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Overview

m Decision Trees (This Lecture — Week 11)
m Next Week — Midterm Exam (Week 12)
m Polynomial Classifier, RBF  (Week 13)
m Nonlinear SVM (Week 13)

m Multi Layer Neural Networks (Week 14)

m Two Layer Perceptron
m Three Layer Perceptron

m Project Presentations (Week 15)

m Final Exam (Week 16)



Linearly Separable Data

m A dataset is linearly separable iff 3 a separating
hyperplane w, such that:

mw,+ >, w; x> 0;if x={x,,...,x,} is a positive example

mw, + >, w; x;, <0;if x={x,,...,x,} is a negative example

m Typical linear features: w, + ), w; X;

m Example of non-linear features:
m Degree 2 polynomials, w, + >, W; X; + ) Wy, X; X;

m Classifier h ,(x) still linear in parameters w, Data is linearly
separable in higher dimensional spaces




non-linearly separable data

m Linear models are linear in the parameters

which have to be estimated, but not
necessarily in the independent variables.

m In the parabolic example, the parameters a, b,

and c are linear.

m Multiple linear regression can be used to

estimate the parameters of "curved" models.
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Multiple Linear Regression

m Given
Yy=3,tTax;+tax, +...+tax + &

m Or

n
Yy=apt Zai)(i"' e
i=1
m Defining a hyper-plane in n dimensions, The parameter e
defines the error, or the residual, with a mean of zero.

m MLR adjusts the parameters a, ... a,, such that the sum of the
squared errors is minimised to best fit the data.



non-linearly separable data — non-
linear classifier

m Choose a classifier h (x) that is non-linear in parameters w,
e.g.,

m Decision trees, neural networks, nearest neighbor,...
m More general than linear classifiers

m But, can often be harder to learn (non-convex/concave
optimization required)
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2D Non-Linear Example

The Henon map is the most studied .
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. . Cutting Planes:
Conic Sections

m F (the focus), L (the directrix Line) not

containing F Ellipse: Closed curve.

Circle: closed and perpendicular to the

. symmetry axis
m A nonnegative real number e (the Y Y
Parabola: parallel to exactly one

v
o

section deviates from being circular) Hyperbola: intersects both halves, |
\_ producing two separate unbounded
' - - : ‘. curves.
m The corresponding conic section consists \

of the locus of all points whose distance to F
equals e times their distance to L.

m For e = 0, we obtain a circle,
m For 0 < e <1 we obtain an ellipse,

m for e = 1 a parabola, — ==

m for e > 1 a hyperbola.



Learning and Decision Trees to
learning

m What is learning?
= more than just memorizing facts

m learning the underlying structure of the problem or data

m A fundamental aspect of learning is generalization:

m given a few examples, can you generalize to others?

m Learning is ubiquitous:
m medical diagnosis: identify new disorders from observations
m Joan applications: predict risk of default

m prediction: (climate, stocks, etc.) predict future from current and
past data

m speech/object recognition: from examples, generalize to others



Representation

m How do we model or represent the world?
m All learning requires some form of representation.

m Learning:
m adjust model parameters to match data [ model }

{01,...,0,}

l

world
(or data)




The complexity of learning

m Fundamental trade-off in learning:

m complexity of model vs. amount of data required to learn
parameters

m The more complex the model, the more it can describe, but
the more data it requires to constrain the parameters.

m Consider a hypothesis space of N models:

m How many bits would it take to identify which of the N models is
‘correct’?

m log,(N) in the worst case

m Want simple models to explain examples and generalize to
others

m Ockham’s (some say Occam) razor



Complex learning example: curve
fitting

m How do we model the data?

t = sin(27x) + noise




Polynomial curve fitting
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Decision trees: classifying from a
set of attributes

m Each level splits the data according to different attributes

m goal: achieve perfect classification with minimal number of
decisions

m not always possible due to noise or inconsistencies in the data
Predicting credit risk

current job? | payments? good: 7

<2 years at missed defaulted? [ bad: 3 ]

N N

missed
N / payments!? Y

bad: | bad: 2
good: 6 good: |
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Decision Trees for Classification

m Input: Set of attribute-value pairs (same)
m Output: Set of classes (not a binary valued outcome of 'N' and 'P")
m Effectively dividing input space into decision regions

m Cuts in regions are parallel to input axes

x1) X2 R4
Tzl -
C
b R3
R R RY R4 Y
a x1

Decision Tree Decision Regions




Observations

m Any boolean function can be represented by a decision tree.

m Not good for all functions, e.g.:
m parity function: return 1 iff an even number of inputs are 1

®m majority function: return 1 if more than half inputs are 1

m best when a small number of attributes provide a lot of
information

m Note: finding optimal tree for arbitrary data is NP-hard.



Decision trees with continuous values

m Now tree corresponds to order and placement of boundaries

m General case:

m arbitrary number of attributes: binary, multi-valued, or continuous

m output: binary, multi-valued (decision or axis-aligned classification
trees), or continuous (regression trees)

X
Predicting credit risk
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Examples

m loan applications

m medical diagnosis

m movie preferences (Netflix contest)

m spam filters

m security screening

m many real-word systems, and Al success

m In each case, we want
m accurate classification, i.e. minimize error

m efficient decision making, i.e. fewest # of decisions/tests

m decision sequence could be further complicated

= want to minimize false negatives in medical diagnosis or minimize
cost of test sequence

m don’t want to miss important email



Decision Trees

m Simple example of inductive learning

1. learn decision tree from training examples
2. predict classes for novel testing examples

m Generalization is how well we do on the testing examples.

m Only works if we can learn the underlying structure of the data.

[class prediction]

model

{61,...,60,}
7R

[training examples] [testing examples]




Choosing the attributes

m How do we find a decision tree that agrees with the
training data?

m Could just choose a tree that has one path to a leaf for
each example

m but this just memorizes the observations (assuming data are
consistent)

m we want it to generalize to new examples

m Ideally, best attribute would partition the data into
positive and negative examples

m Strategy (greedy):

m choose attributes that give the best partition first

m Want correct classification with fewest number of tests



Problems

m How do we choose which attribute or value to split
on?

m When should we stop splitting?

m What do we do when we can’t achieve perfect
classification?

m What if tree is too large? Can we approximate with a
smaller tree?



Pe
<

Basic algorithm for learning
decision trees

1. starting with whole training data

2. select attribute or value along
dimension that gives “best” split

3. create child nodes based on split

|||
e I e R A e A N A R

4. recurse on each child using child data
until a stopping criterion is reached
m all examples have same class

m amount of data is too small
m tree too large

m Central problem: How do we choose the
“best” attribute?



Measuring uncertainty

m Good split if we are more certain about classification after

split

m Deterministic is good (all true or all false)

m Uniform distribution is bad

P(Y=A) = 1/2

P(Y=B) = 1/4

P(Y=C) = 1/8

P(Y=D) = 1/8

P(Y=A) = 1/4

P(Y=B) = 1/4

P(Y=C) = 1/4

P(Y=D) = 1/4




Measuring information

m A convenient measure to use is based on
information theory.
m How much “information” does an attribute give us
about the class?

m attributes that perfectly partition should given
maximal information
m unrelated attributes should give no information

I(w) = —log, P(w
mInformation of symbol w: () 082 P(w)

(w) = 1/2

(w) = —log,1/2=1 bit
Pw) = 1/4

(w) = —logy,1/4 =2 bits



Information and Entropy

I(w) = —log, P(w)

m For a random variable X with probability P(x), the entropy is
the average (or expected) amount of information obtained by

observing x:
= 2 Pla)l(a) = = 3 P(@)log, Plo)

X
m Note: H(X) depends only on the probablllty, not the value.
m H(X) quantifies the uncertainty in the data in terms of bits

m H(X) gives a lower bound on cost (in bits) of coding (or

describing) X = - Z P(z)log, P
1 1 1 1
P(heads) =1/2 = . log, = . log, = s = 1 bit
1 1 2 2 ,
P(heads) =1/3 = -3 log, = 373 log, - 3 = 0.9183 bits



Entropy of a binary random
variable

m Entropy is maximum at p=0.5

m Entropy is zero at p= 0 or p=1

H(p)
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English character strings “A-Z” and
space

The entropy increases as the data become less ordered.

_ . 1. Zero-order approximation. (The symbols are independent and
H| = 4.76 bits/char equiprobable.

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD
_ . 2. First-order approximation. (The symbols are independent. Fre-
Hz = 4.03 bits/char quency of letters matches English text.)
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

H, = 2.8 bits/char 5. Fourth-order approximation. (The frequency of quadruplets of let-
ters matches English text. Each letter depends on the previous

three letters. This sentence is from Lucky’s book, Silicon Dreams
[183].)

THE GENERATED JOB PROVIDUAL BETTER TRAND THE
DISPLAYED CODE, ABOVERY UPONDULTS WELL THE
CODERST IN THESTICAL IT DO HOCK BOTHE MERG.



Credit Risk Revisited

. . . . 28
m How many bits does it take to specify the attribute of ‘defaulted?’

m P(defaulted =Y) = 3/10
m P(defaulted =N) =7/10

HY) = — > P =y)log, P(Y =y,
1=Y ,N
= —0.3log5 0.3 —0.7log, 0.7
= 0.8813

m How much can we reduce the entropy
(or uncertainty) of ‘defaulted’ by knowing
the other attributes?

m Ideally, we could reduce it to zero, in
which case we classify perfectly.

Predicting credit risk

c<qu I?leiz::rjsof? Pa;i:sei(tj:s? defaulted?
N N N
Y N Y
N N N
N N N
N Y ¥
Y N N
N Y N
N Y ¥
Y N N
Y N N




Conditional Entropy

m H(Y | X) is the remaining entropy of Y given X

or

m The expected (or average) entropy of P(y | x)
HY|X) = - ZP Z P(y|x)log, P(y|r)

- _Zp ZPY y|X = z)logy P(Y = y|X = )

Y

~Y P(z) H(Y|X =uz)

m H(Y | X=x) 1s the specific conditional entropy,1i.e. the
entropy of Y knowing the value of a specific attribute x.



Back to the credit risk example
ZP (y|z) logy P(y|x)

HY|X) = —ZP
— _ZP
—ZP(.’L’

H (defaulted|< 2years = N)

ZP(Y y|X = xz)logy, P(Y = y|X = x)
Yy
H(Y|X = z)
= 1 l)g,;—glog,gzﬂ‘)lb%
442 4+2 6 6
= ——I log, —i - 11 log, 11 = (.8133

H (defaulted| < 2years = Y)

H (defaulted|<2years )

H (defaulted|missed = N) =

H (defaulted|missed =Y) =

H (defaulted|missed)

6
5 0.9183 + 208133 = 0.8763
10 10

6 6 1 1

—?log2? — ?logQ? = 0.5917
11 ! 21 2 0.9183
——logy - — - log, = = 0.
3 g23 3 g23
7 3

05917 + —0.9183 =
10059 7—1—1009 83 = 0.6897



Mutual Information

m We now have the entropy - the minimal number of bits required
to specify the target attribute:

Z P(y)log, P(y)

m The conditional entropy - the remammg entropy of Y knowing X

H(Y|X) = —) P()) P(ylz)log, P(ylz)

m So we can now define the reduction of the entropy after
learning.

m This is known as the mutual information betweenY and X

[(Y;X)=H(Y) - H(Y|X)



Properties of Mutual Information

m Mutual information is symmetric
[(V:X) = I(X:Y)
m In terms of probability distributions, it is written as

I(X:Y) = =) Ple.y)log, P];S”];y(;)

m It is zero, if Y provides no information about X:
I(X;Y) = 0 < P(x)and P(y) are independent

m[fY =X then

[(X;X) = H(X)-H(X|X)=H(X)



Information Gain

m Advantage of attribute — decrease in uncertainty

m Entropy of Y before you split

m Entropy after split

m Weight by probability of following each branch, i.e., normalized

number of records

v

J=1

k

HY | X)=-) PX=uzj)) PY =y |X=ux;)log P(Y =y; | X = x)

i=1

= Information gain is difference JG(X) = H(Y) — H(Y | X)




Information Gain

H(defaulted) — H(defaulted|< 2 years)
0.8813 — 0.8763 = 0.0050

H (defaulted) — H(defaulted|missed)
0.8813 — 0.6897 = 0.1916

Missed payments are the
bad: 3 most informative attribute
good:7 about defaulting.

missed
payments!
bad: | bad: 2
good: 6 good: |
<2 years
at current

job?
bad: 0 bad: |
good: 3 good: 3




Learning Decision Trees

m Start from empty decision tree

m Split on next best attribute (feature)

m Use, for example, information gain to select attribute
= Spliton grgmax IG(X;) = argmax H(Y) — H(Y | X;)
) )

m Recurse



Example (from Andrew Moore): Predicting
mi].eS per g' allon http://www.autonlab.org/tutorials/dtree.html

cylinders displacement horsepower

mpg

good
bad
bad
bad
bad
bad
bad
bad

bad
good
bad
good
bad
good
good
bad
good
bad

4/ low
6 medium
4 medium
8 high
6 medium
4/low
4|low
8 high

8 high
8 high
8 high
4|low
6 medium
4 ' medium
4|low
8 high
4|low
5 medium

low
medium
medium
high
medium
medium
medium
high

high
medium
high
low
medium
low

low
high
medium
medium

weight

low
medium
medium
high
medium
low

low
high

high
high
high
low
medium
low
medium
high
low
medium

I

acceleration /modelyear maker

high
medium
low

low
medium
medium
low

low

low
high
low

low
high
low
high
low
medium
medium

75to78
70to74
75t078
70to74
70to74
70to74
70to74
75to78

70to74
79t083
75to78
79t083
75to78
79t083
79t083
70to74
75t078
75to78

asia
america
europe
america
america
asia
asia
america

america
america
america
america
america
america
america
america
europe

europe



First step: calculate
information gains

m Compute for information gain for each
attribute

m In this case cylinders provide the most
gain, because it nearly partitions the data.

Information gains using the training =et (40 records)

.

mpg values, bad  good
[t Walue Diztribwtion Info Gain
cylinders 3 0506731
4 I
3 ]
8 ]
8 B
displacemert low ||| NG 0223144
rmeclium _
ign
horsepower o _D.SETEDS
rmeclium _
high |
wweight lowe [ 0504015
tneclium _
ign [
acceleration  lowe ||| I 0 054202z
tneclium _
high [
modetyear  70to74 || o 2579654
707 |
raon
maker america ||| GG 00437265
asia [




First decision: partition on cylinders

m Note the lopsided mpg class distribution.

mpg values: bad good

root

22 18

pchance = 0.001

cylinders = 3 || cylinders = 4 || cylinders = 5 | cylinders = 6 | cylinders = 8

00 4 17 1 0 g 0 9 1

Predict bad Predict good Predict bad Predict bad Predict bad




Recurse on child nodes to expand tree

mpg values:

bad good

root
22 18

pchance = 0.001

cylinders = 3

cylinders = 4 || cylinders = 5

cylinders = 6

cylinders = 8

0 0 4 17 1 0 8 0 9 1
Predict bad Predict good Predict bad Predict bad Predict bad
Take the And partition it
Original according
Dataset.. to the value of

the attribute
we split on

Records

in which

cylinders
=4

Records

in which

cylinders
=5

Records

in which

cylinders
=6

Records

in which

cylinders
=8



Expanding the tree: data is partitioned
for each child

m Exactly the same, but with a smaller, conditioned datasets.

mpg values: bad good
root
22 18
pchance = 0.001
cwlinders = 3 cwylinders = 4 cwlinders = 5 cwlinders = 6 || cylinders = 8
o o 4 17 1 0O 8 0O 9 1
Predict bad Fregict good Pr ict bad Pr ict bad P dict bad
Build tree from  Build tree from  Build tree from Build tree from
These records..  These records.. These records..  These records..
-, 1IN N
Records in
Records in which
which cylinders = 8
Records in cylinders = 6
Records in :
which Wwhich
cylinders = 5

cylinders = 4




Second level of decisions

|

mpg values:  bad

good

root

22 18
pchance = 0.001

Why don’t we
expand these nodes?

cylinders = 3

a o

Fredict bad

cylinders = 4

4 17

cylinders =5 || cylin

O

9 1

pchance = 0,135

/

ad

Fredict bad

cylinders = 8

pchance = 0.085

maker = america

g 10

maker = asia

2 5

maker = europe

2 2

harsepower = low

g a

harsepower = medium

0 1

harsepower = high

=

Fredict good

redict good

Fredict bad

Fredict bad

Fredict good

Fredict bad

Recursively build a tree from the seven

records in which there are four cylinders and
the maker was based in Asia

(Similar recursion in the
other cases)




m Base Case 1: Don’t split a node if all matching records have
the same output value

m Base Case 2: Don'’t split a node if none of the attributes can
create multiple non-empty children

m If all records have exactly the same set of input attributes then
don’t recurse

/ Is this a good idea?
m Proposed Base Case 3: i

= If all attributes have zero information gain then don’t recurse



The problem with Base Case 3

a b vy
O O O y =a XOR Db
o 1 1
1 O 1
1 1 O
_ _ _ The resulting decision
The information gains: tree:
Information gains using the training set (4 records) y Va| ues: 0 ‘]
yvalues: 0 1
Input Value Distribution Info Gain rOOt
a 0 [N o
1 2 2
b o | o |
- Predict O




If we omit Base Case 3:

a b vy y =aXOR b

O O O
o 1 1 y values: 0 1
1 0 1
1 1 O root
2 2
The resulting decision tree: ;hance 5 g
a=0 a=1

11 1 1

pchance = 0.414 || pchance = 0.414
b=0 b=1 b=0 b=1
10 0 1 0 1 1 0

Predict 0 Predict 1 Predict 1 Predict O




Basic Decision Tree Building
Summarized

BuildTree(DataSet, Output)

m If all output values are the same in DataSet, return a leaf node that
says
“predict this unique output”

m [f all input values are the same, return a leaf node that says
“predict the majority output”

m Else find attribute X with highest Info Gain

m Suppose X has n, distinct values (i.e. X has arity n,).

m Create and return a non-leaf node with n, children.
m The i child should be built by calling: BuildTree(DS;,Output)

Where DS, built consists of all those records in DataSet for
which X = j** distinct value of X.



The final tree

mpg walues:  bad  good
root
22 18
pchance = 0.001
cylinders = 3 || cylinderz = 4 cylinders = 5 | cylinders =6 | cylinders =8
oo 4 17 1 0 g o 9 1
Predict bad | pchance = 0133 | Predict bad  Predict bad | pchance = 0.085

/

/

maker = america || maker = asia maker = europe | horzepower = lowy (| horsepowwer = medium || horsepower = high
o 10 2 5 2 2 oo o 9 0
Predict good pchance = 0317 [ pchance = 0717 | Predict bad Predict good Predict bad

horsepower = lowy

o 4

Predict good

horsepower = medium
2 1

pchance = 0,894

horsepower = high || acceleration = loswy

o o

1 0

a1

acceleration = medium

acceleration = high

11

Predict bad

Predict bad

Predict good

pchance = 0,717

acceleration = low

1 0

Predict bad

acceleration = medium
1 1

[unexpandable)

acceleration = khigh

00

0 1

modelyear = THoy 4

1 0

modelyear = T5to? S || modelyear = 79053

0o

Predict bad

Predict badd

Predict good

Predict bad

Predict bad




Decision trees & Learning Bias

m Decision trees will overfit

m Standard decision trees have no learning bias
m Training set error is always zero!
m (If there is no label noise)
= Lots of variance
m Will definitely overfit!!!

m Must bias towards simpler trees

m Many strategies for picking simpler trees:
m Fixed depth
m Fixed number of leaves

= Or something smarter...



Decision Trees for Classification

m To classify a new example — traverse tree and report leaf
label

m Many trees can represent the same concept

m But, not all trees will have the same size!
® eqg., ® =AANBVY-AANC ((Aand B) or (not A and C))




MPG Test set

root

" 7 error

pchance = 0.001

e T

Num Errors Set Size Percent
Wrong
Training Set 1 40 2.50 .
epovwer = high
Test Set 74 352 21.02
ict bad

T |

horsepovwer = low || horsepower = medium | horsepower = high || acceleration = lowy || acceleration = medium || acceleration = high

0o 4 2 1 0 O 1 N n 4 1 4

redictoood |penence=023¢ || The test set error is much worse than the
T training set error... ..why?

acceleration = low || acceleration = medium || acceleration = high || modelyear = 70to74 |[modelyear = 75to78 || modelyear = 7S9t083

1 0 1 1 0o 01 1 0 00

Predict bad (unexpandable) Predict bad Predict good Predict bad Predict bad

Predict bad




A chi-square test

mpg values: bad good

maker america 0 10 [ B H( mpg | maker = america ) = 0
asia 2 5 1 B H( mpg | maker = asia ) = 0.863121
europe 2 2 | B H( mpg | maker = europe ) = 1
H({mpg) = 0.702467 H(mpg|maker) = 0.478183
IG{mpg|maker) = 0.224284

m Suppose that mpg was completely uncorrelated with maker.

m What is the chance we’d have seen data of at least this apparent
level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute,
unfortunately, not enough time to cover in the lecture, but in your
homework, you’ll have fun! :))



Using Chi-squared to avoid
overfitting

m Build the full decision tree as before

m But when you can grow it no more, start to prune:

m Beginning at the bottom of the tree, delete splits in which
pchance > MaxPchance

m Continue working your way up until there are no more
prunable nodes

MaxPchance is a magic parameter you must specify to
the decision tree, indicating your willingness to risk
fitting noise



Pruning example

m With MaxPchance = 0.1, you will see the following MPG decision
tree:

mpg values: bad good

root
22 18

pehance = 0.001 Note the improved

test set accuracy
compared with the
unpruned tree

cylinders = 3 || cylinders = 4 | cylinders = 5 | cylinders = 6 | cylinders = 8

00 4 17 10 8 0 9 1

Predict bad Predict good Predict bad Predict bad Predict bad

— N\ /

Num Errors Set Size Percentv
Wrong
Training Set 5 40 12.50
Test Set 56 352 15.91




MaxPchance

m Technical note MaxPchance is a regularization parameter
that helps us bias towards simpler models

i Increasing
<Decreasmg MaxPchance >

< >
High Bias High Variance

Expected Test set
Error




Decision Trees for Regression

m Move from Discrete outcomes -> Continuous valued functions

m How do you measure the goodness of your classifier?

m Loss = Number of misclassified inputs/data points

m How do you measure the goodness of your regression
hypothesis?

m Loss = Square Loss Lﬂ{f) = E{x,f}MD(f(x) — y]z
= Loss = Absolute Loss  {p(f) = E(.,y~nD|f(x) — y|

m There are greedy heuristic based algorithms that build
regression trees iteratively



Decision Trees in Practice

m Deal with Overfitting : Pruning away low information gain, or
statistically insignificant attributes

m k-fold cross-validation: To deal with overfitting

m Advantages:

= Human readability White box classifier

m Disadvantages:

m Parallel splits in input space - as opposed to Diagonal splits (x;<
X;) make some problems harder to learn

m Splits are very sensitive to training data



Assignment 1 (5 marks)

m Implement the decision tree building algorithm presented in
this lecture, and submit the code and the calculation results
for each node IG to explain the final tree

m Update the algorithm to avoid overfitting using chi-squared
method, and submit the code and the calculation results for
each node IG to explain the final tree

m Due date: 27 December, 2014, 11 p.m.



