
A SIC/XE to Intel Pentium x86 assembly code translator

Benjamin Kastelic

Fakulteta za računalnǐstvo in informatiko

Univerza v Ljubljani

Tržaška 25, 1000 Ljubljana, Slovenija

kastelic.benjamin@gmail.com

Abstract

The Simplified Instruction Computer (SIC) is a hypo-
thetical computer designed for educational purposes.
Due to a reasonable number of instructions, su�cient
memory space and its scalable structure, SIC is a per-
fect tool that enables a clear and ballast-free illustra-
tion of the basics of the system software (e.g. assem-
bling, linking and loading) and other concepts of com-
puter software and hardware design. Therefore it is
frequently used as a demonstration gadget in Systems
Programming and Operating Systems courses at uni-
versity level. The main drawback of a SIC computer
is the fact, that it does not really exist in physical
form. Hence, when testing a SIC program one has to
use a simulator, i.e. a computer program that simu-
lates SIC instructions step-by-step. Besides the fact
that such an approach uses a simulated (and thus po-
tentially unreal) environment, the speed of execution
is another issue that inhibits a comfortable work. To
overcome this we have developed a computer program
that translates from SIC to Intel x86 assembly code.
Using this translator, the programs developed for a
hypothetical computer can be executed in a real envi-
ronment. Since the target computer has much wider
instruction set, the translation is always successful
and the resulting programs are fast and reliable. In
the development of our translator we managed to con-
vert data from SIC’s 24 bit to Intel’s 32 bit system
and we covered all the input/output operations using
files on the target computer.

1 Introduction

The SIC[1] (Simplified Instruction Computer) hypo-
thetical computer was designed to illustrate the con-
cepts and features of common computer hardware,
while avoiding the “clutter” found in real comput-
ers, which often only confuses the novice. Like many
other products even SIC is available in two versions:
a standard version and an XE (Extra Equipment),
also “eXtra Expensive”) version. Both editions were
designed to be upward compatible – this means that

the object code, which was generated for SIC, can
also be executed on a SIC/XE computer. This kind
of compatibility is often found on real world systems.
Because of its simplicity, the SIC computer is mostly
used as a teaching example at many schools around
the world. Since SIC is just a hypothetical computer,
programs can only be executed on a dedicated virtual
machine. This means that all of the instructions are
simulated step by step by a specific simulator in an
unreal environment. After using SIC and a SIC sim-
ulator in class, we thought it might be useful and
even instructive for students, if we could create a
translator, that would be capable of translating SIC
programs into a program, capable of running on real
computers. By doing so, students would be able to
run their programs in a real environment and also
learn the basics of that machines assembly language,
by observing the translations. We have selected the
Intel x86 Pentium architecture as the target of our
translator.
In this paper we describe the process of finding
the correct translations between SIC/XE instructions
and the Intel x86 instructions. We describe in detail
the problems we encountered and solutions to most
of them.
The rest of this paper is organized as follows. Sec-
tions 2 and 3 describe the properties of SIC/XE and
Intel x86 architectures. Section 4 presents the process
of determining correct translations between SIC/XE
and x86 instructions. Finally, Section 5 draws our
conclusions and points out some future work direc-
tions.

2 SIC/XE architecture

2.1 Memory

Memory consists of consecutive 8 bit byte arrays.
Three neighbouring bytes form a word. All of the
SIC/XE addresses are byte addresses. Words are
addressed by the location of their most important
bit (big-endian byte ordering). There are a total of
1048576 (220) bytes in the computer memory.

tomaz

tomaz

tomaz

tomaz

tomaz

2.2 Registers

There are nine registers, each of them serving it’s own
purpose. The size of each register is 24 bits, except
for register F, which size is 48 bits. Table 1 displays
the mnemonics and uses of all the registers.

Mnemonic Usage
A accumulator; arithmetic operations
X index register; addressing
L linkage register; v ta register ukaz JSUB

shrani povratni naslov
PC program counter; holds the address of

the next instruction
SW status word; stores di↵erent infor-

mation – the “condition code” (CC)
amongst others

B base register; addressing
S general purpose register
T general purpose register
F 48-bit register; floating point numbers

storage

Table 1: Mnemonics and usage of the SIC/XE regis-
ters

2.3 Data formats

Integer numbers are stored as 24-bit signed binary
numbers, 2’s complement representation is used for
negative values. Characters are stored using their
8-bit ASCII codes. Floating-point numbers are rep-
resented with a 48-bit format, which can be seen in
Figure 1.

1 11 36
s exponent fraction

Figure 1: Floating-point number format

The fraction is interpreted as a value between 0 and 1
(assuming the binary point is immediately before the
high-order bit). For normalized floating-point num-
bers, the high-order bit of the fraction must be 1. The
exponent is interpreted as an unsigned binary num-
ber between 0 and 2047. If the exponent has value e
and the fraction has value f, the absolute value of the
number represented is:

f ⇥ 2e�1024

The sign of the floating-point number is indicated by
the value of s (0 = positive, 1 = negative). A value
of zero is represented by setting all bits (including s,
e and f) to 0.

2.4 Instruction formats

All standard SIC instructions use the same 24-bit in-
struction format (Figure 2), which cannot be used on
the SIC/XE computer. This is due to increased mem-
ory size, as 15 bits alone cannot be used to address
the entire memory space. There are two possible op-
tions – either use some form of relative addressing,
or extend the address field to 20 bits. Both of these
options are included in SIC/XE (formats 3 and 4). If
bit e (Figure 5 and 6) is set to 0 format 3 is used,
otherwise format 4 is used. In addition SIC/XE pro-
vides some instructions that do not reference memory
at all (format 1 and 2).

8 1 15
opcode x address

Figure 2: Standard SIC instruction format

8
opcode

Figure 3: Format 1

8 4 4
opcode r1 r2

Figure 4: Format 2

6 1 1 1 1 1 1 12
opcode n i x b p e displacement

Figure 5: Format 3

6 1 1 1 1 1 1 20
opcode n i x b p e address

Figure 6: Format 4

2.5 Addressing modes

In general we distinguish two methods of addressing:

• according to target address (or TA for short) cal-
culation,

• according to the manner of target address usage,
which is used to determine the operand

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

According to target address calculation, there are
three modes of addressing known to SIC/XE – one
mode of indirect and two modes of relative address-
ing. The modes of target address calculation can be
seen in Table 2. Parentheses are used to indicate the
contents of a register or memory location. For exam-
ple, (B) represents the contents of register B.

Mode Indication TA calculation
Direct b = 0, p = 0 address

Base relative b = 1, p = 0 (B) + disp

PC relative b = 0, p = 1 (PC) + disp

Table 2: SIC/XE addressing modes according to tar-
get address calculation

For base relative addressing, the displacement field
disp in a format 3 instruction is interpreted as a 12-
bit unsigned integer. For PC relative addressing, this
field is interpreted as a 12-bit signed integer, with
negative values represented in 2’s complement nota-
tion.

If bits b and p are both set to 0, the disp field from the
format 3 instruction is used as the target address. For
a format 4 instruction, bits b and p are normally set 0,
and the target address is taken from the address field
of the instruction. This is called direct addressing,
to distinguish it from the relative addressing modes
described before. Any of these addressing modes can
be combined with the indexed addressing – if bit x
is set to 1, the contents of register X is added to the
target address calculation.

Bits i and n in format 3 and format 4 instructions
are used to specify how the target address is used.
If bit i = 1 and n = 0, the target address itself is
used as the operand value. This is called immediate
addressing. If bit i = 0 and n = 1, the word at
the location given by the target address is fetched;
the value contained in this word is then taken as the
address of the operand value. This is called indirect
addressing. If bits i and n are bot set to 0 or both
set to 1, the target address is taken as the location of
the operand. This is called simple addressing.

SIC/XE instructions that specify neither immediate
nor indirect addressing are assembled with bits n
and i both set to 1. Assemblers for the standard
version of SIC will, however, set both bits to 0
(this is because the 8-bit binary codes for all of the
SIC instructions end in 0). All SIC/XE machines
have a special hardware feature designed to provide
backward compatibility. If bits n and i are both 0,
then bits b, p and e are considered to be part of the
address field of the instruction, rather than flags in-
dicating addressing modes. This makes instructions
of format 3 identical to the format used on the stan-
dard version SIC, providing the desired compatibility.

According to target address usage, there are also
three modes of addressing known to SIC/XE, which
are shown in Table 3.

Mode Indication Target address usage
Simple none operand = (TA)
Immediate # operand = TA
Indirect @ operand = ((TA))

Table 3: SIC/XE addressing modes according to tar-
get address usage

3 Intel Pentium x86 architecture

3.1 Memory

Memory in the x86 architecture can be described in at
least two ways. At the physical level, memory con-
sists of 8-bit bytes. Every address adresses a byte.
Two consecutive bytes form a word, four bytes form
a doubleword (also called a dword). Some operations
are more e�cient when operands are aligned in a par-
ticular way (for example, an operand that begins at
a byte address that is a multiple of 4).

Programmers usually view the the x86 memory as a
collection of segments. From this point of view, an
address consists of two parts – a segment number and
an o↵set that points to a byte within the segment.
Segments can be of di↵erent sizes, and are often used
for di↵erent purposes. Some segments may contain
executable instructions, and others may be used to
store data. Some data segments may be treated as
stacks that can be used to save register contents, pass
parameters to subroutines and for other purposes.

3.2 Registers

There are eight general-purpose registers: EAX,
EBX, ECX, EDX, EBP, ESI, EDI and ESP. Each
of these registers is 32 bits long (one doubleword).
Registers EAX, EBX, ECX and EDX are generally
used for data manipulation; it is possible to access
individual words or bytes from these registers (when
accessing di↵erent parts, the registers get a di↵erent
name, which can be seen in Figure 7). The other four
registers can also be used for data manipulation, but
are more commonly used to hold addresses.

There are also several di↵erent types of special-
purpose registers. The EIP register is a 32-bit reg-
ister that contains a pointer to the next instruction
to be executed. The EFLAGS register is also 32 bits
long and contains many di↵erent bit flags. Some of

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

Figure 7: General-purpose registers of the Intel Pen-
tium x86 computer

these flags indicate the status of the processor, oth-
ers are used to record the results of comparisons and
arithmetic operations.

There are also six 16-bit segment registers that are
used to locate segments in memory. Segment register
CS contains the address of the currently executing
code segment, and register SS contains the address
of the current stack segment. The other registers (DS,
ES, FS and GS) are used to indicate the addresses
of data segments.

Floating-point computations are performed using a
special FPU (floating-point unit). This unit contains
eight 80-bit data registers, that resemble a stack, and
several other control and status registers. More de-
tails about the FPU can be found in [3].

Besides all these registers, that are available only to
application programs, there are also several other reg-
isters, that are used only by system programs (e.g.
operating system) and a few others, that control the
operation of the processor.

3.3 Data formats

The x86 architecture provides for the storage of inte-
gers, floating-point values, characters and strings. In-
tegers are stored as 8-, 16- or 32-bit binary numbers.
Both signed and unsigned integers are supported; like
on SIC/XE, the 2’s complement is used for negative
values representation.

There are three di↵erent floating-point data formats.
The single-precision format is 32 bits long. It stores
24 significant bits of the floating-point value and al-
lows for a 7-bit exponent (the remaining bit is used
to store the sign of the floating-point value). The
double-precision format is 64 bits long. It stores 53
significant bits and allows for a 10-bit exponent. The
last, extended-precision format is 80 bits long that
stores 64 significant bits and allows for a 15-bit ex-
ponent.

Characters are stored as 8-bit ASCII codes.

3.4 Instruction formats

All of the x86 machine instructions use variations of
the same basic format. This format begins with op-
tional prefixes containing flags that modify the opera-
tion of the instruction. For example, some flags spec-
ify a repetition count for an instruction. and others
specify a segment register that is to be used for ad-
dressing. Following is a number of bytes that specify
the operands and addressing modes to be used.
The operation code is the only element that is always
present in every instruction. Other elements may or
may not be present. Thus there are a large number of
di↵erent instruction formats, varying in length from
1 to 10 bytes.

3.5 Addressing modes

The x86 architecture provides a large number of ad-
dressing modes. An operand value may be specified
as part of the instruction itself (immediate mode), or
it may be in a register. Operands stored in mem-
ory are ofter specified using variations of the general
target address calculation:

TA = (base register) + displacement

+ (index register)⇥ (scale factor)

Any general-purpose register may be used as a base
register. Likewise, any general-purpose register ex-
cept ESP can be used as an index register. The scale
factor can have the value 1, 2, 4, or 8 and the dis-
placement can be an 8-, 16- or 32-bit value. The base
and index register numbers, scale factor and displace-
ment are encoded as parts of the operand specifiers in
the instruction. Because these items are not required
they can be omitted, we get eight di↵erent address-
ing modes. The address of an operand in memory
may also be specified an an absolute location (direct
mode) or as a location relative to the EIP register
(relative mode).

4 Transformations

4.1 Data types

As was mentioned before, one byte on the SIC/XE
architecture is a sequence of 8 bits and one word is
composed of 3 bytes. Therefore, byte mapping (BYTE
instructions) didn’t present a problem, since the x86
bytes are also 8 bits long. That was not the case with
the WORD instruction. On the x86 architecture a word
is 16 bits long, which is not enough for a successful
mapping. That is why a SIC/XE word is translated

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz
vejica pred and je samo v primeru, da imate v naštevanju tri ali več stvari

SIC Intel
BYTE val .byte val
WORD val .long val
RESB n .space n
RESW n .space 4*n
l EQU e .equ l, e

Table 4: Data type translations SIC – Intel

SIC Intel
A EAX
X EDI
L EBP
PC EIP
SW EFLAGS
B EBX
S ECX
T EDX
F top of FPU stack

Table 5: Registers translations SIC – Intel

into a doubleword (.long instruction), which is 32
bits long.
The next problem with translating the previously
mentioned data types is the way, how both architec-
tures store and address words. SIC addresses words
by the location of their most important bit, which
is exactly opposite to the x86 architecture. This has
a major impact on storing and accessing of arrays
elements.
The rest of the translations didn’t present any par-
ticular problems. The final mappings can be found
in Table 4.

4.2 Registers

The translation of registers is pretty straightforward,
since the x86 architecture possess a few more registers
than SIC architecture. All that is left to do is assign
the correct translations. The results can be seen in
Table 5.

4.3 Addressing

As was mentioned in Section 2.5, SIC/XE knows
three addressing modes according to target address
usage – simple, immediate and indirect addressing.
Since the x86 architecture knows simple and immedi-
ate addressing, except for certain instructions, there
were no di�culties with translating these address-
ing modes. A small problem present those instruc-
tions, which do not support immediate addressing.
When dealing with those instructions, we have to
first store the operand value as a separate variable

SIC Intel
simple LDA X mov %eax, [X]

immediate LDA #5 mov %eax, 5

indirect LDA @ X
mov %esi, [X]
mov %eax, [%esi]

Table 6: Addressing modes translations SIC – Intel

and then use simple addressing to read the value of
that variable. There was a similar situation with in-
direct addressing. When using indirect addressing
on SIC/XE, the operand value is at the address, des-
ignated by the contents of a memory location at TA
address (operand = ((TA))). On the x86 architecture
an operand value can be addressed indirectly, only if
the operand address is stored in advance in a chosen
register. This is called register indirect addressing.
Luckily, x86 possesses more registers than SIC/XE.
This enabled us to reserve the ESI register for use
with indirect addressing. Thus, an instruction, us-
ing indirect addressing, is translated into a sequence
of two instructions: loading the operand address into
ESI register and reading the final operand value from
the address contained in register ESI. Like on SIC,
we can also use indexing with simple and indirect ad-
dressing. We do this by adding the contents of the
index register to the target address. In our case, the
index register is EDI. Example translations can be
seen in Table 6.

4.4 Instructions

LDx instructions

LDA m, LDB m, LDCH m, LDL m, LDS m, LDT m, LDX m

All of the above instructions are simply translated
into mov instructions:

mov %X, [m]

where X is a chosen register. The LDCH instruction
is a bit di↵erent, as it is used to load a byte into
register A instead of a word. That is why the 32-bit
%eax register is replaced with the 8-bit %al register.

STx instructions

STA m, STB m, STCH m, STL m, STS m, STT m, STX m

Similar to LDx instructions, also all of these instruc-
tions are easily translated into mov instructions:

mov [m], %X

where X is a chosen register. The STCH instruction is
translated similarly as the LDCH instruction.

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz
Kaj pa storite z zgornjimi biti (AH)? Jih pustite takšne, kot so? To najbrž ni najbolje. Bolje bi bilo, če bi ob ukazu LDCH in RD zgornje biti bodosi postavili na 0x0000, bodisi na 0xffff. Ta drugi način ohrani predznak, prvi pa se uporablja za nepredznačen način. Na tem mestu v članku bi bilo dobro omeniti, kaj narediti s temi biti.

tomaz

tomaz

Jump instructions

J m, JEQ m, JGT m, JLT m

The first instruction di↵ers from the rest, as it
presents an unconditional jump and is therefore
translated into jmp m instruction. The rest are all
conditional instructions and are translated into je
m, jg m and jl m, respectfully. A safeguard has been
added to all translated jump instructions in order
to prevent infinite loops. In case an infinite loop is
found, a jump instruction is replaced with a sequence
of instructions that ends the program (sys exit),
thus preventing infinite execution.

Instructions for device manipulation

TD m, RD m, WD m

Our translator treats SIC devices as text files. For
example, if a SIC program were to read from a device
labelled as 0xAA, the translated program will actually
read from a text file named AA.txt.
All three instructions are translated into a sequence
of instructions, that trigger the 0x80 interrupt. This
interrupt is used to signal the operating system to
execute a certain system call operation (Table 7).
The TD instruction is translated into a sequence of
instructions, that trigger the interrupt, responsible
for executing the sys open system call, which cre-
ates a text file with a specified name and returns the
newly created file’s descriptor. Or, if the file already
exists, only the file descriptor is returned. This in-
formation is stored in a separate variable, which can
later be used by the other two instructions. Once the
file descriptor is obtained, reading or writing from
the created file is actually quite easy. To read and
write from a file, one has to use the sys read and the
sys write systems calls, respectfully. For every sys-
tem call, we have to preload the designated (usually
EAX, EBX, ECX and EDX) registers with necessary
information, like system call ID, file descriptor, char-
acter array address and so on. Devices 0 (stdin), 1
(stdout) and 2 (stderr) are a bit di↵erent. Since these
devices are permanently available, one does not have
to create a new file and can be used immediately for
reading and writing.
Additional information pertaining the usage of sys-
tem calls in a Linux environment can be found in [2]
and [4].

Other instructions

DIVR r1, r2

The div instruction of the x86 architecture di-
vides the EAX register with some register or an
in-memory operand. SIC’s DIVR is a bit di↵erent -

int sys open(
char* filename, int flags, int mode

)

ssize t sys read(
int fd, char* buf, size t count

)

ssize t sys write(
int fd, char* buf, size t count

)

Table 7: Linux file I/O system calls

both operands are registers. As long as r1 is equal
to the A register, the instruction can be translated
as if using normal division. If that is not the case, a
few other instructions have to be added. First, we
have to store the contents of the EAX register on
the stack, then copy r2 into EAX and only then we
can divide by r1. When we are finished, the result is
copied back to r2 and EAX is restored to its original
state.

We have gone through almost a half of all the instruc-
tions by now. Because the remaining half doesn’t be-
long to any major group and because they translate
easily into x86 assembly language, we will present
their translations in Table 8.

If you look closely at Table 8, you might see, that
some instructions are missing. Those instructions
are: HIO, LPS, NORM, SIO, SSK, STI, STSW, SVC and
TIO. The reason for omitting these instructions is the
lack of documentation and their absence in example
programs. By not knowing what exactly they do, it
is impossible to find correct translation for the Intel
computer.

5 Conclusion - TODO

Namen pretvornika je, da omogoča prevedbo ter
posledično tudi izvajanje programov, napisanih za
izmǐsljen računalnik, na pravem stroju. Tako bi do-
bili zadovoljstvo opazovanja izvajajanja programa na
pravem računalniku, hkrati pa bi se s proučevanjem
seznanili z novim zbirnim jezikom.

During the development phase we encountered sev-
eral problems. The most noticeable ones were the
translation of SIC’s 24-bit word to Intel’s 16-bit word
and the translation between SIC’s big- and Intel’s
little-endian byte ordering. We were able to solve
the first problem but not the second. It is up to the
programmer to keep this in mind when writing SIC
programs, to adjust the arrays properly, in order for

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

tomaz

SIC Intel

ADD m add %eax, m

ADDF m fadd m

ADDR m add %r2, %r1

AND m and %eax, m

CLEAR r1 mov %r1, 0

COMP m cmp %eax, m

COMPF m fcom m

COMPR r1, r2 cmp %r1, %r2

DIV m div m

DIVF m fdiv m

FIX fist m

FLOAT fild m

JSUB m call m

LDF m fld m

MUL m imul %eax, m

MULF m fmul m

MULR m imul %r2, %r1

OR m or %eax, m

RMO r1, r2 mov %r2, %r1

RSUB ret

SHIFTL r1, n shl %r1, n

SHIFTR r1, n shr %r1, n

STF m fst m

SUB m sub %eax, m

SVC n int n

SUBF m fsub m

SUBR r1, r2 sub %r2, %r1

TIX m
add %edi, 1
cmp %edi, m

TIXR r1
add %edi, 1
cmp %edi, %r1

Table 8: Instructions translations SIC – Intel

the translated programs to work on Intel’s architec-
ture.
That is why we believe that this problem should be
the first of many improvements that would have to
made, in order to relieve the programmers (in our
case students) of such low-level problems and allow-
ing them to focus more on the language and programs
itself.
TODO: optimization, . . .

References

[1] Leland L. Beck. System Software: An Intro-
duction to Systems Programming (3rd Edition).
Addison-Wesley, 1996.

[2] Richard Blum. Professional Assembly Language
(Programmer to Programmer). Wrox, 2005.

[3] Intel Corporation. Intel Architecture Software
Developer’s Manual Volume 1: Basic Archi-
tecture, 1997. http://download.intel.com/
design/intarch/manuals/24319001.pdf.

[4] Intel Corporation. Intel Architecture Software
Developer’s Manual Volume 3: System Pro-
gramming, 1999. http://communities.intel.
com/servlet/JiveServlet/downloadBody/
5061-102-1-8118/Pentium_SW_Developers_
Manual_Vol3_SystemProgramming.pdf.

tomaz
dodajte še J. MIHELIČ, T. DOBRAVEC. SICSIM: A Simulator of the Educational SIC/XE Computer for a System-Software Course. Computer Applications in Engineering Education. 2013. DOI 10.1002/cae.21585.

Citirajte tam, kjer omenjate simulatorje.

tomaz

tomaz
Da bo imeli vse skupaj smisel, predlagam, da objavite program nekje na webu (recimo v sourceforge ali na github). V referencah navedite povezavo (link) do strani, kjer je orodje objavljeno, referenco pa citirajte nekje v uvodu ali zaključku.

