Human readability ︎ White box classifier  

n  Disadvantages:  
n  Parallel splits in input space - as opposed to Diagonal splits (xi< 

xj) make some problems harder to learn  

n  Splits are very sensitive to training data  
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Assignment 1 (5 marks) 

n  Implement the decision tree building algorithm presented in 
this lecture, and submit the code and the calculation results 
for each node IG to explain the final tree 

n  Update the algorithm to avoid overfitting using chi-squared 
method, and submit the code and the calculation results for 
each node IG to explain the final tree 

n  Due date: 27 December, 2014, 11 p.m. 
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