Arab Academy For Science and Technology \& Maritime Transport

 College of Engineering \& TechnologyComputer Engineering Department

EXAMINATION PAPER - Week 7 makeup

Course Title: Computer Graphics
Course Code: CC416
Date: Sun. Jan, 4-2015
Time allowed: 60 mins

Student's name:
Reg.\# :

Question \#	Marks			
	Available			
Graphics Systems	4			
Colors	4			
Line Drawing	4			
Circle Drawing	4			
Ellipse Drawing	20			
Total	Name: Dr. Manal Helal			
Lecturer	Signature:			
	Date:			

1) Choose the image type (raster or vector file formats) used to draw the following images on a computer system.

2) Given the following RGB Color values, what are the equivalent CMY values?

RGB $=(62,29,64)$
You can infer the transformation operation from the following illustration:

3) Given the following line equation:
$y=x+4$
Trace the Bresenham line drawing algorithm to fill the following table, from a starting point $(0,4)$ to an ending point $(4,8)$:

Hints:
$\mathrm{p}_{0}=2 \Delta \mathrm{y}-\Delta \mathrm{x}$
If $\left(\mathrm{p}_{\mathrm{k}}<0\right)$

$$
p_{k+1}=p_{k}+2 \Delta y
$$

Otherwise

$$
p_{k+1}=p_{k}+2 \Delta y-2 \Delta x
$$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0	0	4	

4) Given a Circle with center at $(4,5)$ and radius 6 , trace the mid point circle drawing algorithm for 4 points:

Hints:
$\mathrm{p}_{0}=1-\mathrm{r}$
If $\left(p_{k}<0\right)$

$$
\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+1
$$

Otherwise

$$
\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+1-2 \mathrm{y}_{\mathrm{k}+1}
$$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0			
1			
2			
3			
4			

5) Given an ellipse with $r_{x}=2$ and $r_{y}=4$ and center (4,5), trace the mid-point ellipse drawing algorithm for 4 points.

Hints:
$p 1_{0}=r_{y}^{2}-r_{x}^{2} r_{y}+\frac{1}{4} r_{x}^{2}$
increment $= \begin{cases}2 r_{y}^{2} x_{k+1}+r_{y}^{2} & \text { if } p 1_{k}<0 \\ 2 r_{y}^{2} x_{k+1}+r_{y}^{2}-2 r_{x}^{2} y_{k+1} & \text { if } p 1_{k} \geq 0\end{cases}$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0	0	4	
1			
2			
3			
4			

Solutions:
1)
a) Raster
b) Vector
c) Vector
d) Raster
e) Vector
f) Raster
2)

Normalize first (divide by 255):
CMY = (1-62/255, 1-29/255, 1-64/255) $=$
0.7568627450980392
0.8862745098039215
0.7490196078431373
3)
$\Delta y=6-4=2$
$\Delta x=2-0=2$
$\mathrm{m}=1$
$p_{0}=2 \Delta y-\Delta x=2$
$\mathrm{p}_{1}=\mathrm{p}_{0}+2 \Delta \mathrm{y}=2+4=6$
$p_{2}=p_{1}+2 \Delta y=6+4=10$
$p_{3}=p_{2}+2 \Delta y=10+4=14$
$\mathrm{p}_{4}=\mathrm{p}_{3}+2 \Delta \mathrm{y}=14+4=18$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0	0	4	2
1	1	5	6
2	2	6	10
3	3	7	14
4	4	8	18

4) Given a Circle with center at $(4,5)$ and radius 6 , trace the mid point circle drawing algorithm for 4 points:

Hints:
$\mathrm{p}_{0}=1-\mathrm{r}$
If $\left(p_{k}<0\right)$

$$
\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+1
$$

Otherwise

$$
\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \mathrm{x}_{\mathrm{k}+1}+1-2 \mathrm{y}_{\mathrm{k}+1}
$$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0	0	6	-5
7			

1	1	6	-4
2	2	6	-1
3	3	5	4
4	4	4	1

Moving to origin and starting from $(0, r)=(0,6)$
$\mathrm{p}_{0}=1-\mathrm{r}=-5$
$\mathrm{p}_{1}=\mathrm{p}_{0}+2 \mathrm{x}_{\mathrm{k}+1}+1=-5+(2 * 0)+1=-4$
$\mathrm{p}_{2}=\mathrm{p}_{1}+2 \mathrm{x}_{\mathrm{k}+1}+1=-4+(2 * 1)+1=-1$
$\mathrm{p}_{3}=\mathrm{p}_{2}+2 \mathrm{x}_{\mathrm{k}+1}+1=-1+(2 * 2)+1=4$
$\mathrm{p}_{4}=\mathrm{p}_{3}+2 \mathrm{x}_{\mathrm{k}+1}+1-2 \mathrm{y}_{\mathrm{k}+1}=4+(2 * 3)+1-(2 * 5)=1$
5) Given an ellipse with $r_{x}=2$ and $r_{y}=4$ and center (4,5), trace the mid-point ellipse drawing algorithm for 4 points.

Hints:
$p 1_{0}=r_{y}^{2}-r_{x}^{2} r_{y}+\frac{1}{4} r_{x}^{2}$
increment $= \begin{cases}2 r_{y}^{2} x_{k+1}+r_{y}^{2} & \text { if } p 1_{k}<0 \\ 2 r_{y}^{2} x_{k+1}+r_{y}^{2}-2 r_{x}^{2} y_{k+1} & \text { if } p 1_{k} \geq 0\end{cases}$

\mathbf{k}	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{y}_{\mathbf{k}}$	$\mathbf{p}_{\mathbf{k}}$
0	0	4	1
1	1	3	-15
2	2	3	33
3	3	2	89
4	4	1	

$r_{y}{ }^{2}=16$
$\mathrm{r}_{\mathrm{x}}{ }^{2}=4$
$r_{x}{ }^{2} r_{y}=16$
$\mathrm{p}_{0}=\mathrm{r}_{\mathrm{y}}{ }^{2}-\mathrm{r}_{\mathrm{x}}{ }^{2} \mathrm{r}_{\mathrm{y}}+1 / 4 \mathrm{r}_{\mathrm{x}}{ }^{2}=16-16+4 / 4=1$
$\mathrm{p}_{1}=\mathrm{p}_{0}+2 \mathrm{r}_{\mathbf{y}}{ }^{2} \mathbf{x}_{\mathbf{k + 1}}+\mathrm{r}_{\mathbf{y}}{ }^{2}-2 \mathbf{r}_{\mathbf{x}}{ }^{2} \mathbf{y}_{\mathbf{k + 1}}=1+(2 * 16 * 0)+16-(2 * 4 * 4)=-15$
$\mathrm{p}_{2}=\mathrm{p}_{1}+2 \mathrm{r}_{\mathrm{y}}{ }^{2} \mathbf{x}_{\mathrm{k}+1}+\mathrm{r}_{\mathrm{y}}{ }^{2}=-15+(2 * 16 * 1)+16=33$
$\mathrm{pl}_{3}=\mathrm{p}_{2}+2 \mathbf{r}_{\mathbf{y}}{ }^{2} \mathbf{x}_{\mathrm{k}+1}+\mathrm{r}_{\mathbf{y}}{ }^{2}-2 \mathbf{r}_{\mathbf{x}}{ }^{2} \mathbf{y}_{\mathbf{k}+1}=33+(2 * 16 * 2)+16-(2 * 4 * 3)=89$
$\mathrm{pl}_{4}=\mathrm{p}_{3}+2 \mathrm{r}_{\mathbf{y}}{ }^{2} \mathbf{x}_{\mathrm{k}+\mathbf{1}}+\mathrm{r}_{\mathbf{y}}{ }^{2}-2 \mathbf{r}_{\mathbf{x}}{ }^{2} \mathbf{y}_{\mathbf{k}+\mathbf{1}}=89+(2 * 16 * 3)+16-(2 * 4 * 2)=185$

