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INTRODUCTION 

n  “Neural“ is an adjective for neuron, and “network” denotes a 
graph like structure. 

n  Artificial Neural Networks are also referred to as “neural nets” , 
“artificial neural systems”, “parallel distributed processing 
systems”, “connectionist systems”. 

n  For a computing systems to be called by these pretty names, it is 
necessary for the system to have a labeled directed graph 
structure where nodes performs some simple computations. 

n  “Directed Graph” consists of set of “nodes”(vertices) and a set of 
“connections”(edges/links/arcs) connecting pair of nodes. 

n  A graph is said to be “labeled graph” if each connection is 
associated with a label to identify some property of the 
connection 



 

 

 

 

 

 

Fig 1: AND gate graph 

    This graph cannot be considered a 
neural network since the connections 
between the nodes are fixed and 
appear to play no other role than 
carrying the inputs to the node that 
computed their conjunction. 

 

 

 

 

 

 

Fig 2: AND gate network 

    The graph structure which connects 
the weights modifiable using a 
learning algorithm, qualifies the 
computing system to be called an 
artificial neural networks. 
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 The field of neural network was pioneered by BERNARD 
WIDROW of Stanford University in 1950’s. 
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BIOLOGICAL NEURON MODEL 

Four parts of a typical nerve cell :  

n  DENDRITES: Accepts the inputs 

n  SOMA : Process the inputs 

n  AXON : Turns the processed inputs 
into outputs. 

n  SYNAPSES : The electrochemical  
contact between the neurons. 



ARTIFICIAL NEURON MODEL 

n  Inputs to the network are represented 
by the mathematical symbol, xn 

n  Each of these inputs are multiplied by a 
connection weight , wn 

                  sum  = w1 x1 + ……+ wnxn  

n  These products are simply summed, 
fed through the transfer function, f( ) to 
generate a result and then output. 
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TERMINOLOGY 

Biological Terminology	
   Artificial Neural Network 
Terminology	
  

Neuron	
   Node/Unit/Cell/Neurode	
  

Synapse	
   Connection/Edge/Link	
  

Synaptic Efficiency	
   Connection Strength/Weight	
  

Firing frequency	
   Node output	
  



ARTIFICIAL NEURAL NETWORK 

n  Artificial Neural Network (ANNs) are programs 
designed to solve any problem by trying to mimic the 
structure and the function of our nervous system. 

n  Neural networks are based on simulated neurons, 
Which are joined together in a variety of ways to form 
networks. 

n  Neural network resembles the human brain in the 
following two ways: - 
n  A neural network acquires knowledge through learning.  

n  A neural network’s knowledge is stored within the 
interconnection strengths known as synaptic weight. 



ARTIFICIAL NEURAL NETWORK MODEL 
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NEURAL NETWORK ARCHITECTURES 

 

 

 

 

 

  

    The neural network in which every 
node is connected to every other 
nodes, and these connections may be 
either excitatory (positive weights), 
inhibitory (negative weights), or 
irrelevant (almost zero weights). 

 

 

 

 

 

 

     

    These are networks in which 
nodes are partitioned into subsets 
called layers, with no connections 
from layer j to k if j > k.  

 Input node  

 Input node  

output  node 

output  node 

Hidden  node 

Layer 1            Layer2  

 Layer0                     
(Input layer) (Output layer) 

Hidden Layer 
Fig: fully connected network 

fig: layered network 



 

 

 

 

 

 

    This is the subclass of the layered 
networks in which there is no intra-
layer connections. In other words, a 
connection may exist between any 
node in layer i and any node in layer 
j for i < j, but a connection is not 
allowed for i=j. 

 

 

 

 

 

         fig : Feedforward 
network 

 

   This is a subclass of acyclic 
networks in which a connection 
is allowed from a node in layer 
i only to nodes in layer i+1 

Layer 1            Layer2  

 Layer0                     
(Input layer) (Output layer) 

Hidden Layer 
Layer 1            Layer2  

 Layer0                     
(Input layer) (Output layer) 

Hidden Layer 

Fig : Acyclic network 
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Many problems are best solved using 
neural networks whose architecture 
consists of several modules, with sparse 
interconnections between them. Modules 
can be organized in several different ways 
as Hierarchial organization, Successive 
refinement, Input modularity 

Fig : Modular neural 
network 

CONTD… 
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LEARNING 

n  Neurons in an animal’s brain are “hard wired”. It is 
equally obvious that animals, especially higher order 
animals, learn as they grow. 

n   How does this learning occur? 

n  What are possible mathematical models of learning? 

n  In artificial neural networks, learning refers to the 
method of modifying the weights of connections 
between the nodes of a specified network. 

n  The learning ability of a neural network is determined 
by its architecture and by the algorithmic method 
chosen for training. 

 

 



n  This is learning by doing. 

n   In this approach no sample 
outputs are provided to the 
network against which it can 
measure its predictive 
performance for a given 
vector of inputs. 

n  One common form of 
unsupervised learning is 
clustering where we try to 
categorize data in different 
clusters by their similarity. 

UNSUPERVISED LEARNING 

•  A teacher is available to 
indicate whether a system is 
performing correctly, or to 
indicate the amount of error in 
system performance. Here a 
teacher is a set of training 
data. 

•  The training data consist of 
pairs of input and desired 
output values that are 
traditionally represented in 
data vectors. 

•  Supervised learning can also 
be referred as classification, 
where we have a wide range 
of classifiers, (Multilayer 
perceptron, k nearest 
neighbor..etc) 

SUPERVISED 
LEARNING 

CONTD… 



The XOR problem 

n  There is no single line (hyperplane) that separates class A from 
class B. On the contrary, AND and OR operations are linearly 
separable problems.  

16 
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11 Nonlinear Classifiers: Agenda 

Part I: Nonlinear Classifiers 

  Multi Layer Neural Networks 
• XOR problem 
• Two-Layer Perceptron   
• Backpropagation     
• Choice of the network size  
• Model selection techniques 
• Applications: XOR, ZIP Code, OCR problem  
• Demo: SNNS, BPN 
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The Two-Layer Perceptron 

n  For the XOR problem, draw two lines, instead of one. 

n  Then class B is outside the shaded area and class is A inside. 

n  We call it a two-step design.   
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• For the XOR problem, draw two lines, instead 
of one. 

• Then class B is outside the shaded area and 
class is A inside.  
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The Two-Layer Perceptron 
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• Step 1:  Draw two lines (hyperplanes) 
 

    
     

    Each of them is realized by a perceptron.  
The outputs of the perceptrons will be  

 
 

    
 

    depending on the value of x ( f is the activation function ). 
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• Step 2:  Find the ‘position’ of x  w.r.t. both lines, 
    based on the values of y1, y2. 



 The Two-Layer Perceptron 
n  Step 1: Draw two lines (hyperplanes)  

𝑔1(𝑥) = 0,  

𝑔2 (𝑥) = 0 
 

Each of them is realized by a perceptron.  

n  The outputs of the perceptrons will be : 

depending on the value of 𝑥 (𝑓 is the activation function ).  

n  Step 2: Find the ‘position’ of 𝑥 w.r.t. both lines, based on the values of 
𝑦1, 𝑦2.  
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 The Two-Layer Perceptron 

n Equivalently: 
1.  The computations of the first step perform a 

mapping 
  𝑥 → 𝑦 = [𝑦1 , 𝑦2 ]T 

2.  The decision is then performed on the transformed 
data 𝑦. 

19 

8 

15 

• Equivalently:  
 

1. The computations of the first step perform a mapping 
 
 
 
 

2. The decision is then performed on the transformed data y.    

 
1st  step 

 
2nd 

step x1 x2 y1 y2 

0 0 0(-) 0(-) B(0) 
0 1 1(+) 0(-) A(1) 
1 0 1(+) 0(-) A(1) 
1 1 1(+) 1(+) B(0) 

Tyyyx ] ,[ 21 o

The Two-Layer Perceptron 
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•  This decision can be performed via a second line 
 which can also be realized by a perceptron. 
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The Two-Layer Perceptron 

¾ Computations of the first step perform a mapping 
that transforms the nonlinearly separable problem 
to a linearly separable one. 
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 The Two-Layer Perceptron 

n  The architecture 

  
n  This is known as the two layer perceptron with one hidden and 

one output layer. 
The activation functions are:  
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 The Two-Layer Perceptron 

n  The nodes (neurons) of the figure realize the following lines 
(hyper planes).  

n  Classification capabilities:  

n  All possible mappings performed by the first layer are onto the 
vertices of the unit side square, 
e.g., (0, 0), (1, 0), (1, 0), (1, 1).  
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Classification Capabilities 
n  The more general case 

n  Performs a mapping of a vector onto the vertices of the unit side 
Hp hypercube.  
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  unit side Hp hypercube. 
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¾ The mapping is achieved with p nodes each realizing a 
hyperplane.  The output of each of these nodes is 0 or 1 
depending on the relative position of x w.r.t. the 
hyperplane. 

Classification capabilities 

Intersections of these hyperplanes form regions in the 
l-dimensional space.  Each region corresponds to a 
vertex of the Hp unit hypercube. 
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n  The mapping is achieved with p nodes each realizing a 
hyperplane. The output of each of these nodes is 0 or 1 
depending on the relative position of 𝑥 w.r.t. the hyperplane. 

n  Intersections of these hyperplanes form regions in the l-
dimensional space. Each region corresponds to a vertex of the 
Hp unit hypercube.  
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n  For example, the 001 vertex corresponds to the region which is 
located 
n  to the (-) side of 𝑔1(𝑥) =0  

n  to the (-) side of 𝑔2(𝑥) =0  

n  to the (+) side of 𝑔3(𝑥) =0  

 

n  The output node realizes a hyperplane in the 𝑦 space, that 
separates some of the vertices from the others. Thus, the two 
layer perceptron has the capability to classify vectors into 
classes that consist of unions of  
polyhedral regions. But not ANY  
union. It depends on the relative  
position of the corresponding  
vertices. 

25 Classification Capabilities 
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n  The reasoning 
n  For each vertex, corresponding to class A, construct a hyperplane 

which leaves THIS vertex on one side (+) and ALL the others to 
the other side (-). 

n  The output neuron realizes an OR gate. 

n  Overall: 
n  The first layer of the network forms the hyperplanes, the second 

layer forms the regions and the output nodes forms the classes. 

27 



The Multi-Layer Neural Network 

n  For the i-th trainings pair 
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Back propagation algorithm to 
train multilayer perceptrons 

n  Designing Multilayer Perceptrons 
n  One direction is to adopt the above rationale and develop a 

structure that classifies correctly all the training patterns. 

n  The other direction is to choose a structure and compute the 𝘸’s, 
often called ‘synaptic weights’, to optimize a cost function. 

n  BP is an algorithmic procedure that computes the synaptic 
weights iteratively, so that an adopted cost function is minimized 
(optimized). 

29 



The Backpropagation Algorithm  
 

n  The Steps: 
1.  Adopt an optimizing cost function J(i), e.g., 

n  Least Squares Error 

n  Relative Entropy 

between desired responses and actual responses of the 
network for the available training patterns. 

n  That is, from now on we have to live with errors. We only try to 
minimize them, using certain criteria. 

30 
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The Steps: 

2. Adopt an algorithmic procedure for the 
optimization of the cost function with respect to 
the weights  w  e.g.: 

– Gradient descent 

– Newton’s algorithm 

– Conjugate gradient 
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n  The Steps: 
3.  The task is a nonlinear optimization e.g. with gradient descent. 
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n  The activation function of the artificial neurons in 
ANNs implementing the  backpropagation 
algorithm is a weighted sum (the sum of the 
inputs xi multiplied by their respective weights 
wji) 

n  The most common output function is the 
sigmoidal function: 

 

 

n  Since the error is the difference between the 
actual and the desired output, the error depends 
on the weights, and we need to adjust the weights 
in order to minimize the error. We can define the 
error function for the output of each neuron: 

 

Inputs, x 

 Weights, v       weights, w 

output
 

Fig: Basic Block of  
Back propagation neural 
network 

The Backpropagation Algorithm Example  
 



n  The backpropagation algorithm now calculates how the error 
depends on the  output, inputs, and weights. 

    the adjustment of each weight (Δwji ) will be the negative of a 
constant eta (η) multiplied by the dependance of the “wji” previous 
weight on the error of the network.  

n  First, we need to calculate how much the error depends on the output 

 

n  Next, how much the output depends on the activation, which in turn 
depends on the weights  

   
  

n   And so, the adjustment to each weight will be 

    

CONTD… 



n  If we want to adjust vik, the weights (let’s call them vik ) of a 
previous layer, we need first to calculate how the error depends 
not on the weight, but in the input from the previous layer i.e.  
replacing w by x as  shown in the equation:  

                                                              

                

 

 

where 

       and 

Inputs, x 

 Weights, v       weights, w 

output
 

CONTD… 



The Backpropagation Algorithm 
n  The Procedure: 

1.  Initialization: 

Initialize unknown weights randomly with small values. 

2.  Forward computations: 

For each of the training examples compute the output of all neurons of all 
layers. Compute the cost function for the current estimate of weights. 

3.  Backward computations: 

Compute the gradient terms backwards, starting with the weights of the 
last (e.g. 3rd) layer and then moving towards the first. 

4.  Update: Update the weights. 

5.  Termination: 

Repeat until a termination procedure is met 

36 



The Backpropagation Algorithm 
n  In a large number of optimizing procedures, computation of 

derivatives are involved. Hence, discontinuous activation 
functions pose a problem, i.e., 

n  There is always an escape path!!! e.g. 
 the logistic function: 

n  Other differentiable functions are also 
 possible and in some cases more  
desirable. 

37 
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e.g. the logistic function: 
 
 
 
 

     
 
  Other differentiable functions are also  

possible and in some cases more desirable. 
 

)exp(1

1
)(

ax
xf

��
 

� �( ) ( ) 1 ( )f x f x f xDc  �

¯
®
­

�

!
 

00

01
)(

x

x
xf

•   In a large number of optimizing procedures, computation  
  of derivatives are involved.  Hence, discontinuous activation 
  functions pose a problem, i.e.,  

17 

33 
The Backpropagation Algorithm 

The Procedure: 
1. Initialization:  

 Initialize unknown weights randomly with small values.  
2. Forward computations:  

 For each of the training examples compute the output 
 of all neurons of all layers. Compute the cost function 
 for the current estimate of weights. 

3. Backward computations:  
 Compute the gradient terms backwards, starting with 
 the weights of the last (e.g. 3rd) layer and then moving 
 towards the first. 

4. Update: Update the weights. 

5. Termination:  
 Repeat until a termination procedure is met 

 

34 
The Backpropagation Algorithm 

•There is always an escape path!!!   
e.g. the logistic function: 
 
 
 
 

     
 
  Other differentiable functions are also  

possible and in some cases more desirable. 
 

)exp(1

1
)(

ax
xf

��
 

� �( ) ( ) 1 ( )f x f x f xDc  �

¯
®
­

�

!
 

00

01
)(

x

x
xf

•   In a large number of optimizing procedures, computation  
  of derivatives are involved.  Hence, discontinuous activation 
  functions pose a problem, i.e.,  

17 

33 
The Backpropagation Algorithm 

The Procedure: 
1. Initialization:  

 Initialize unknown weights randomly with small values.  
2. Forward computations:  

 For each of the training examples compute the output 
 of all neurons of all layers. Compute the cost function 
 for the current estimate of weights. 

3. Backward computations:  
 Compute the gradient terms backwards, starting with 
 the weights of the last (e.g. 3rd) layer and then moving 
 towards the first. 

4. Update: Update the weights. 

5. Termination:  
 Repeat until a termination procedure is met 

 

34 
The Backpropagation Algorithm 

•There is always an escape path!!!   
e.g. the logistic function: 
 
 
 
 

     
 
  Other differentiable functions are also  

possible and in some cases more desirable. 
 

)exp(1

1
)(

ax
xf

��
 

� �( ) ( ) 1 ( )f x f x f xDc  �

¯
®
­

�

!
 

00

01
)(

x

x
xf

•   In a large number of optimizing procedures, computation  
  of derivatives are involved.  Hence, discontinuous activation 
  functions pose a problem, i.e.,  



The Backpropagation Algorithm 
n  Two major philosophies: 

n  Batch mode: The gradients of the last layer are computed once ALL 
training data have appeared to the algorithm, i.e., by summing up all 
error terms. 

n  Pattern mode: The gradients are computed every time a new 
training data pair appears. Thus gradients are based on successive 
individual errors. 
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A major problem:   
 The algorithm may  
 converge to a local  
 minimum. 

The cost function choice 
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The Backpropagation Algorithm 

n  The cost function choice Examples: 
n  The cross-entropy 

n  This presupposes an interpretation of 𝑦 and ŷ as probabilities! 

n  Classification error rate: 

n  Also known as discriminative learning. 

n  Most of these techniques use a smoothed version of the 
classification error. 
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The cost function choice 
Examples: 
• The cross-entropy 
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Classification error rate:  
• Also known as discriminative learning.  
• Most of these techniques use a smoothed version of the 

classification error. 
 

38 
The Backpropagation Algorithm 

“Well formed” cost functions :   

• Danger of local minimum convergence.  
•  “Well formed” cost functions guarantee 

convergence to a “good” solution.  
• That is one that classifies correctly ALL training 

patterns, provided such a solution exists.  
• The cross-entropy cost function is a well formed 

one. The Least Squares is not. 



The Backpropagation Algorithm 
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n  Danger of local minimum convergence. 

n  “Well formed” cost functions guarantee convergence to a “good” 
solution. 

n  That is one that classifies correctly ALL training patterns, provided 
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The Backpropagation Algorithm 

n  optimally class a-posteriori probabilities: 

Both, the Least Squares and the cross entropy lead to output 
values ŷm (i) that approximate optimally class a- posteriori 
probabilities! 

ŷm(i)≅P(ωm 𝑥(i)) 

n  That is, the probability of class ωm given 𝑥(i) . 

n  It does not depend on the underlying distributions!!! 

It is a characteristic of certain cost functions and the chosen 
architecture of the network. It depends on the model how good 
or bad the approximation is. 

n  It is valid at the global minimum. 
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Choice of the network size 

n How big a network can be. How many layers 
and how many neurons per layer? 

n There are two major techniques: 
n Pruning Techniques: 
n These techniques start from a large network and 

then weights and/or neurons are removed 
iteratively, according to a criterion. 

n Constructive techniques: 
n They start with a small network and keep 

increasing it, according to a predetermined 
procedure and criterion. 
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Choice of the network size 

n  Pruning Techniques: 
n  Methods based on parameter sensitivity 

n  + higher order terms where 

n  Near a minimum and assuming 

n  Pruning is now achieved as: 

1.  Train the network using Backpropagation for a number of 
steps 

2.  Compute the saliencies  

3.  Remove weights wi with small Si.  

4.  Repeat the process 
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• Constructive techniques: 
 They start with a small network and keep increasing it, 
 according to a predetermined procedure and criterion. 
 
 

42 
Choice of the network size 

• Pruning Techniques: 
• Methods based on parameter sensitivity 
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Pruning is now achieved as: 
 

1. Train the network using Backpropagation for a number of steps 

2. Compute the saliencies 

3. Remove weights wi with small Si. 

4. Repeat the process 
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1. Train the network using Backpropagation for a number of steps 

2. Compute the saliencies 

3. Remove weights wi with small Si. 

4. Repeat the process 



Choice of the network size 

n  Idea: Start with a large network and leave the algorithm to 
decide which weights are small. 

n  Generalization properties: 
n  Large network learn the particular details of the training set. 

n  Not be able to perform well when presented with data unknown to 
it. 

n  The size of the network must be: 
n  Large enough to learn what makes data of the same class similar 

and data from different classes dissimilar. 

n  Small enough not to be able to learn underlying differences 
between data of the same class. This leads to the so called 
overfitting. 

45 



Choice of the network size 

n  Example: 

n  Decision curve (a) before and (b) after pruning. 
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43 
Choice of the network size 

Idea: Start with a large network and leave the 
algorithm to decide which weights are small. 

 
Generalization properties: 
• Large network learn the particular details of the training set.  
• Not be able to perform well when presented with data 

unknown to it.  
 

Î The size of the network must be: 
• Large enough to learn what makes data of the same 

class similar and data from different classes dissimilar. 
• Small enough not to be able to learn underlying 

differences between data of the same class. This leads 
to the so called overfitting. 

44 
Choice of the network size 

Example: 

• Decision curve (a) before and (b) after pruning. 



Choice of the network size 

n  Overtraining is another side of the same coin, i.e., the network 
adapts to the peculiarities of the training set. 
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45 
Choice of the network size 

Overtraining is another side of the same coin, i.e., 
the network adapts to the peculiarities of the 
training set. 

46 Nonlinear Classifiers: Conclusion 

Part I: Nonlinear Classifiers 

  Multi Layer Neural Networks 
• XOR problem 
• Two-Layer Perceptron   
• Backpropagation     
• Choice of the network size  
• Model selection techniques 
• Applications: XOR, ZIP Code, OCR problem  
• Demo: SNNS, BPN 



ADVANTAGES 

n  It involves human like thinking. 

n  They handle noisy or missing data. 

n  They can work with large number of variables or 
parameters. 

n  They provide general solutions with good predictive 
accuracy. 

n  System has got property of continuous learning. 

n  They deal with the non-linearity in the world in which 
we live. 



Non-Linear Classifiers: Conclusion 

n  Applications: XOR, ZIP Code, OCR problem 

n  Demo: Java-NNS, BPN  

http://www-ra.informatik.uni-tuebingen.de/downloads/JavaNNS/ 

49 

24 

47 Nonlinear Classifiers: Conclusion 
• Applications: XOR, ZIP Code, OCR problem  

• Demo: Java-NNS, BPN 
 http://www-ra.informatik.uni-tuebingen.de/downloads/JavaNNS/ 

48 Nonlinear Classifiers: Outlook  

Part II: Nonlinear Classifiers 

• Polynomial Classifier  
• Special case of a Two-Layer Perceptron  
• Activation function is an exponent function 

• Radial Basis Function Network 
• Special case of a two-layer network  
• Radial Basis activation Function 
• Training is simpler and faster      

• Nonlinear SVM  

• Application: ZIP Code, OCR problem  
 Î Improvement given by the nonlinearity. 

• Demo: libSVM, DHS or Hlavac  
 



NN Matlab code 

n  For the Exam dataset: 

xtrain = Dataset(:,1:2) 

ytrain = [Dataset(:, 3) ==1, Dataset(:, 3)==2] 

plot(xtrain(1,:),xtrain(2,:),'+') 

net = patternnet(10); 

net = train(net,xtrain,ytrain); 

view(net) 

y = net(xtrain) 

plotconfusion(ytrain,y) 
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53 15 Neurons 
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