
Pattern Recognition and
Image Analysis

Dr. Manal Helal – Fall 2014
Lecture 11

Non-Linear Classifiers 3:
Neural Networks

CONTENTS
n  INTRODUCTION

n  BIOLOGICAL NEURON MODEL

n  ARTIFICIAL NEURON MODEL

n  ARTIFICIAL NEURAL NETWORK

n  NEURAL NETWORK ARCHITECTURE

n  LEARNING

n  The XOR

n  Neural Networks
n  Two Layer Perceptron
n  Three Layer Perceptron

n  BACKPROPAGATION ALGORITHM

n  APPLICATIONS

n  ADVANTAGES

n  CONCLUSION

INTRODUCTION

n  “Neural“ is an adjective for neuron, and “network” denotes a
graph like structure.

n  Artificial Neural Networks are also referred to as “neural nets” ,
“artificial neural systems”, “parallel distributed processing
systems”, “connectionist systems”.

n  For a computing systems to be called by these pretty names, it is
necessary for the system to have a labeled directed graph
structure where nodes performs some simple computations.

n  “Directed Graph” consists of set of “nodes”(vertices) and a set of
“connections”(edges/links/arcs) connecting pair of nodes.

n  A graph is said to be “labeled graph” if each connection is
associated with a label to identify some property of the
connection

Fig 1: AND gate graph

 This graph cannot be considered a
neural network since the connections
between the nodes are fixed and
appear to play no other role than
carrying the inputs to the node that
computed their conjunction.

Fig 2: AND gate network

 The graph structure which connects
the weights modifiable using a
learning algorithm, qualifies the
computing system to be called an
artificial neural networks.

v x2ϵ{
0,1}

x1	
 x2

x1ϵ{0,
1}

o = x1 AND x2

multiplier

(x1	
 w1)	

(x2w2)

o = x1 AND x2

x1

x2

w1

w2

 The field of neural network was pioneered by BERNARD
WIDROW of Stanford University in 1950’s.

CONTD…

BIOLOGICAL NEURON MODEL

Four parts of a typical nerve cell :

n  DENDRITES: Accepts the inputs

n  SOMA : Process the inputs

n  AXON : Turns the processed inputs
into outputs.

n  SYNAPSES : The electrochemical
contact between the neurons.

ARTIFICIAL NEURON MODEL

n  Inputs to the network are represented
by the mathematical symbol, xn

n  Each of these inputs are multiplied by a
connection weight , wn

 sum = w1 x1 + ……+ wnxn

n  These products are simply summed,
fed through the transfer function, f() to
generate a result and then output.

f

w1

w2

 xn

 x2

 x1

wn

f(w1 x1 + ……+ wnxn)

TERMINOLOGY

Biological Terminology	
 Artificial Neural Network
Terminology	

Neuron	
 Node/Unit/Cell/Neurode	

Synapse	
 Connection/Edge/Link	

Synaptic Efficiency	
 Connection Strength/Weight	

Firing frequency	
 Node output	

ARTIFICIAL NEURAL NETWORK

n  Artificial Neural Network (ANNs) are programs
designed to solve any problem by trying to mimic the
structure and the function of our nervous system.

n  Neural networks are based on simulated neurons,
Which are joined together in a variety of ways to form
networks.

n  Neural network resembles the human brain in the
following two ways: -
n  A neural network acquires knowledge through learning.

n  A neural network’s knowledge is stored within the
interconnection strengths known as synaptic weight.

ARTIFICIAL NEURAL NETWORK MODEL

 output layer

connections

Input layer

Hidden layers

	

Neural	

network	

Including
connections
(called	

weights)	

between	

neuron

Com
pare

Actual
 output

Desired
output

Input

output

Figure showing adjust of
neural network

Fig 1 : artificial neural
network model

NEURAL NETWORK ARCHITECTURES

 The neural network in which every
node is connected to every other
nodes, and these connections may be
either excitatory (positive weights),
inhibitory (negative weights), or
irrelevant (almost zero weights).

 These are networks in which
nodes are partitioned into subsets
called layers, with no connections
from layer j to k if j > k.

 Input node

 Input node

output node

output node

Hidden node

Layer 1 Layer2

 Layer0
(Input layer) (Output layer)

Hidden Layer
Fig: fully connected network

fig: layered network

 This is the subclass of the layered
networks in which there is no intra-
layer connections. In other words, a
connection may exist between any
node in layer i and any node in layer
j for i < j, but a connection is not
allowed for i=j.

 fig : Feedforward
network

 This is a subclass of acyclic
networks in which a connection
is allowed from a node in layer
i only to nodes in layer i+1

Layer 1 Layer2

 Layer0
(Input layer) (Output layer)

Hidden Layer
Layer 1 Layer2

 Layer0
(Input layer) (Output layer)

Hidden Layer

Fig : Acyclic network

CONTD…

Many problems are best solved using
neural networks whose architecture
consists of several modules, with sparse
interconnections between them. Modules
can be organized in several different ways
as Hierarchial organization, Successive
refinement, Input modularity

Fig : Modular neural
network

CONTD…

13

Single layer Single layer
perceptron

Multilayer

Feed-
Forward

Perceptron

Radial Basis
i

Connection

patterns

Functions

Competetive

Networks
Recurrent

Kohonen’s
SOM

Hopefield
Network

ART models

LEARNING

n  Neurons in an animal’s brain are “hard wired”. It is
equally obvious that animals, especially higher order
animals, learn as they grow.

n  How does this learning occur?

n  What are possible mathematical models of learning?

n  In artificial neural networks, learning refers to the
method of modifying the weights of connections
between the nodes of a specified network.

n  The learning ability of a neural network is determined
by its architecture and by the algorithmic method
chosen for training.

n  This is learning by doing.

n  In this approach no sample
outputs are provided to the
network against which it can
measure its predictive
performance for a given
vector of inputs.

n  One common form of
unsupervised learning is
clustering where we try to
categorize data in different
clusters by their similarity.

UNSUPERVISED LEARNING

•  A teacher is available to
indicate whether a system is
performing correctly, or to
indicate the amount of error in
system performance. Here a
teacher is a set of training
data.

•  The training data consist of
pairs of input and desired
output values that are
traditionally represented in
data vectors.

•  Supervised learning can also
be referred as classification,
where we have a wide range
of classifiers, (Multilayer
perceptron, k nearest
neighbor..etc)

SUPERVISED
LEARNING

CONTD…

The XOR problem

n  There is no single line (hyperplane) that separates class A from
class B. On the contrary, AND and OR operations are linearly
separable problems.

16

6

11 Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

 Multi Layer Neural Networks
• XOR problem
• Two-Layer Perceptron
• Backpropagation
• Choice of the network size
• Model selection techniques
• Applications: XOR, ZIP Code, OCR problem
• Demo: SNNS, BPN

12

x1 x2 XOR Class
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.

6

11 Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

 Multi Layer Neural Networks
• XOR problem
• Two-Layer Perceptron
• Backpropagation
• Choice of the network size
• Model selection techniques
• Applications: XOR, ZIP Code, OCR problem
• Demo: SNNS, BPN

12

x1 x2 XOR Class
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.

6

11 Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

 Multi Layer Neural Networks
• XOR problem
• Two-Layer Perceptron
• Backpropagation
• Choice of the network size
• Model selection techniques
• Applications: XOR, ZIP Code, OCR problem
• Demo: SNNS, BPN

12

x1 x2 XOR Class
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.

6

11 Nonlinear Classifiers: Agenda

Part I: Nonlinear Classifiers

 Multi Layer Neural Networks
• XOR problem
• Two-Layer Perceptron
• Backpropagation
• Choice of the network size
• Model selection techniques
• Applications: XOR, ZIP Code, OCR problem
• Demo: SNNS, BPN

12

x1 x2 XOR Class
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.

The Two-Layer Perceptron

n  For the XOR problem, draw two lines, instead of one.

n  Then class B is outside the shaded area and class is A inside.

n  We call it a two-step design.

17

7

13

• For the XOR problem, draw two lines, instead
of one.

• Then class B is outside the shaded area and
class is A inside.

• We call it a two-step design.

The Two-Layer Perceptron

14

• Step 1: Draw two lines (hyperplanes)

 Each of them is realized by a perceptron.
The outputs of the perceptrons will be

 depending on the value of x (f is the activation function).

0
 () 1, 2

1
()i iy g x if

­
 ®

¯

The Two-Layer Perceptron

1

2

() 0,

() 0

g x

g x

• Step 2: Find the ‘position’ of x w.r.t. both lines,
 based on the values of y1, y2.

 The Two-Layer Perceptron
n  Step 1: Draw two lines (hyperplanes)

𝑔1(𝑥) = 0,

𝑔2 (𝑥) = 0

Each of them is realized by a perceptron.

n  The outputs of the perceptrons will be :

depending on the value of 𝑥 (𝑓 is the activation function).

n  Step 2: Find the ‘position’ of 𝑥 w.r.t. both lines, based on the values of
𝑦1, 𝑦2.

18

yi = f (gi (x)) =
0
1

!
"
#

i =1,2

7

13

• For the XOR problem, draw two lines, instead
of one.

• Then class B is outside the shaded area and
class is A inside.

• We call it a two-step design.

The Two-Layer Perceptron

14

• Step 1: Draw two lines (hyperplanes)

 Each of them is realized by a perceptron.
The outputs of the perceptrons will be

 depending on the value of x (f is the activation function).

0
 () 1, 2

1
()i iy g x if

­
 ®

¯

The Two-Layer Perceptron

1

2

() 0,

() 0

g x

g x

• Step 2: Find the ‘position’ of x w.r.t. both lines,
 based on the values of y1, y2.

 The Two-Layer Perceptron

n Equivalently:
1.  The computations of the first step perform a

mapping
 𝑥 → 𝑦 = [𝑦1 , 𝑦2]T

2.  The decision is then performed on the transformed
data 𝑦.

19

8

15

• Equivalently:

1. The computations of the first step perform a mapping

2. The decision is then performed on the transformed data y.

1st step

2nd

step x1 x2 y1 y2

0 0 0(-) 0(-) B(0)
0 1 1(+) 0(-) A(1)
1 0 1(+) 0(-) A(1)
1 1 1(+) 1(+) B(0)

Tyyyx] ,[21 o

The Two-Layer Perceptron

16

• This decision can be performed via a second line
 which can also be realized by a perceptron.

,0)y(g

The Two-Layer Perceptron

¾ Computations of the first step perform a mapping
that transforms the nonlinearly separable problem
to a linearly separable one.

 The Two-Layer Perceptron
n This decision can be performed via a second

line 𝑔(𝑦) = 0, which can also be realized by a
perceptron.

n Computations of the first step perform a
mapping that transforms the nonlinearly
separable problem to a linearly separable one.

20

8

15

• Equivalently:

1. The computations of the first step perform a mapping

2. The decision is then performed on the transformed data y.

1st step

2nd

step x1 x2 y1 y2

0 0 0(-) 0(-) B(0)
0 1 1(+) 0(-) A(1)
1 0 1(+) 0(-) A(1)
1 1 1(+) 1(+) B(0)

Tyyyx] ,[21 o

The Two-Layer Perceptron

16

• This decision can be performed via a second line
 which can also be realized by a perceptron.

,0)y(g

The Two-Layer Perceptron

¾ Computations of the first step perform a mapping
that transforms the nonlinearly separable problem
to a linearly separable one.

 The Two-Layer Perceptron

n  The architecture

n  This is known as the two layer perceptron with one hidden and

one output layer.
The activation functions are:

21

9

17 The Two-Layer Perceptron

¾This is known as the two layer perceptron with

one hidden and one output layer.
The activation functions are:

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

•The architecture

18 The Two-Layer Perceptron
• The nodes (neurons) of the figure realize the
 following lines (hyper planes).

1 1 2

2 1 2

3 1 2

1
() 1 1 0

2
3

() 1 1 0
2
1

() 1 2 0
2

g x x x

g x x x

g y y y

 � �

 � �

 � �

• Classification capabilities:
 All possible mappings performed by the first layer are
 onto the vertices of the unit side square,
 e.g., (0, 0), (1, 0), (1, 0), (1, 1).

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

9

17 The Two-Layer Perceptron

¾This is known as the two layer perceptron with

one hidden and one output layer.
The activation functions are:

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

•The architecture

18 The Two-Layer Perceptron
• The nodes (neurons) of the figure realize the
 following lines (hyper planes).

1 1 2

2 1 2

3 1 2

1
() 1 1 0

2
3

() 1 1 0
2
1

() 1 2 0
2

g x x x

g x x x

g y y y

 � �

 � �

 � �

• Classification capabilities:
 All possible mappings performed by the first layer are
 onto the vertices of the unit side square,
 e.g., (0, 0), (1, 0), (1, 0), (1, 1).

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

 The Two-Layer Perceptron

n  The nodes (neurons) of the figure realize the following lines
(hyper planes).

n  Classification capabilities:

n  All possible mappings performed by the first layer are onto the
vertices of the unit side square,
e.g., (0, 0), (1, 0), (1, 0), (1, 1).

22

9

17 The Two-Layer Perceptron

¾This is known as the two layer perceptron with

one hidden and one output layer.
The activation functions are:

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

•The architecture

18 The Two-Layer Perceptron
• The nodes (neurons) of the figure realize the
 following lines (hyper planes).

1 1 2

2 1 2

3 1 2

1
() 1 1 0

2
3

() 1 1 0
2
1

() 1 2 0
2

g x x x

g x x x

g y y y

 � �

 � �

 � �

• Classification capabilities:
 All possible mappings performed by the first layer are
 onto the vertices of the unit side square,
 e.g., (0, 0), (1, 0), (1, 0), (1, 1).

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

9

17 The Two-Layer Perceptron

¾This is known as the two layer perceptron with

one hidden and one output layer.
The activation functions are:

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

•The architecture

18 The Two-Layer Perceptron
• The nodes (neurons) of the figure realize the
 following lines (hyper planes).

1 1 2

2 1 2

3 1 2

1
() 1 1 0

2
3

() 1 1 0
2
1

() 1 2 0
2

g x x x

g x x x

g y y y

 � �

 � �

 � �

• Classification capabilities:
 All possible mappings performed by the first layer are
 onto the vertices of the unit side square,
 e.g., (0, 0), (1, 0), (1, 0), (1, 1).

1 0
(.)

0 0

x
f

x

t­
 ®

�¯

Classification Capabilities
n  The more general case

n  Performs a mapping of a vector onto the vertices of the unit side
Hp hypercube.

23

10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

 10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

n  The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of 𝑥 w.r.t. the hyperplane.

n  Intersections of these hyperplanes form regions in the l-
dimensional space. Each region corresponds to a vertex of the
Hp unit hypercube.

24

10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

Classification Capabilities

n  For example, the 001 vertex corresponds to the region which is
located
n  to the (-) side of 𝑔1(𝑥) =0

n  to the (-) side of 𝑔2(𝑥) =0

n  to the (+) side of 𝑔3(𝑥) =0

n  The output node realizes a hyperplane in the 𝑦 space, that
separates some of the vertices from the others. Thus, the two
layer perceptron has the capability to classify vectors into
classes that consist of unions of
polyhedral regions. But not ANY
union. It depends on the relative
position of the corresponding
vertices.

25 Classification Capabilities

10

19 Classification capabilities
• The more general case

0
1

0
1

() 0

() 0

l

i ik k i
k

p

j jk k j
k

g x w x w

g y w y w

 �

 �

¦

¦

^ `

,

0, 1 1, 2, ...

l

i

x R

y i p

�

�

1[, ...] ,

()

T p
p

i i

x y y y y R

y f g

o �

0() 0 , T l
i ii ig x w x w w x R � �

0() 0 , T p
j jj jg y w y w w y R � �

¾ performs a mapping of a vector onto the vertices of the
 unit side Hp hypercube.

20

¾ The mapping is achieved with p nodes each realizing a
hyperplane. The output of each of these nodes is 0 or 1
depending on the relative position of x w.r.t. the
hyperplane.

Classification capabilities

Intersections of these hyperplanes form regions in the
l-dimensional space. Each region corresponds to a
vertex of the Hp unit hypercube.

11

21

 For example, the 001 vertex corresponds to the region which
is located

Classification capabilities

 The output node realizes a hyperplane in the y space, that
separates some of the vertices from the others. Thus, the
two layer perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral regions.
But not ANY union. It

 depends on the relative
 position of the
 corresponding vertices.

to the (-) side of g1(x) =0
to the (-) side of g2(x) =0
to the (+) side of g3(x) =0

22 The Three-Layer Perceptron

• This is capable to classify vectors into classes consisting of
ANY union of polyhedral regions.

• The idea is similar to the XOR problem. It realizes more
than one plane in the space.

The Three-Layer Perceptron

n  This is capable to classify vectors into classes consisting of ANY
union of polyhedral regions.

n  The idea is similar to the XOR problem. It realizes more than one
plane in the space.

26

11

21

 For example, the 001 vertex corresponds to the region which
is located

Classification capabilities

 The output node realizes a hyperplane in the y space, that
separates some of the vertices from the others. Thus, the
two layer perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral regions.
But not ANY union. It

 depends on the relative
 position of the
 corresponding vertices.

to the (-) side of g1(x) =0
to the (-) side of g2(x) =0
to the (+) side of g3(x) =0

22 The Three-Layer Perceptron

• This is capable to classify vectors into classes consisting of
ANY union of polyhedral regions.

• The idea is similar to the XOR problem. It realizes more
than one plane in the space.

n  The reasoning
n  For each vertex, corresponding to class A, construct a hyperplane

which leaves THIS vertex on one side (+) and ALL the others to
the other side (-).

n  The output neuron realizes an OR gate.

n  Overall:
n  The first layer of the network forms the hyperplanes, the second

layer forms the regions and the output nodes forms the classes.

27

The Multi-Layer Neural Network

n  For the i-th trainings pair

28

12

23

¾The reasoning

• For each vertex, corresponding to class A, construct
a hyperplane which leaves THIS vertex on one side
(+) and ALL the others to the other side (-).

• The output neuron realizes an OR gate.

¾Overall:

 The first layer of the network forms the hyperplanes,

the second layer forms the regions and
the output nodes forms the classes.

24

layer r-1 layer r

The Multi-Layer Neural Network

� � � �
1

1
0

1

rk
r r r r
j jk k j

k

i w y i wX
�

�

 �¦

� �1r
ky i�

output of the k-th node at layer r-1

� �r
j iX argument for � �.f for the i-th trainings pair

� � � �1r rr
jj i w y iX �

r
jX

1r
kX �

for the i-th trainings pair

� � � �
1

1
0

0

, 1
rk

r r r
jk k

k

w y i w ith y i
�

�

{ { �¦

� � � �� � � �� �1r rr r
jj ji fy i f w y iX �

12

23

¾The reasoning

• For each vertex, corresponding to class A, construct
a hyperplane which leaves THIS vertex on one side
(+) and ALL the others to the other side (-).

• The output neuron realizes an OR gate.

¾Overall:

 The first layer of the network forms the hyperplanes,

the second layer forms the regions and
the output nodes forms the classes.

24

layer r-1 layer r

The Multi-Layer Neural Network

� � � �
1

1
0

1

rk
r r r r
j jk k j

k

i w y i wX
�

�

 �¦

� �1r
ky i�

output of the k-th node at layer r-1

� �r
j iX argument for � �.f for the i-th trainings pair

� � � �1r rr
jj i w y iX �

r
jX

1r
kX �

for the i-th trainings pair

� � � �
1

1
0

0

, 1
rk

r r r
jk k

k

w y i w ith y i
�

�

{ { �¦

� � � �� � � �� �1r rr r
jj ji fy i f w y iX �

Back propagation algorithm to
train multilayer perceptrons

n  Designing Multilayer Perceptrons
n  One direction is to adopt the above rationale and develop a

structure that classifies correctly all the training patterns.

n  The other direction is to choose a structure and compute the 𝘸’s,
often called ‘synaptic weights’, to optimize a cost function.

n  BP is an algorithmic procedure that computes the synaptic
weights iteratively, so that an adopted cost function is minimized
(optimized).

29

The Backpropagation Algorithm

n  The Steps:
1.  Adopt an optimizing cost function J(i), e.g.,

n  Least Squares Error

n  Relative Entropy

between desired responses and actual responses of the
network for the available training patterns.

n  That is, from now on we have to live with errors. We only try to
minimize them, using certain criteria.

30

The Backpropagation Algorithm

31

14

27
The Backpropagation Algorithm

The Steps:

1. Adopt an optimizing cost function J(i), e.g.,
• Least Squares Error
• Relative Entropy

 between desired responses and actual responses
of the network for the available training patterns.

Î That is, from now on we have to live with errors.

We only try to minimize them, using certain
criteria.

28

layer r-1 layer r

r
jX

1r
kX
�

The Backpropagation Algorithm

The Steps:

2. Adopt an algorithmic procedure for the
optimization of the cost function with respect to
the weights w e.g.:

– Gradient descent

– Newton’s algorithm

– Conjugate gradient

n  The Steps:
2.  Adopt an algorithmic procedure for the optimization of the cost

function with respect to the weights w e.g.:

n  Gradient descent

n  Newton’s algorithm

n  Conjugate gradient

The Backpropagation Algorithm

32

n  The Steps:
3.  The task is a nonlinear optimization e.g. with gradient descent.

15

29
The Backpropagation Algorithm

The Steps:

3. The task is a nonlinear optimization
e.g. with gradient descent.

(new) (old)

r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w ¦

N

i

iEJ
1

)(

30

(new) (old)
r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w

BackProp: Step 3 nonlinear optimization
Detail: Computation of the Gradients.

� �
� �r

jr
j

i
i

E
G

X

w
{

w

� �

� �

� �

1

0

1:

r

r
jr

j

r r
jr

j
r
jr

jk

i

i

i

w

y
w

w

X

X

X
�

�

wª º
« »w
« »w
« »

w « »
w« »

« »w¬ ¼

� �

� �

� �r
j

r rr
jj j

ii

i

E E

w w

X

X

ww w

ww w

� �
1

w ith
N

i

J E i

 ¦ � � � �
1

1
0

1

and
rk

r r r r
j jk k j

k

i w y i wX
�

�

 �¦

� �
� �

� �
1

1
11

1

1

:

r

r
r

r
k

i
i

i

y
y

y
�

�

�

�

�ª º
« »
« »�
« »
« »
« »¬ ¼� � � �1

1

N
r rr
j j

i

w i y iP G �

' � ¦

15

29
The Backpropagation Algorithm

The Steps:

3. The task is a nonlinear optimization
e.g. with gradient descent.

(new) (old)

r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w ¦

N

i

iEJ
1

)(

30

(new) (old)
r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w

BackProp: Step 3 nonlinear optimization
Detail: Computation of the Gradients.

� �
� �r

jr
j

i
i

E
G

X

w
{

w

� �

� �

� �

1

0

1:

r

r
jr

j

r r
jr

j
r
jr

jk

i

i

i

w

y
w

w

X

X

X
�

�

wª º
« »w
« »w
« »

w « »
w« »

« »w¬ ¼

� �

� �

� �r
j

r rr
jj j

ii

i

E E

w w

X

X

ww w

ww w

� �
1

w ith
N

i

J E i

 ¦ � � � �
1

1
0

1

and
rk

r r r r
j jk k j

k

i w y i wX
�

�

 �¦

� �
� �

� �
1

1
11

1

1

:

r

r
r

r
k

i
i

i

y
y

y
�

�

�

�

�ª º
« »
« »�
« »
« »
« »¬ ¼� � � �1

1

N
r rr
j j

i

w i y iP G �

' � ¦

15

29
The Backpropagation Algorithm

The Steps:

3. The task is a nonlinear optimization
e.g. with gradient descent.

(new) (old)

r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w ¦

N

i

iEJ
1

)(

30

(new) (old)
r r r
j j jw w w � '

r
j r

j

J
w

w
P

w
' �

w

BackProp: Step 3 nonlinear optimization
Detail: Computation of the Gradients.

� �
� �r

jr
j

i
i

E
G

X

w
{

w

� �

� �

� �

1

0

1:

r

r
jr

j

r r
jr

j
r
jr

jk

i

i

i

w

y
w

w

X

X

X
�

�

wª º
« »w
« »w
« »

w « »
w« »

« »w¬ ¼

� �

� �

� �r
j

r rr
jj j

ii

i

E E

w w

X

X

ww w

ww w

� �
1

w ith
N

i

J E i

 ¦ � � � �
1

1
0

1

and
rk

r r r r
j jk k j

k

i w y i wX
�

�

 �¦

� �
� �

� �
1

1
11

1

1

:

r

r
r

r
k

i
i

i

y
y

y
�

�

�

�

�ª º
« »
« »�
« »
« »
« »¬ ¼� � � �1

1

N
r rr
j j

i

w i y iP G �

' � ¦

n  The activation function of the artificial neurons in
ANNs implementing the backpropagation
algorithm is a weighted sum (the sum of the
inputs xi multiplied by their respective weights
wji)

n  The most common output function is the
sigmoidal function:

n  Since the error is the difference between the
actual and the desired output, the error depends
on the weights, and we need to adjust the weights
in order to minimize the error. We can define the
error function for the output of each neuron:

Inputs, x

 Weights, v weights, w

output

Fig: Basic Block of
Back propagation neural
network

The Backpropagation Algorithm Example

n  The backpropagation algorithm now calculates how the error
depends on the output, inputs, and weights.

 the adjustment of each weight (Δwji) will be the negative of a
constant eta (η) multiplied by the dependance of the “wji” previous
weight on the error of the network.

n  First, we need to calculate how much the error depends on the output

n  Next, how much the output depends on the activation, which in turn
depends on the weights

n  And so, the adjustment to each weight will be

CONTD…

n  If we want to adjust vik, the weights (let’s call them vik) of a
previous layer, we need first to calculate how the error depends
not on the weight, but in the input from the previous layer i.e.
replacing w by x as shown in the equation:

where

 and

Inputs, x

 Weights, v weights, w

output

CONTD…

The Backpropagation Algorithm
n  The Procedure:

1.  Initialization:

Initialize unknown weights randomly with small values.

2.  Forward computations:

For each of the training examples compute the output of all neurons of all
layers. Compute the cost function for the current estimate of weights.

3.  Backward computations:

Compute the gradient terms backwards, starting with the weights of the
last (e.g. 3rd) layer and then moving towards the first.

4.  Update: Update the weights.

5.  Termination:

Repeat until a termination procedure is met

36

The Backpropagation Algorithm
n  In a large number of optimizing procedures, computation of

derivatives are involved. Hence, discontinuous activation
functions pose a problem, i.e.,

n  There is always an escape path!!! e.g.
 the logistic function:

n  Other differentiable functions are also
 possible and in some cases more
desirable.

37

17

33
The Backpropagation Algorithm

The Procedure:
1. Initialization:

 Initialize unknown weights randomly with small values.
2. Forward computations:

 For each of the training examples compute the output
 of all neurons of all layers. Compute the cost function
 for the current estimate of weights.

3. Backward computations:
 Compute the gradient terms backwards, starting with
 the weights of the last (e.g. 3rd) layer and then moving
 towards the first.

4. Update: Update the weights.

5. Termination:
 Repeat until a termination procedure is met

34
The Backpropagation Algorithm

•There is always an escape path!!!
e.g. the logistic function:

 Other differentiable functions are also

possible and in some cases more desirable.

)exp(1

1
)(

ax
xf

��

� �() () 1 ()f x f x f xDc �

¯
®
­

�

!

00

01
)(

x

x
xf

• In a large number of optimizing procedures, computation
 of derivatives are involved. Hence, discontinuous activation
 functions pose a problem, i.e.,

17

33
The Backpropagation Algorithm

The Procedure:
1. Initialization:

 Initialize unknown weights randomly with small values.
2. Forward computations:

 For each of the training examples compute the output
 of all neurons of all layers. Compute the cost function
 for the current estimate of weights.

3. Backward computations:
 Compute the gradient terms backwards, starting with
 the weights of the last (e.g. 3rd) layer and then moving
 towards the first.

4. Update: Update the weights.

5. Termination:
 Repeat until a termination procedure is met

34
The Backpropagation Algorithm

•There is always an escape path!!!
e.g. the logistic function:

 Other differentiable functions are also

possible and in some cases more desirable.

)exp(1

1
)(

ax
xf

��

� �() () 1 ()f x f x f xDc �

¯
®
­

�

!

00

01
)(

x

x
xf

• In a large number of optimizing procedures, computation
 of derivatives are involved. Hence, discontinuous activation
 functions pose a problem, i.e.,

17

33
The Backpropagation Algorithm

The Procedure:
1. Initialization:

 Initialize unknown weights randomly with small values.
2. Forward computations:

 For each of the training examples compute the output
 of all neurons of all layers. Compute the cost function
 for the current estimate of weights.

3. Backward computations:
 Compute the gradient terms backwards, starting with
 the weights of the last (e.g. 3rd) layer and then moving
 towards the first.

4. Update: Update the weights.

5. Termination:
 Repeat until a termination procedure is met

34
The Backpropagation Algorithm

•There is always an escape path!!!
e.g. the logistic function:

 Other differentiable functions are also

possible and in some cases more desirable.

)exp(1

1
)(

ax
xf

��

� �() () 1 ()f x f x f xDc �

¯
®
­

�

!

00

01
)(

x

x
xf

• In a large number of optimizing procedures, computation
 of derivatives are involved. Hence, discontinuous activation
 functions pose a problem, i.e.,

The Backpropagation Algorithm
n  Two major philosophies:

n  Batch mode: The gradients of the last layer are computed once ALL
training data have appeared to the algorithm, i.e., by summing up all
error terms.

n  Pattern mode: The gradients are computed every time a new
training data pair appears. Thus gradients are based on successive
individual errors.

38

18

35
The Backpropagation Algorithm

• Pattern mode: The
gradients are computed
every time a new
training data pair
appears. Thus
gradients are based on
successive individual
errors.

Two major philosophies:
• Batch mode: The gradients of the last layer are computed once

ALL training data have appeared to the algorithm, i.e., by
summing up all error terms.

36
The Backpropagation Algorithm

A major problem:
 The algorithm may
 converge to a local
 minimum.

The cost function choice
Examples:
• The Least Squares

¦

N

i

iEJ
1

)(

2 2

1 1

1, 2, ...,
1 1

ˆ() () (() ())
2 2

k k

m m m
m m

i NE i e i y i y i

 �¦ ¦

:)(iym

:)(ˆ iym Desired response of m-th output node (1 or 0) for input x(i) .

Actual response of m-th output node, in the interval [0, 1], for input x(i) .

The Backpropagation Algorithm
n  A major problem: The

algorithm may converge
to a local minimum.

The cost function choice
Examples:

n  The Least Squares

39

18

35
The Backpropagation Algorithm

• Pattern mode: The
gradients are computed
every time a new
training data pair
appears. Thus
gradients are based on
successive individual
errors.

Two major philosophies:
• Batch mode: The gradients of the last layer are computed once

ALL training data have appeared to the algorithm, i.e., by
summing up all error terms.

36
The Backpropagation Algorithm

A major problem:
 The algorithm may
 converge to a local
 minimum.

The cost function choice
Examples:
• The Least Squares

¦

N

i

iEJ
1

)(

2 2

1 1

1, 2, ...,
1 1

ˆ() () (() ())
2 2

k k

m m m
m m

i NE i e i y i y i

 �¦ ¦

:)(iym

:)(ˆ iym Desired response of m-th output node (1 or 0) for input x(i) .

Actual response of m-th output node, in the interval [0, 1], for input x(i) .

18

35
The Backpropagation Algorithm

• Pattern mode: The
gradients are computed
every time a new
training data pair
appears. Thus
gradients are based on
successive individual
errors.

Two major philosophies:
• Batch mode: The gradients of the last layer are computed once

ALL training data have appeared to the algorithm, i.e., by
summing up all error terms.

36
The Backpropagation Algorithm

A major problem:
 The algorithm may
 converge to a local
 minimum.

The cost function choice
Examples:
• The Least Squares

¦

N

i

iEJ
1

)(

2 2

1 1

1, 2, ...,
1 1

ˆ() () (() ())
2 2

k k

m m m
m m

i NE i e i y i y i

 �¦ ¦

:)(iym

:)(ˆ iym Desired response of m-th output node (1 or 0) for input x(i) .

Actual response of m-th output node, in the interval [0, 1], for input x(i) .

The Backpropagation Algorithm

n  The cost function choice Examples:
n  The cross-entropy

n  This presupposes an interpretation of 𝑦 and ŷ as probabilities!

n  Classification error rate:

n  Also known as discriminative learning.

n  Most of these techniques use a smoothed version of the
classification error.

40

19

37
The Backpropagation Algorithm

The cost function choice
Examples:
• The cross-entropy

This presupposes an interpretation of y and ŷ as
probabilities!

¦

N

i

iEJ
1

)(

^ `
1

() () () ()ˆ ˆ() ln (1) ln(1)
k

m m m m
m

i i i iE i y y y y

 � � �¦

Classification error rate:
• Also known as discriminative learning.
• Most of these techniques use a smoothed version of the

classification error.

38
The Backpropagation Algorithm

“Well formed” cost functions :

• Danger of local minimum convergence.
• “Well formed” cost functions guarantee

convergence to a “good” solution.
• That is one that classifies correctly ALL training

patterns, provided such a solution exists.
• The cross-entropy cost function is a well formed

one. The Least Squares is not.

The Backpropagation Algorithm

n  “Well formed” cost functions :
n  Danger of local minimum convergence.

n  “Well formed” cost functions guarantee convergence to a “good”
solution.

n  That is one that classifies correctly ALL training patterns, provided
such a solution exists.

n  The cross-entropy cost function is a well formed one. The Least
Squares is not.

41

The Backpropagation Algorithm

n  optimally class a-posteriori probabilities:

Both, the Least Squares and the cross entropy lead to output
values ŷm (i) that approximate optimally class a- posteriori
probabilities!

ŷm(i)≅P(ωm 𝑥(i))

n  That is, the probability of class ωm given 𝑥(i) .

n  It does not depend on the underlying distributions!!!

It is a characteristic of certain cost functions and the chosen
architecture of the network. It depends on the model how good
or bad the approximation is.

n  It is valid at the global minimum.

42

Choice of the network size

n How big a network can be. How many layers
and how many neurons per layer?

n There are two major techniques:
n Pruning Techniques:
n These techniques start from a large network and

then weights and/or neurons are removed
iteratively, according to a criterion.

n Constructive techniques:
n They start with a small network and keep

increasing it, according to a predetermined
procedure and criterion.

43

Choice of the network size

n  Pruning Techniques:
n  Methods based on parameter sensitivity

n  + higher order terms where

n  Near a minimum and assuming

n  Pruning is now achieved as:

1.  Train the network using Backpropagation for a number of
steps

2.  Compute the saliencies

3.  Remove weights wi with small Si.

4.  Repeat the process

44

21

41
Choice of the network size

How big a network can be. How many layers and
how many neurons per layer?
There are two major techniques:

• Pruning Techniques:

 These techniques start from a large network and then
 weights and/or neurons are removed iteratively,
 according to a criterion.

• Constructive techniques:
 They start with a small network and keep increasing it,
 according to a predetermined procedure and criterion.

42
Choice of the network size

• Pruning Techniques:
• Methods based on parameter sensitivity

 + higher order terms where

 Near a minimum and assuming

¦ ¦ ¦ ¦��
i i i j

jiijiiiii wwhwhwgJ GGGGG
2

1

2

1 2

ji
ij

i
i ww

J
h,

w

J
g

ww

w

w

w

2

2

2

1
i

i
ii whJ GG ¦#

2

2
iii

i

wh
s

Pruning is now achieved as:

1. Train the network using Backpropagation for a number of steps

2. Compute the saliencies

3. Remove weights wi with small Si.

4. Repeat the process

21

41
Choice of the network size

How big a network can be. How many layers and
how many neurons per layer?
There are two major techniques:

• Pruning Techniques:

 These techniques start from a large network and then
 weights and/or neurons are removed iteratively,
 according to a criterion.

• Constructive techniques:
 They start with a small network and keep increasing it,
 according to a predetermined procedure and criterion.

42
Choice of the network size

• Pruning Techniques:
• Methods based on parameter sensitivity

 + higher order terms where

 Near a minimum and assuming

¦ ¦ ¦ ¦��
i i i j

jiijiiiii wwhwhwgJ GGGGG
2

1

2

1 2

ji
ij

i
i ww

J
h,

w

J
g

ww

w

w

w

2

2

2

1
i

i
ii whJ GG ¦#

2

2
iii

i

wh
s

Pruning is now achieved as:

1. Train the network using Backpropagation for a number of steps

2. Compute the saliencies

3. Remove weights wi with small Si.

4. Repeat the process

21

41
Choice of the network size

How big a network can be. How many layers and
how many neurons per layer?
There are two major techniques:

• Pruning Techniques:

 These techniques start from a large network and then
 weights and/or neurons are removed iteratively,
 according to a criterion.

• Constructive techniques:
 They start with a small network and keep increasing it,
 according to a predetermined procedure and criterion.

42
Choice of the network size

• Pruning Techniques:
• Methods based on parameter sensitivity

 + higher order terms where

 Near a minimum and assuming

¦ ¦ ¦ ¦��
i i i j

jiijiiiii wwhwhwgJ GGGGG
2

1

2

1 2

ji
ij

i
i ww

J
h,

w

J
g

ww

w

w

w

2

2

2

1
i

i
ii whJ GG ¦#

2

2
iii

i

wh
s

Pruning is now achieved as:

1. Train the network using Backpropagation for a number of steps

2. Compute the saliencies

3. Remove weights wi with small Si.

4. Repeat the process

Choice of the network size

n  Idea: Start with a large network and leave the algorithm to
decide which weights are small.

n  Generalization properties:
n  Large network learn the particular details of the training set.

n  Not be able to perform well when presented with data unknown to
it.

n  The size of the network must be:
n  Large enough to learn what makes data of the same class similar

and data from different classes dissimilar.

n  Small enough not to be able to learn underlying differences
between data of the same class. This leads to the so called
overfitting.

45

Choice of the network size

n  Example:

n  Decision curve (a) before and (b) after pruning.

46

22

43
Choice of the network size

Idea: Start with a large network and leave the
algorithm to decide which weights are small.

Generalization properties:
• Large network learn the particular details of the training set.
• Not be able to perform well when presented with data

unknown to it.

Î The size of the network must be:
• Large enough to learn what makes data of the same

class similar and data from different classes dissimilar.
• Small enough not to be able to learn underlying

differences between data of the same class. This leads
to the so called overfitting.

44
Choice of the network size

Example:

• Decision curve (a) before and (b) after pruning.

Choice of the network size

n  Overtraining is another side of the same coin, i.e., the network
adapts to the peculiarities of the training set.

47

23

45
Choice of the network size

Overtraining is another side of the same coin, i.e.,
the network adapts to the peculiarities of the
training set.

46 Nonlinear Classifiers: Conclusion

Part I: Nonlinear Classifiers

 Multi Layer Neural Networks
• XOR problem
• Two-Layer Perceptron
• Backpropagation
• Choice of the network size
• Model selection techniques
• Applications: XOR, ZIP Code, OCR problem
• Demo: SNNS, BPN

ADVANTAGES

n  It involves human like thinking.

n  They handle noisy or missing data.

n  They can work with large number of variables or
parameters.

n  They provide general solutions with good predictive
accuracy.

n  System has got property of continuous learning.

n  They deal with the non-linearity in the world in which
we live.

Non-Linear Classifiers: Conclusion

n  Applications: XOR, ZIP Code, OCR problem

n  Demo: Java-NNS, BPN

http://www-ra.informatik.uni-tuebingen.de/downloads/JavaNNS/

49

24

47 Nonlinear Classifiers: Conclusion
• Applications: XOR, ZIP Code, OCR problem

• Demo: Java-NNS, BPN
 http://www-ra.informatik.uni-tuebingen.de/downloads/JavaNNS/

48 Nonlinear Classifiers: Outlook

Part II: Nonlinear Classifiers

• Polynomial Classifier
• Special case of a Two-Layer Perceptron
• Activation function is an exponent function

• Radial Basis Function Network
• Special case of a two-layer network
• Radial Basis activation Function
• Training is simpler and faster

• Nonlinear SVM

• Application: ZIP Code, OCR problem
 Î Improvement given by the nonlinearity.

• Demo: libSVM, DHS or Hlavac

NN Matlab code

n  For the Exam dataset:

xtrain = Dataset(:,1:2)

ytrain = [Dataset(:, 3) ==1, Dataset(:, 3)==2]

plot(xtrain(1,:),xtrain(2,:),'+')

net = patternnet(10);

net = train(net,xtrain,ytrain);

view(net)

y = net(xtrain)

plotconfusion(ytrain,y)

50

51

52

53 15 Neurons

54 15 Neurons

