
CC410: System Programming
Dr. Manal Helal – Fall 2014 – Lecture 3

2

Learning Objectives

• Study More SIC Programming Examples
• Understand CISC Machines
• Understand RISC Machines

3

1.3.3 SIC Programming Examples

4

1.3.3 SIC Programming Examples

5

1.3.3 SIC Programming Examples

6

1.3.3 SIC Programming Examples

7

1.3.3 SIC Programming Examples

8

• CISC & RISC Machines
– Chapters 1.4 & 1.5 of Leland Beck’s “System

Software” book.

9

• Complex Instruction Set Computers (CISC)
– Complicated instruction set
– Different instruction formats and lengths
– Many different addressing modes
– e.g. VAX or PDP-11 from DEC
– e.g. Intel x86 family (more details in another

presentation on moodle)

Traditional (CISC) Machines

10

• Memory
– Physical level: byte addresses, word, doubleword
– Logical level: segments and offsets
– In some cases, a segment can also be divided

into pages
– The segment/offset address specified by the

programmer is translated into a physical
address by the x86 MMU (Memory Management
Unit)

Pentium Pro Architecture (1/5)

11

16-bit segment registers

• Registers
– General-purpose registers:

• EAX, EBX, ECX, EDX: data manipulation
• ESI, EDI, EBP, ESP: address

– Special-purpose registers:
• EIP: next instruction
• FLAGS: status word
• CS: code segment register
• SS: stack segment register
• DS, ES, FS, and GS: data segments

– Floating-point unit (FPU)
– Registers reserved for system programs

Pentium Pro Architecture (2/5)

12

• Data Formats
– Integers:

• 8-, 16-, 32-bit binary numbers
• Negative values: 2’s complement
• FPU can also handle 64-bit signed integers
• The least significant part of a numeric value is stored at the

lowest-numbered address (little-endian)
• Binary coded decimal (BCD)

– unpacked: 0000____0000____0000____…...0000____
– packed: |____|____|____|____|____|____|…..|____|____|

– Floating-point data formats
• Single-precision: 32 bits=24+7-bit exponent+sign bit
• Double-precision: 64 bits=53+10-bit exponent+sign bit
• Extended-precision: 80 bits=64+15-bit exponent+sign bit

Pentium Pro Architecture (3/5)

13

• Instruction Formats
– Prefix (optional) containing flags that modify the operation of

instruction
• specify repetition count, segment register, etc.

– Opcode (1 or 2 bytes)
– Operands and addressing modes

• Addressing Modes
– TA=(base register)+(index register)*(scale factor)+displacement
– Base register: any general-purpose registers
– Index register: any general-purpose registers except ESP
– Scale factor: 1, 2, 4, 8
– Displacement: 8-, 16-, 32- bit value
– Eight addressing modes

Pentium Pro Architecture (4/5)

14

• Instruction Set
– 400 different machine instructions

• R-to-R instructions, R-to-M instructions, M-to-M instructions
• immediate values,

– Special purpose instructions for high-level programming
language

• entering and leaving procedures,
• checking subscript values against the bounds of an array

• Input and Output
– Input is performed by instructions that transfer one byte,

word, or doubleword from an I/O port to register EAX,
output is performed similarly.

– Repetition prefixes allow these instructions to transfer an
entire string in a single operation

Pentium Pro Architecture (5/5)

15

• RISC system
– Instruction

• Standard, fixed instruction format
• Single-cycle execution of most instructions
• Memory access is available only for load and store

instruction
• Other instructions are register-to-register

operations
• A small number of machine instructions, and

instruction format
– A large number of general-purpose registers
– A small number of addressing modes

RISC Machines

16

• Three RISC machines
– SPARC family
– PowerPC family
– Cray T3E

RISC Machines

17

• Sun Microsystems (1995)
• SPARC stands for scalable processor

architecture
• SPARC, SuperSPARC, UltraSPARC are

upward compatible and share basic
structure:
– Memory
– Registers
– Data formats
– Instruction Formats

UltraSPARC (1/8)

18

• Byte addresses
– Two consecutive bytes form halfword
– Four bytes form a word
– Eight bytes form doubleword

• Alignment
– Halfword are stored in memory beginning at byte address

that are multiples of 2
– Words begin at addresses that are multiples of 4
– Doublewords at addresses that are multiples of 8

• Virtual address space
– UltraSPARC programs can be written using 264 bytes virtual

memory divided into pages in physical memory or disk.
– Memory Management Unit handles address translation and

loading

UltraSPARC (2/8)

19

UltraSPARC (3/8)

• Registers
– ~100 general-purpose registers
– Any procedure can access only 32 registers (r0~r31)

• First 8 registers (r0~r8) are global, i.e. they can be access by
all procedures on the system (r0 is zero)

• Other 24 registers can be visualised as a window through
which part of the register file can be seen

– Program counter (PC)
• The address of the next instruction to be executed

– Condition code registers
– Other control registers

20

• Data Formats
– Integers are 8-, 16-, 32-, 64-bit binary numbers
– 2’s complement is used for negative values
– Support both big-endian and little-endian byte

orderings
• (big-endian means the most significant part of a

numeric value is stored at the lowest-numbered
address)

– Three different floating-point data formats
• Single-precision, 32 bits long (23 + 8 + 1)
• Double-precision, 64 bits long (52 + 11 + 1)
• Quad-precision, 78 bits long (63 + 16 + 1)

UltraSPARC (4/8)

21

• Three Instruction Formats
– 32 bits long
– The first 2 bits identify which format is being

used
– Format 1: call instruction
– Format 2: branch instructions
– Format 3: remaining instructions

UltraSPARC (5/8)

22

• Addressing Modes
– Immediate mode
– Register direct mode
– Memory addressing

 Mode Target address calculation
 PC-relative* TA= (PC)+displacement {30 bits, signed}
 Register indirect TA= (register)+displacement {13 bits, signed}
 with displacement
 Register indirect indexed TA= (register-1)+(register-2)

 *PC-relative is used only for branch instructions

UltraSPARC (6/8)

23

• Instruction Set
– <100 instructions
– Pipelined execution

• While one instruction is being executed, the next one
is fetched from memory and decoded

– Delayed branches
• The instruction immediately following the branch

instruction is actually executed before the branch is
taken

– Special-purpose instructions
• High-bandwidth block load and store operations
• Special “atomic” instructions to support multi-

processor system

UltraSPARC (7/8)

24

• Input and Output
– A range of memory locations is logically

replaced by device registers
– Each I/O device has a unique address, or set

of addresses
– No special I/O instructions are needed

UltraSPARC (8/8)

25

• POWER stands for Performance
Optimisation with Enhanced RISC

• History
– IBM (1990) introduced POWER in 1990 with

RS/6000
– IBM, Apple, and Motorola formed an alliance to

develop PowerPC in 1991
– The first products were delivered near the end

of 1993
– Recent implementations include PowerPC

601, 603, 604

PowerPC Architecture (1/8)

26

• Memory
– Halfword, word, doubleword, quadword (16

bytes)
– May instructions may execute more efficiently

if operands are aligned at a starting address
that is a multiple of their length

– Virtual space 264 bytes
– Fixed-length segments, 256 MB
– Fixed-length pages, 4KB
– MMU: virtual address -> physical address

PowerPC Architecture (2/8)

27

• Registers
– 32 general-purpose registers, GPR0~GPR31,

32 or 64 bit long
– FPU, containing 32 - 64 bit FP registers
– Condition code register reflects the result of

certain operations, and can be used as a
mechanism for testing and branching

– Link Register (LR) and Count Register (CR)
are used by some branch instructions

– Machine Status Register (MSR)

PowerPC Architecture (3/8)

28

• Data Formats
– Integers are 8-, 16-, 32-, 64-bit binary numbers
– 2’s complement is used for negative values
– Support both big-endian (default) and little-

endian byte orderings
– Two different floating-point data formats

• single-precision, 32 bits long (23 + 8 + 1)
• double-precision, 64 bits long (52 + 11 + 1)

– Characters are stored using 8-bit ASCII codes

PowerPC Architecture (4/8)

29

• Seven Instruction Formats
– 32 bits long
– The first 6 bits identify specify the opcode
– Some instruction have an additional extended

opcode
– The complexity is greater than SPARC
– Fixed-length makes decoding faster and

simple than VAX and x86

PowerPC Architecture (5/8)

30

• Addressing Modes
– Immediate mode, register direct mode
– Memory addressing
 Mode Target address calculation
 Register indirect TA=(register)
 Register indirect with TA=(register-1)+(register-2)
 indexed
 Register indirect with TA=(register)+displacement {16 bits, signed}
 immediate indexed
– Branch instruction
– Mode Target address calculation
 Absolute TA= actual address
 Relative TA= current instruction address + displacement {25 bits, signed}
 Link Register TA= (LR)
 Count Register TA= (CR)

PowerPC Architecture (6/8)

31

• Instruction Set
– 200 machine instructions

• More complex than most RISC machines
• e.g. floating-point “multiply and add” instructions

that take three input operands
• e.g. load and store instructions may automatically

update the index register to contain the just-
computed target address

– Pipelined execution
• More sophisticated than SPARC

– Branch prediction

PowerPC Architecture (7/8)

32

• Input and Output
– Two different modes

• Direct-store segment: map virtual address space to
an external address space

• Normal virtual memory access

PowerPC Architecture (8/8)

 CISC vs. RISC

• MIPS M/2000(from RISC) and VAX
8700(from CISC)

• Most recent compilers were used for
each of the two machines

• Cycle time determined through machine
independent features but its same

• Spec 1 Release benchmarks used

-same underlying organization

 MIPS M/2000(from RISC) and VAX 8700(from CISC)

CPU Pipeline Abstractions MIPS and VAX

▪MIPS instruction fetch stage matches with VAX micro- instruction fetch
stage

▪Large set of general purpose registers

▪Single cycle instructions

▪Delayed branches

 About MIPS and VAX
• Strong organisational similarities

– Ex: CPU Pipeline abstractions match up closely
• VAX Microinstruction stage features a lot of RISC

features
• MIPS has split I-Cache and D-Cache unlike VAX

which has same I+D Cache
• MIPS has larger page size
• Same Cycle time
• MIPS has much faster MEM access ,FP ops

No Big Difference Now!

• Common Goal of High Performance will
bring them together
– Incorporating each other’s features
– Incorporating similar functional units.

• Branch Prediction
• OOE (Out of Order Executio) etc

An exception

• Embedded Processors
– CISC is unsuitable
– MIPS/watt ratio
– Power consumption
– Heat dissipation
– Simple Hardware = integrated peripherals

From CISC to RISC (1)

• What Intel, the most famous CISC
advocates, and HP do in IA-64:
– Migrate to a Common Instruction Set.
– Creating Small Instructions
– More concise Instruction Set.
– Shorter Pipeline
– Lower Clock Cycle

From CISC to RISC (2)

• What Intel, the most famous CISC
advocates, and HP do in IA-64:
– Abandon the Out-of-order Execution In

Hardware
– Depend on Compiler to Handle Instruction

Execution Order. Shifting the Complexity to
Software.

From CISC to RISC (3)

• AMD Use Microcode and Direct Execution
to Handle Control in Athlon

• CISC Datapaths Support Other RISC-like
Features (such as register-to-register
addressing and an expanded register
count).

From RISC to CISC (1)

• Additional registers
• On-chip caches (which are clocked as fast

as the processor)
• Additional functional units for superscalar

execution

From RISC to CISC (2)

• Additional "non-RISC" (but fast)
instructions

• On-chip support for floating-point
operations

• Increased pipeline depth

CISC and RISC

• Incorporating Same Features
– Complex Multi-level Cache
– Branch Prediction
– Out-of-order Execution

CISC vs RISC

• Hard to Distinguish Now. Boundary is
getting vague.

• Academia don’t Care
• Industry doesn’t Care (Except for

Advertisements)

• Which one is better for general-purpose
microprocessor design?

• It does not matter because
– The main factor driving general-purpose

microprocessor design has been the peculiar
economics of semiconductor manufacturing

RISC vs CISC

RISC vs CISC: 500k transistors

• For a few years in the late 80’s, designers had a
choice:
– CISC CPU and no on-chip cache
– RISC CPU and on-chip cache

• On-chip cache was probably a slightly better
choice, giving RISC several years of modest
advantage

• It is not RISC who gave better performance at
this certain period; it was about the on-chip
cache!

RISC vs CISC: 2M transistors

• Now possible to have both CISC and on-
chip cache

• CISC can challenge RISC and it even has
more advantage

• RISC chips become more CISC-like

Even More Transistors

• Then more transistors became available
than single CISC CPU and reasonable
cache could use… What now?
– Multi-processor chips?
– Superscalar?
– VLIW?

Convergence: 5M transistors

• Superscalar won. But
– It is really hard to pipeline and schedule

superscalar computations when instruction
cycles, word-lengths differ, and when there are
100s of different instructions

– Compilers used only a small subset of
instructions

• This pushed CISC designs to be more
RISC-like

Even more: 50M transistors
• The economy of IC manufacturing have

been making RISC and CISC go together
• Maybe one day these two become historic

terms and ?ISC will prevail

