

FRANCIS XAVIER
ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING

CS2304

SYSTEM SOFTWARE NOTES

CS2304 – SYSTEM SOFTWARE

UNIT I INTRODUCTION 8

System software and machine architecture – The Simplified Instructional Computer (SIC)
- Machine architecture - Data and instruction formats - addressing modes - instruction
sets - I/O and programming.

UNIT II ASSEMBLERS
 10

Basic assembler functions - A simple SIC assembler – Assembler algorithm and data
structures - Machine dependent assembler features - Instruction formats and addressing
modes – Program relocation - Machine independent assembler features - Literals –
Symbol-defining statements – Expressions - One pass assemblers and Multi pass
assemblers - Implementation example - MASM assembler.

UNIT III LOADERS AND LINKERS
 9
Basic loader functions - Design of an Absolute Loader – A Simple Bootstrap Loader -
Machine dependent loader features - Relocation – Program Linking – Algorithm and
Data Structures for Linking Loader - Machine-independent loader features - Automatic
Library Search – Loader Options - Loader design options - Linkage Editors – Dynamic
Linking – Bootstrap Loaders - Implementation example - MSDOS linker.

UNIT IV MACRO PROCESSORS
 9
Basic macro processor functions - Macro Definition and Expansion – Macro Processor
Algorithm and data structures - Machine-independent macro processor features -
Concatenation of Macro Parameters – Generation of Unique Labels – Conditional Macro
Expansion – Keyword Macro Parameters-Macro within Macro-Implementation example -
MASM Macro Processor – ANSI C Macro language.

UNIT V SYSTEM SOFTWARE TOOLS
 9
Text editors - Overview of the Editing Process - User Interface – Editor Structure. -
Interactive debugging systems - Debugging functions and capabilities – Relationship with
other parts of the system – User-Interface Criteria.

TEXT BOOK

1. Leland L. Beck, “System Software – An Introduction to Systems Programming”, 3rd
Edition, Pearson Education Asia, 2006.

REFERENCES

1. D. M. Dhamdhere, “Systems Programming and Operating Systems”, Second
Revised Edition, Tata McGraw-Hill, 2000.
2. John J. Donovan “Systems Programming”, Tata McGraw-Hill Edition, 2000.

UNIT I

INTRODUCTION

1.1 SYSTEM SOFTWARE AND MACHINE ARCHITECTURE

x System software consists of a variety of programs that support the operation of a
computer.

x It is a set of programs to perform a variety of system functions as file editing,

resource management, I/O management and storage management.
x The characteristic in which system software differs from application software is

machine dependency.

x An application program is primarily concerned with the solution of some
problem, using the computer as a tool.

x System programs on the other hand are intended to support the operation and use

of the computer itself, rather than any particular application.

x For this reason, they are usually related to the architecture of the machine on
which they are run.

x For example, assemblers translate mnemonic instructions into machine code. The

instruction formats, addressing modes are of direct concern in assembler design.
x There are some aspects of system software that do not directly depend upon the

type of computing system being supported. These are known as machine-
independent features.

x For example, the general design and logic of an assembler is basically the same

on most computers.

TYPES OF SYSTEM SOFTWARE:

1. Operating system
2. Language translators

a. Compilers
b. Interpreters
c. Assemblers
d. Preprocessors

3. Loaders
4. Linkers
5. Macro processors

OPERATING SYSTEM

x It is the most important system program that act as an interface between the users
and the system. It makes the computer easier to use. It provides an interface that is

more user-friendly than the underlying hardware.

x The functions of OS are:
1. Process management
2. Memory management
3. Resource management
4. I/O operations
5. Data management
6. Providing security to user‟s job.

LANGUAGE TRANSLATORS

It is the program that takes an input program in one language and produces an output in
another language.

Source Program
Language

Object Program

Translator

Compilers

x A compiler is a language program that translates programs written in any high-
level language into its equivalent machine language program.

x It bridges the semantic gap between a programming language domain and the
execution domain.

x Two aspects of compilation are:

o Generate code to increment meaning of a source program in the execution

domain.

o Provide diagnostics for violation of programming language, semantics in a
source program.

x The program instructions are taken as a whole.

High level language Compiler Machine language program

Interpreters:

x It is a translator program that translates a statement of high-level language to
machine language and executes it immediately. The program instructions are
taken line by line.

x The interpreter reads the source program and stores it in memory.

x During interpretation, it takes a source statement, determines its meaning and
performs actions which increments it. This includes computational and I/O
actions.

x Program counter (PC) indicates which statement of the source program is to be
interpreted next. This statement would be subjected to the interpretation cycle.

x The interpretation cycle consists of the following steps:

o Fetch the statement.
o Analyze the statement and determine its meaning.
o Execute the meaning of the statement.

x The following are the characteristics of interpretation:

o The source program is retained in the source form itself, no target program

exists.
o A statement is analyzed during the interpretation.

Interpreter Memory

 Program Source
 counter Program

Assemblers:

x Programmers found it difficult to write or red programs in machine language. In a
quest for a convenient language, they began to use a mnemonic (symbol) for each
machine instructions which would subsequently be translated into machine
language.

x Such a mnemonic language is called Assembly language.

x Programs known as Assemblers are written to automate the translation of

assembly language into machine language.

Assembly language program
 Assembler

 Machine language program

x Fundamental functions:

1. Translating mnemonic operation codes to their machine language equivalents.

2. Assigning machine addresses to symbolic tables used by the programmers.

1.2 THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):

It is similar to a typical microcomputer. It comes in two versions:

x The standard model

x XE version

SIC MACHINE STRUCTURE:
Memory:

x It consists of bytes(8 bits) ,words (24 bits which are consecutive 3 bytes)
addressed by the location of their lowest numbered byte.

x There are totally 32,768 bytes in memory.

Registers:

There are 5 registers namely

1. Accumulator (A)
2. Index Register(X)
3. Linkage Register(L)
4. Program Counter(PC)
5. Status Word (SW).

x Accumulator is a special purpose register used for arithmetic operations.

x Index register is used for addressing.

x Linkage register stores the return address of the jump of subroutine

instructions (JSUB).

x Program counter contains the address of the current instructions being
executed.

x Status word contains a variety of information including the condition code.

Data formats:

x Integers are stored as 24-bit binary numbers: 2‟s complement representation
is used for negative values characters are stored using their 8 bit ASCII
codes.

x They do not support floating – point data items.

Instruction formats:

All machine instructions are of 24-bits wide

Opcode (8)

X (1)

Address (15)

x X-flag bit that is used to indicate indexed-addressing mode.

Addressing modes:

Two types of addressing are available namely,

1. Direct addressing mode
2. Indexed Addressing Mode Or Indirect Addressing Mode

Mode Indication Target Address calculation
Direct X=0 TA=Address
Indexe X=1 TA=Address + (X)
d

 where(x) represents the contents of the index register(x)

Instruction set:

It includes instructions like:

1. Data movement
instructions Ex: LDA,
LDX, STA, STX.

2. Arithmetic operating

instruction
 Ex: ADD, SUB, MUL,
DIB.

This involves register A and a word in memory, with the result being left in
the register.

3. Branching

instructions Ex:
JLT, JEQ, TGT.

4. Subroutine linkage

instructions Ex: JSUB,
RSUB.

Input and Output programming:

x I/O is performed by transferring one byte at a time to or from the rightmost 8
bits of register A.

x Each device is assigned a unique 8-bit code.

x There are 3 I/O instructions,

1) The Test Device (TD) instructions tests whether the addressed device
is ready to send or receive a byte of data.
2) A program must wait until the device is ready, and then execute a read
3) Data (RD) or Write Data (WD).
4) The sequence must be repeated for each byte of data to be read or

written.

1.3 SIC/XE ARCHITECTURE :

Memory:

x 1 word = 24 bits (3 8-bit bytes)

x Total (SIC/XE) = 220 (1,048,576) bytes (1Mbyte)

Registers:

x 10 x 24 bit registers

MNEMONIC Register Purpose
A 0 Accumulator
X 1 Index register
L 2 Linkage register (JSUB/RSUB)
B 3 Base register
S 4 General register
T 5 General register
F 6 Floating Point Accumulator (48 bits)
PC 8 Program Counter (PC)
SW 9 Status Word (includes Condition Code, CC)

Data Format:

x Integers are stored in 24 bit, 2's complement format

x Characters are stored in 8-bit ASCII format

x Floating point is stored in 48 bit signed-exponent-fraction format:

s exponent {11} fraction {36}

x The fraction is represented as a 36 bit number and has value between 0 and 1.

x The exponent is represented as a 11 bit unsigned binary number between 0
and 2047.

x The sign of the floating point number is indicated by s : 0=positive,
1=negative.

x Therefore, the absolute floating point number value is: f*2(e-1024)

Instruction Format:

 There are 4 different instruction formats available:

Formats 3 & 4 introduce addressing mode flag bits:

x n=0 & i=1
Immediate addressing - TA is used as an operand value (no memory
reference)

x n=1 & i=0

Indirect addressing - word at TA (in memory) is fetched & used as an address
to fetch the operand from

x n=0 & i=0
Simple addressing TA is the location of the operand

x n=1 & i=1
Simple addressing same as n=0 & i=0

Flag x:

x=1 Indexed addressing add contents of X register to TA

calculation

Flag b & p (Format 3 only):

x b=0 & p=0
Direct addressing displacement/address field containsTA (Format 4 always
uses direct addressing)

x b=0 & p=1

PC relative addressing - TA=(PC)+disp (-2048<=disp<=2047)*

x b=1 & p=0
Base relative addressing - TA=(B)+disp (0<=disp<=4095)**

Flag e:

e=0 use

Format 3

e=1 use

Format 4

Instruction set:
o Load and store the new registers: LDB, STB, etc.

o Floating-point arithmetic operations: ADDF, SUBF, MULF, DIVF

o Register move: RMO

o Register-to-register arithmetic operations : ADDR, SUBR, MULR,

DIVR

o Supervisor call: SVC

 (RMO, RSUB, COMPR, SHIFTR, SHIFTL, ADDR, SUBR, MULR, DIVR, etc)

Input and Output (I/O) programming:

x 28 (256) I/O devices may be attached, each has its own unique 8-bit address

x 1 byte of data will be transferred to/from the rightmost 8 bits of register A

Three I/O instructions are provided:

x RD Read Data from I/O device into A

x WD Write data to I/O device from A

x TD Test Device determines if addressed I/O device is ready to send/receive
a byte of data. The CC (Condition Code) gets set with results from this test:

< device is ready to send/receive

= device isn't ready

SIC/XE Has capability for programmed I/O (I/O device may input/output data
while CPU does other work) - 3 additional instructions are provided:

x SIO Start I/O

x HIO Halt I/O

x TIO Test I/O

Addressing modes of SIC/XE

� Base Relative Addressing Mode

 n i x b p e

opcode 1 0 disp

b=1, p=0, TA=(B)+disp (0ddisp d4095)

� Program-Counter Relative Addressing Mode

 n i x b p e

opcode 0 1 disp

b=0, p=1, TA=(PC)+disp (-2048ddisp d2047)

� Direct Addressing Mode

 n i x b p e

opcode 0 0 disp

b=0, p=0, TA=disp (0ddisp d4095)

 n i x b p e

opcode 1 0 0 disp

b=0, p=0, TA=(X)+disp (with index addressing mode)

� Immediate Addressing Mode

 n i x b p e

opcode 0 1 0 disp

n=0, i=1, x=0, operand=disp

� Indirect Addressing Mode

 n i x b p e

opcode 1 0 0 disp

n=1, i=0, x=0, TA=(disp)

� Simple Addressing Mode

 n i x b p e

opcode 0 0 disp

i=0, n=0, TA=bpe+disp (SIC standard)

opcode+n+i = SIC standard opcode (8-bit)

 n i x b p e

opcode 1 1 disp

UNIT II

ASSEMBLERS

2.1. BASIC ASSEMBLER FUNCTIONS

Fundamental functions of an assembler:

x Translating mnemonic operation codes to their machine language equivalents.

x Assigning machine addresses to symbolic labels used by the programmer.

Figure 2.1: Assembler language program for basic SIC version

Indexed addressing is indicated by adding the modifier “ X” following the operand.
Lines beginning with “.” contain comments only.

The following assembler directives are used:

x START: Specify name and starting address for the program.

x END : Indicate the end of the source program and specify the first executable
instruction in the program.

x BYTE: Generate character or hexadecimal constant, occupying as many bytes as

needed to represent the constant.

x WORD: Generate one- word integer constant.

x RESB: Reserve the indicated number of bytes for a data area.

x RESW: Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input device(code F1)
and copies them to an output device(code 05).

The main routine calls subroutines:

x RDREC – To read a record into a buffer.

x WRREC – To write the record from the buffer to the output device. The end of
each record is marked with a null character (hexadecimal 00).

2.1.1. A Simple SIC Assembler

The translation of source program to object code requires the following functions:

1. Convert mnemonic operation codes to their machine language equivalents. Eg:
Translate STL to 14 (line 10).

2. Convert symbolic operands to their equivalent machine addresses. Eg:Translate
RETADR to 1033 (line 10).

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their internal

machine representations. Eg: Translate EOF to 454F46(line 80).

5. Write the object program and the assembly listing.

All fuctions except function 2 can be established by sequential processing of source
program one line at a time.

Consider the statement

10 1000 FIRST STL RETADR 141033

This instruction contains a forward reference (i.e.) a reference to a label (RETADR) that
is defined later in the program. It is unable to process this line because the address that
will be assigned to RETADR is not known. Hence most assemblers make two passes
over the source program where the second pass does the actual translation.

The assembler must also process statements called assembler directives or pseudo
instructions which are not translated into machine instructions. Instead they provide
instructions to the assembler itself.

Examples: RESB and RESW instruct the assembler to reserve memory locations without

generating data values.
The assembler must write the generated object code onto some output device. This object
program will later be loaded into memory for execution.

Object program format contains three types of records:

x Header record: Contains the program name, starting address and length.

x Text record: Contains the machine code and data of the program.

x End record: Marks the end of the object program and specifies the address in the
program where execution is to begin.

Record format is as follows:

Header record:

Col. 1 H
Col.2-7 Program name
Col.8-13 Starting address of object program
Col.14-19 Length of object program in bytes

Text record:

Col.1 T
Col.2-7 Starting address for object code in this record
Col.8-9 Length of object code in this record in bytes
Col 10-69 Object code, represented in hexadecimal (2 columns per byte of object

code)

End record:

Col.1 E
Col.2-7 Address of first executable instruction in object program.

Functions of the two passes of assembler:

Pass 1 (Define symbols)

1. Assign addresses to all statements in the program.
2. Save the addresses assigned to all labels for use in Pass 2.
3. Perform some processing of assembler directives.

Pass 2 (Assemble instructions and generate object programs)

1. Assemble instructions (translating operation codes and looking up addresses).
2. Generate data values defined by BYTE,WORD etc.
3. Perform processing of assembler directives not done in Pass 1.
4. Write the object program and the assembly listing.

2.1.2. Assembler Algorithm and Data Structures

Assembler uses two major internal data structures:

1. Operation Code Table (OPTAB) : Used to lookup mnemonic operation codes
and translate them into their machine language equivalents.

2. Symbol Table (SYMTAB) : Used to store values(Addresses) assigned to labels.

Location Counter (LOCCTR) :

x Variable used to help in the assignment of addresses.

x It is initialized to the beginning address specified in the START statement.

x After each source statement is processed, the length of the assembled instruction
or data area is added to LOCCTR.

x Whenever a label is reached in the source program, the current value of LOCCTR
gives the address to be associated with that label.

Operation Code Table (OPTAB) :

x Contains the mnemonic operation and its machine language equivalent.

x Also contains information about instruction format and length.

x In Pass 1, OPTAB is used to lookup and validate operation codes in the source
program.

x In Pass 2, it is used to translate the operation codes to machine language program.

x During Pass 2, the information in OPTAB tells which instruction format to use in

assembling the instruction and any peculiarities of the object code instruction.

Symbol Table (SYMTAB) :

x Includes the name and value for each label in the source program and flags to
indicate error conditions.

x During Pass 1 of the assembler, labels are entered into SYMTAB as they are
encountered in the source program along with their assigned addresses.

x During Pass 2, symbols used as operands are looked up in SYMTAB to obtain the
addresses to be inserted in the assembled instructions.

Pass 1 usually writes an intermediate file that contains each source statement together
with its assigned address, error indicators. This file is used as the input to Pass 2. This
copy of the source program can also be used to retain the results of certain operations that
may be performed during Pass 1 such as scanning the operand field for symbols and
addressing flags, so these need not be performed again during Pass 2.

2.2. MACHINE DEPENDENT ASSEMBLER FEATURES

Consider the design and implementation of an assembler for SIC/XE version.

Indirect addressing is indicated by adding the prefix @ to the operand (line70).
Immediate operands are denoted with the prefix # (lines 25, 55,133). Instructions that
refer to memory are normally assembled using either the program counter relative or base
counter relative mode.

The assembler directive BASE (line 13) is used in conjunction with base relative
addressing. The four byte extended instruction format is specified with the prefix + added
to the operation code in the source statement.

Register-to-register instructions are used wherever possible. For example the statement
on line 150 is changed from COMP ZERO to COMPR A,S. Immediate and indirect
addressing have also been used as much as possible.

Register-to-register instructions are faster than the corresponding register-to-memory
operations because they are shorter and do not require another memory reference.

While using immediate addressing, the operand is already present as part of the
instruction and need not be fetched from anywhere. The use of indirect addressing often
avoids the need for another instruction.

2.2.1 Instruction Formats and Addressing Modes

x SIC/XE
o PC-relative or Base-relative addressing: op m
o Indirect addressing: op @m
o Immediate addressing: op #c
o Extended format: +op m
o Index addressing: op m,x
o register-to-register instructions
o larger memory -> multi-programming (program allocation)

Translation

· Register translation

o register name (A, X, L, B, S, T, F, PC, SW) and their values (0,1, 2, 3, 4,
5, 6, 8, 9)

o preloaded in SYMTAB

· Address translation
·

o Most register-memory instructions use program counter relative or base
relative addressing

o Format 3: 12-bit address field

base-relative: 0~4095

pc-relative: -2048~2047
o Format 4: 20-bit address field

2.2.2 Program Relocation

The need for program relocation

x It is desirable to load and run several programs at the same time.

x The system must be able to load programs into memory wherever there is room.

x The exact starting address of the program is not known until load time.

 Absolute Program

x Program with starting address specified at assembly time

x The address may be invalid if the program is loaded into somewhere else.
x Example:

Example: Program Relocation

x The only parts of the program that require modification at load time are those that
specify direct addresses.

x The rest of the instructions need not be modified.

o Not a memory address (immediate addressing)

o PC-relative, Base-relative

x From the object program, it is not possible to distinguish the address and constant.

o The assembler must keep some information to tell the loader.
o The object program that contains the modification record is called a

relocatable program.

The way to solve the relocation problem

x For an address label, its address is assigned relative to the start of the
program(START 0)

x Produce a Modification record to store the starting location and the length of the

address field to be modified.

x The command for the loader must also be a part of the object program.

Modification record

x One modification record for each address to be modified

x The length is stored in half-bytes (4 bits)

x The starting location is the location of the byte containing the leftmost bits of the
address field to be modified.

x If the field contains an odd number of half-bytes, the starting location begins in

the middle of the first byte.

Relocatable Object Program

2.3. MACHINE INDEPENDENT ASSEMBLER FEATURES

2.3.1 Literals

x The programmer writes the value of a constant operand as a part of the instruction
that uses it. This avoids having to define the constant elsewhere in the program
and make a label for it.

x Such an operand is called a Literal because the value is literally in the instruction.

x Consider the following example

x It is convenient to write the value of a constant operand as a part of instruction.

x A literal is identified with the prefix =, followed by a specification of the literal
value.

�
x Example:

Literals vs. Immediate Operands

x Literals

The assembler generates the specified value as a constant at some other memory
location.

x Immediate Operands

The operand value is assembled as part of the machine
instruction

x We can have literals in SIC, but immediate operand is only

valid in SIC/XE. �

Literal Pools

x Normally literals are placed into a pool at the end of the
program

x In some cases, it is desirable to place literals into a pool at

some other location in the object program

x Assembler directive LTORG

o When the assembler encounters a LTORG statement, it
generates a literal pool (containing all literal operands
used since previous LTORG)

x Reason: keep the literal operand close to the instruction

o Otherwise PC-relative addressing may not be allowed

Duplicate literals

x The same literal used more than once in the program

o Only one copy of the specified value needs to be stored
o For example, =X‟05‟

x Inorder to recognize the duplicate literals

o Compare the character strings defining them

Easier to implement, but
has potential problem e.g.
=X‟05‟

o Compare the generated data value

Better, but will increase
the complexity of the
assembler

e.g. =C‟EOF‟ and =X‟454F46‟

Problem of duplicate-literal recognition

x „*‟ denotes a literal refer to the current value
of program counter o BUFEND EQU *

x There may be some literals that have the same name,
but different values o BASE *
o LDB =* (#LENGTH)

x The literal =* repeatedly used in the program has the same

name, but different values

x The literal “=*” represents an “address” in the program, so the
assembler must generate the appropriate “Modification
records”.

Literal table - LITTAB

Content

o Literal name
o Operand value and length
o Address

x LITTAB is often organized as a hash table, using the literal

name or value as the key.

Implementation of Literals

Pass 1

x Build LITTAB with literal name, operand value and length,
leaving the address unassigned

x When LTORG or END statement is encountered, assign an

address to each literal not yet assigned an address
o updated to reflect the number of bytes occupied by each
literal

Pass 2

x Search LITTAB for each literal operand encountered

x Generate data values using BYTE or WORD statements

x Generate Modification record for literals that represent an
address in the program

SYMTAB & LITTAB

2.3.2 Symbol-Defining Statements

x Most assemblers provide an assembler directive that allows the
programmer to define symbols and specify their values.

Assembler directive used is EQU .

x Syntax: symbol EQU value

x Used to improve the program readability, avoid using magic

numbers, make it easier to find and change constant values

x Replace
+LDT
#4096
with
MAXLEN
EQU 4096

+LDT #MAXLEN

x Define mnemonic names for registers.

A EQU 0 RMO A,X
X EQU 1

x Expression is allowed

MAXLEN EQU BUFEND-BUFFER

Assembler directive ORG

x Allow the assembler to
reset the PC to values
o Syntax: ORG value

x When ORG is encountered, the assembler resets its LOCCTR
to the specified value.

x ORG will affect the values of all labels defined until the next
ORG.

x If the previous value of LOCCTR can be automatically

remembered, we can return to the normal use of LOCCTR by
simply writing

o ORG

Example: using ORG

x If ORG statements are used

x We can fetch the
VALU
E field
by

 LDA

VALU
E,X

X = 0, 11, 22, … for each entry

Forward-Reference Problem

x Forward reference is not allowed for either EQU or ORG.

x All terms in the value field must have been defined previously
in the program.

x The reason is that all symbols must have been defined during

Pass 1 in a two-pass assembler.

x Allowed:
ALPHA RESW 1
BETA EQU ALPHA

x Not Allowed:
BETA EQU ALPHA
ALPHA RESW 1

2.3.3 Expressions

x The assemblers allow “the use of expressions as operand”

x The assembler evaluates the expressions and produces a single
operand address or value.

�
x Expressions consist of Operator

o +,-,*,/ (division is usually defined to
produce an integer result) Individual terms

o Constants
o User-defined symbols
o Special terms, e.g., *, the current value of LOCCTR

x Examples
MAXLEN EQU BUFEND-BUFFER
STAB RESB (6+3+2)*MAXENTRIES

Relocation Problem in Expressions

x Values of terms can be
o Absolute (independent of

program
location)
constants

o Relative (to the
beginning of
the program)
Address labels

* (value of LOCCTR)

x Expressions can be
x Absolute

o Only absolute terms.
o MAXLEN EQU 1000

x Relative terms in pairs with opposite signs for
each pair.
MAXLEN EQU BUFEND-BUFFER

x Relative

All the relative terms except one can be paired as described in
“absolute”. The remaining unpaired relative term must have a
positive sign.

STAB EQU OPTAB + (BUFEND –
BUFFER)

Restriction of Relative Expressions

x No relative terms may enter into a multiplication or
division operation o 3 * BUFFER

x Expressions that do not meet the conditions of either “absolute”
or “relative” should be flagged as errors.

x BUFEND + BUFFER
x 100 – BUFFER

Handling Relative Symbols in SYMTAB

x To determine the type of an expression, we must keep track of
the types of all symbols defined in the program.

x We need a “flag” in the SYMTAB for indication.

2.3.4 Program Blocks

x Allow the generated machine instructions and data to appear in
the object program in a different order

x Separating blocks for storing code, data, stack, and larger data

block

x Program blocks versus. Control sections

o Program blocks

x Segments of code that are rearranged
within a single object program unit.

o Control sections

x Segments of code that are translated into
independent object program units.

x Assembler rearranges these segments to gather together the

pieces of each block and assign address.

x Separate the program into blocks in a particular order

x Large buffer area is moved to the end of the object program

x Program readability is better if data areas are placed in the
source program close to the statements that reference them.

Assembler directive: USE

x USE [blockname]

x At the beginning, statements are assumed to be part of the
unnamed (default) block

x If no USE statements are included, the entire program belongs

to this single block

x Each program block may actually contain several separate
segments of the source program

Example

Three blocks are used

x default: executable instructions.

x CDATA: all data areas that are less in length.

x CBLKS: all data areas that consists of larger blocks of memory.

Rearrange Codes into Program Blocks

Pass 1

x A separate location counter for each program block

o Save and restore LOCCTR when switching between blocks
o At the beginning of a block, LOCCTR is set to 0.

x Assign each label an address relative to the start of the block

x Store the block name or number in the SYMTAB along with the assigned relative

address of the label

x Indicate the block length as the latest value of LOCCTR for each block at the end
of Pass1

x Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

x Calculate the address for each symbol relative to the start of the object program
by adding

o The location of the symbol relative to the start of its block
o The starting address of this block

Program Blocks Loaded in Memory

Object Program

x It is not necessary to physically rearrange the generated code in the object
program

x The assembler just simply inserts the proper load address in each Text record.

x The loader will load these codes into correct place

2.3.5 Control Sections and Program Linking

Control sections

x can be loaded and relocated independently of the other

x are most often used for subroutines or other logical subdivisions of a program

x the programmer can assemble, load, and manipulate each of these control sections
separately

x because of this, there should be some means for linking control sections together

x assembler directive: CSECT

o secname CSECT

x separate location counter for each control section

External Definition and Reference

x Instructions in one control section may need to refer to instructions or data located
in another section

x External definition

o EXTDEF name [, name]
o EXTDEF names symbols that are defined in this control section and may

o
be used by other sections
Ex: EXTDEF BUFFER, BUFEND, LENGTH

x External reference

o EXTREF name [,name]
o EXTREF names symbols that are used in this control section and are

o
defined elsewhere
Ex: EXTREF RDREC, WRREC

x To reference an external symbol, extended format instruction is needed.

External Reference Handling

Case 1

x 15 0003 CLOOP +JSUB RDREC 4B100000

x The operand RDREC is an external reference.

x The assembler

o Has no idea where RDREC is
o Inserts an address of zero
o Can only use extended format to provide enough room (that is, relative

addressing for external reference is invalid)

x The assembler generates information for each external reference that will allow
the loader to perform the required linking.

Case 2

x 190 0028 MAXLEN WORD BUFEND-BUFFER

000000

x There are two external references in the expression, BUFEND and BUFFER.

x The assembler

o inserts a value of zero
o passes information to the loader

x Add to this data area the address of BUFEND

x Subtract from this data area the address of BUFFER

Case 3

x On line 107, BUFEND and BUFFER are defined in the same control section and
the expression can be calculated immediately.

x 107 1000 MAXLEN EQU BUFEND-BUFFER

Records for Object Program

x The assembler must include information in the object program that will cause the
loader to insert proper values where they are required.

x Define record (EXTDEF)

o Col. 1 D
o Col. 2-7 Name of external symbol defined in this control section
o Col. 8-13 Relative address within this control section (hexadeccimal)
o Col.14-73 Repeat information in Col. 2-13 for other external symbols

x Refer record (EXTREF)

o Col. 1 R
o Col. 2-7 Name of external symbol referred to in this control section
o Col. 8-73 Name of other external reference symbols

x Modification

record Col. 1 M

o Col. 2-7 Starting address of the field to be modified
(hexiadecimal) Col. 8-9 Length of the field to be modified, in
half-bytes (hexadeccimal)

o Col.11-16 External symbol whose value is to be added to or subtracted

from the indicated field

x Control section name is automatically an external symbol, i.e. it is available for
use in Modification records.

Object Program

Expressions in Multiple Control Sections

x Extended restriction

o Both terms in each pair of an expression must be within the same control
section

o Legal: BUFEND-BUFFER
o Illegal: RDREC-COPY

x How to enforce this restriction

o When an expression involves external references, the assembler cannot

determine whether or not the expression is legal.
o The assembler evaluates all of the terms it can, combines these to form an

initial expression value, and generates Modification records.
o The loader checks the expression for errors and finishes the evaluation.

2.4 ONE PASS ASSEMBLERS AND MULTI PASS ASSEMBLERS

2.4.1 ONE-PASS ASSEMBLER

Load-and-Go Assembler

x Load-and-go assembler generates their object code in memory for immediate
execution.

x No object program is written out, no loader is needed.

x It is useful in a system with frequent program development and testing

x The efficiency of the assembly process is an important consideration.

x Programs are re-assembled nearly every time they are run; efficiency of the

assembly process is an important consideration.

One-Pass Assemblers

x Scenario for one-pass assemblers

o Generate their object code in memory for immediate execution – load-
and-go assembler

o External storage for the intermediate file between two passes is slow or is
inconvenient to use

x Main problem - Forward references

o Data items
o Labels on instructions

x Solution

o Require that all areas be defined before they are referenced.
o It is possible, although inconvenient, to do so for data items.
o Forward jump to instruction items cannot be easily eliminated.
o Insert (label, address_to_be_modified) to SYMTAB

 Usually, address_to_be_modified is stored in a linked-list

Sample program for a one-pass assembler

Forward Reference in One-pass Assembler

x Omits the operand address if the symbol has not yet been defined.

x Enters this undefined symbol into SYMTAB and indicates that it is undefined.

x Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry.

x When the definition for the symbol is encountered, scans the reference list and
inserts the address.

x At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

x For Load-and-Go assembler

x Search SYMTAB for the symbol named in the END statement and jumps to this
location to begin execution if there is no error.

Object Code in Memory and SYMTAB

After scanning line 40 of the above program

After scanning line 160 of the above program

If One-Pass Assemblers need to produce object codes

x If the operand contains an undefined symbol, use 0 as the address and write the
Text record to the object program.

x Forward references are entered into lists as in the load-and-go assembler.

x When the definition of a symbol is encountered, the assembler generates another

Text record with the correct operand address of each entry in the reference list.

x When loaded, the incorrect address 0 will be updated by the latter Text record
containing the symbol definition.

Object code generated by one-pass assembler

2.4.2 MULTI-PASS ASSEMBLERS

Multi Pass Assembler:

• If we use a two-pass assembler, the following symbol definition cannot be

allowed.

 ALPHA EQU BETA

 BETA EQU DELTA
 DELTA RESW 1

• This is because ALPHA and BETA cannot be defined in pass 1. Actually, if we

allow multi-pass processing, DELTA is defined in pass 1, BETA is defined in

pass 2, and ALPHA is defined in pass 3, and the above definitions can be allowed.

• This is the motivation for using a multi-pass assembler.

• It is unnecessary for a multi-pass assembler to make more than two passes over

the entire program.

• Instead, only the parts of the program involving forward references need to be

processed in multiple passes.

• The method presented here can be used to process any kind of forward references.

Multi-Pass Assembler Implementation:
• Use a symbol table to store symbols that are not totally defined yet.

• For a undefined symbol, in its entry,

– We store the names and the number of undefined symbols which

contribute to the calculation of its value.

– We also keep a list of symbols whose values depend on the defined value

of this symbol.

• When a symbol becomes defined, we use its value to reevaluate the values of all

of the symbols that are kept in this list.

• The above step is performed recursively.

Forward Reference Example:

2.5 IMPLEMENTATION EXAMPLE MASM ASSEMBLER.

• A collection of segments.

– Each segment belongs to a specific class

• Common classes: CODE, DATA, CONST, STACK

– Segments are addressed by segment registers:

• Segment registers are automatically set by loader.

• CODE: CS,

– is set to the segment containing the starting label specified
in the END statement.

• STACK: SS

– Is set to the last stack segment processed by the loader.

• DATA: DS, ES,FS,GS

– Can be specified by programmers in their programs.

– Otherwise, one of them is selected by assembler.

– DS is the data segment register by default

» Can be changed and set by: ASSUME
ES:DATASEG2

» Any reference to the labels defined in DATASEG2
will be assembled based on ES

– Must be loaded by program before they can be used.

» MOV AX,DATASEG2

» MOV ES, AX

– ASSUME is somewhat similar with BASE in SIC,
programmer must provide instructions to load the value to
registers.

• Collect several segments into a group and use ASSUME to link a
register with the group.

• Parts of a segment can be separated and assembler arranges them
together, like program blocks in SIC/XE

• JMP is a main specific issue:

– Near JMP: 2 to 3 bytes, same segment, using current CS

– Far JMP: 5 bytes, different segment, using a different segment register, as
the instruction prefix.

– Forward JMP: e.g., JMP TARGET,

• Assembler does not know whether it is a near jump or far jump, so
not sure how many bytes to reserve for the instruction.

• By default, assembler assumes a forward jump is near jump.
Otherwise,

• JMP FAR PTR TARGET , indicate a jump to a different segment

– Without FAR PTR, error will occur.

– Similar to SIC/EX extended format instructions.

• JMP SHORT TARGET, indicate a within-128 offset jump.

• Other situations that the length of an instruction depends on operands. So more
complicate than SIC/EX

– Must analyze operands, in addition to opcode

– Opcode table is more complex.

• References between segments that are assembled together can be processed by
assembler

• Otherwise, it must be processed by loader.

– PUBLIC is similar to EXTDEF

– EXTRN is similar to EXTREF

• Object programs from MASM can have different formats.

• MASM can also generate an instruction timing list.

UNIT III

LOADERS AND LINKERS

INTRODUCTION

x Loader is a system program that performs the loading function.

x Many loaders also support relocation and linking.

x Some systems have a linker (linkage editor) to perform the linking operations and
a separate loader to handle relocation and loading.

x One system loader or linker can be used regardless of the original source

programming language.

x Loading Brings the object program into memory for execution.

x Relocation Modifies the object program so that it can be loaded at an address
different from the location originally specified.

x Linking Combines two or more separate object programs and supplies the

information needed to allow references between them.

3.1 BASIC LOADER FUNCTIONS

Fundamental functions of a loader:

1. Bringing an object program into memory.
2. Starting its execution.

3.1.1 Design of an Absolute Loader

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has
been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated
address in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin
execution of the loaded program.

An example object program is shown in Fig (a).

Fig (b) shows a representation of the program from Fig (a) after loading

Algorithm for Absolute Loader

x It is very important to realize that in Fig (a), each printed character represents one
byte of the object program record.

x In Fig (b), on the other hand, each printed character represents one hexadecimal

digit in memory (a half-byte).

x Therefore, to save space and execution time of loaders, most machines store
object programs in a binary form, with each byte of object code stored as a single
byte in the object program.

x In this type of representation a byte may contain any binary value.

3.1.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called a
bootstrap loader, is executed. This bootstrap loads the first program to be run by the
computer – usually an operating system.

Working of a simple Bootstrap loader

x When a computer is first turned on or restarted, a special type of absolute

loader must be executed (stored in ROM on a PC).

x The bootstrap loader loads the first program to be run by the computer –

usually the operating system, from the boot disk (e.g., a hard disk or a floppy

disk)

x It then jumps to the just loaded program to execute it.

x Normally, the just loaded program is very small (e.g., a disk sector‟s size, 512

bytes) and is a loader itself.

x The just loaded loader will continue to load another larger loader and jump to

it.

x This process repeats another entire large operating system is loaded.

x The algorithm for the bootstrap loader is as follows
Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character code to the value of

the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

x It uses a subroutine GETC, which is

GETC A←read one character

 if A=0x04 then jump to 0x80

 if A<48 then GETC

 A ← A-48 (0x30)

 if A<10 then return

 A ←A-7 return

Source code for bootstrap loader

3.2 MACHINE-DEPENDENT LOADER FEATURES

x The absolute loader has several potential disadvantages. One of the most obvious
is the need for the programmer to specify the actual address at which it will be
loaded into memory.

x On a simple computer with a small memory the actual address at which the

program will be loaded can be specified easily.

x On a larger and more advanced machine, we often like to run several independent
programs together, sharing memory between them. We do not know in advance
where a program will be loaded. Hence we write relocatable programs instead of
absolute ones.

x Writing absolute programs also makes it difficult to use subroutine libraries

efficiently. This could not be done effectively if all of the subroutines had pre-
assigned absolute addresses.

x The need for program relocation is an indirect consequence of the change to

larger and more powerful computers. The way relocation is implemented in a
loader is also dependent upon machine characteristics.

x Loaders that allow for program relocation are called relocating loaders or relative

loaders.

3.2.1 Relocation

Two methods for specifying relocation as part of the object program:

The first method:

x A Modification is used to describe each part of the object code that must be
changed when the program is relocated.

Fig(1) :Consider the program

x Most of the instructions in this program use relative or immediate addressing.

x The only portions of the assembled program that contain actual addresses are the
extended format instructions on lines 15, 35, and 65. Thus these are the only items
whose values are affected by relocation.

Object program

x Each Modification record specifies the starting address and length of the field
whose value is to be altered.

x It then describes the modification to be performed.

x In this example, all modifications add the value of the symbol COPY, which

represents the starting address of the program.

Fig(2) :Consider a Relocatable program for a Standard SIC machine

49

x The Modification record is not well suited for use with all machine
architectures.Consider, for example, the program in Fig (2) .This is a relocatable
program written for standard version for SIC.

x The important difference between this example and the one in Fig (1) is that the

standard SIC machine does not use relative addressing.

x In this program the addresses in all the instructions except RSUB must modified
when the program is relocated. This would require 31 Modification records,
which results in an object program more than twice as large as the one in Fig (1).

The second method:

x There are no Modification records.
x The Text records are the same as before except that there is a relocation bit

associated with each word of object code.
x Since all SIC instructions occupy one word, this means that there is one relocation

bit for each possible instruction.

Fig (3): Object program with relocation by bit mask

x The relocation bits are gathered together into a bit mask following the length
indicator in each Text record. In Fig (3) this mask is represented (in character
form) as three hexadecimal digits.

x If the relocation bit corresponding to a word of object code is set to 1, the
program‟s starting address is to be added to this word when the program is
relocated. A bit value of 0 indicates that no modification is necessary.

x If a Text record contains fewer than 12 words of object code, the bits
corresponding to unused words are set to 0.

x For example, the bit mask FFC (representing the bit string 111111111100) in the

first Text record specifies that all 10 words of object code are to be modified
during relocation.

x Example: Note that the LDX instruction on line 210 (Fig (2)) begins a new Text

record. If it were placed in the preceding Text record, it would not be properly
aligned to correspond to a relocation bit because of the 1-byte data value
generated from line 185.

3.2.2 Program Linking

Consider the three (separately assembled) programs in the figure, each of which consists
of a single control section.

Program 1 (PROGA):

Program 2 (PROGB):

Program 3 (PROGC):

Consider first the reference marked REF1.

For the first program (PROGA),

x REF1 is simply a reference to a label within the program.

x It is assembled in the usual way as a PC relative instruction.

x No modification for relocation or linking is necessary.

In PROGB, the same operand refers to an external symbol.

x The assembler uses an extended-format instruction with address field set to
00000.

x The object program for PROGB contains a Modification record instructing the

loader to add the value of the symbol LISTA to this address field when the
program is linked.

For PROGC, REF1 is handled in exactly the same way.

Corresponding object programs

PROGA:

PROGB:

PROGC:

x The reference marked REF2 is processed in a similar manner.

x REF3 is an immediate operand whose value is to be the difference between
ENDA and LISTA (that is, the length of the list in bytes).

x In PROGA, the assembler has all of the information necessary to compute this

value. During the assembly of PROGB (and PROGC), the values of the labels are
unknown.

x In these programs, the expression must be assembled as an external reference
(with two Modification records) even though the final result will be an absolute
value independent of the locations at which the programs are loaded.

x Consider REF4.

x The assembler for PROGA can evaluate all of the expression in REF4 except for

the value of LISTC. This results in an initial value of „000014‟H and one
Modification record.

x The same expression in PROGB contains no terms that can be evaluated by the
assembler. The object code therefore contains an initial value of 000000 and three
Modification records.

x For PROGC, the assembler can supply the value of LISTC relative to the
beginning of the program (but not the actual address, which is not known until the
program is loaded).

x The initial value of this data word contains the relative address of LISTC

(„000030‟H). Modification records instruct the loader to add the beginning
address of the program (i.e., the value of PROGC), to add the value of ENDA,
and to subtract the value of LISTA.

Fig (4): The three programs as they might appear in memory after loading and
linking

PROGA has been loaded starting at address 4000, with PROGB and PROGC
immediately following.

For example, the value for reference REF4 in PROGA is located at address 4054 (the
beginning address of PROGA plus 0054).

Fig (5): Relocation and linking operations performed on REF4 in PROGA

The initial value (from the Text record) is 000014. To this is added the address assigned
to LISTC, which 4112 (the beginning address of PROGC plus 30).

3.2.3 Algorithm and Data Structures for a Linking Loader

x The algorithm for a linking loader is considerably more complicated than the
absolute loader algorithm.

x A linking loader usually makes two passes over its input, just as an assembler

does. In terms of general function, the two passes of a linking loader are quite
similar to the two passes of an assembler:

x Pass 1 assigns addresses to all external symbols.

x Pass 2 performs the actual loading, relocation, and linking.

x The main data structure needed for our linking loader is an external symbol table

ESTAB.

x This table, which is analogous to SYMTAB in our assembler algorithm, is used to
store the name and address of each external symbol in the set of control sections
being loaded.

x A hashed organization is typically used for this table.

x Two other important variables are PROGADDR (program load address) and

CSADDR (control section address).
�

(1) PROGADDR is the beginning address in memory where the linked program
is to be loaded. Its value is supplied to the loader by the OS.

(2) CSADDR contains the starting address assigned to the control section
currently being scanned by the loader. This value is added to all relative
addresses within the control section to convert them to actual addresses.

3.2.3.1 PASS 1

· During Pass 1, the loader is concerned only with Header and Define record types
in the control sections.

Algorithm for Pass 1 of a Linking loader

1) The beginning load address for the linked program (PROGADDR) is obtained from
the OS. This becomes the starting address (CSADDR) for the first control section in the
input sequence.

2) The control section name from Header record is entered into ESTAB, with value given
by CSADDR. All external symbols appearing in the Define record for the control
section are also entered into ESTAB. Their addresses are obtained by adding the value
specified in the Define record to CSADDR.

3) When the End record is read, the control section length CSLTH (which was saved
from the End record) is added to CSADDR. This calculation gives the starting address for
the next control section in sequence.

x At the end of Pass 1, ESTAB contains all external symbols defined in the set of
control sections together with the address assigned to each.

x Many loaders include as an option the ability to print a load map that shows these

symbols and their addresses.

3.2.3.2 PASS 2

x Pass 2 performs the actual loading, relocation, and linking of the program.
Algorithm for Pass 2 of a Linking loader

1) As each Text record is read, the object code is moved to the specified address (plus the
current value of CSADDR).

2) When a Modification record is encountered, the symbol whose value is to be used for

modification is looked up in ESTAB.

3) This value is then added to or subtracted from the indicated location in memory.

4) The last step performed by the loader is usually the transferring of control to the
loaded program to begin execution.

x The End record for each control section may contain the address of the first
instruction in that control section to be executed. Our loader takes this as the
transfer point to begin execution. If more than one control section specifies a
transfer address, the loader arbitrarily uses the last one encountered.

x If no control section contains a transfer address, the loader uses the beginning of

the linked program (i.e., PROGADDR) as the transfer point.

x Normally, a transfer address would be placed in the End record for a main
program, but not for a subroutine.

Fig (6): Object programs using reference numbers for code modification

x This algorithm can be made more efficient. Assign a reference number, which is
used (instead of the symbol name) in Modification records, to each external
symbol referred to in a control section. Suppose we always assign the reference
number 01 to the control section name.

3.3 MACHINE-INDEPENDENT LOADER FEATURES

x Loading and linking are often thought of as OS service functions. Therefore, most
loaders include fewer different features than are found in a typical assembler.

x They include the use of an automatic library search process for handling external

reference and some common options that can be selected at the time of loading
and linking.

3.3.1 Automatic Library Search

x Many linking loaders can automatically incorporate routines from a subprogram
library into the program being loaded.

x Linking loaders that support automatic library search must keep track of external

symbols that are referred to, but not defined, in the primary input to the loader.

x At the end of Pass 1, the symbols in ESTAB that remain undefined represent
unresolved external references.

x The loader searches the library or libraries specified for routines that contain the

definitions of these symbols, and processes the subroutines found by this search
exactly as if they had been part of the primary input stream.

x The subroutines fetched from a library in this way may themselves contain
external references. It is therefore necessary to repeat the library search process
until all references are resolved.

x If unresolved external references remain after the library search is completed,
these must be treated as errors.

3.3.2 Loader Options

x Many loaders allow the user to specify options that modify the standard
processing

x Typical loader option 1: Allows the selection of alternative sources of input.

Ex : INCLUDE program-name (library-name) might direct the loader to read the
designated object program from a library and treat it as if it were part of the
primary loader input.

x Loader option 2: Allows the user to delete external symbols or entire control

sections.

Ex : DELETE csect-name might instruct the loader to delete the named control
section(s) from the set of programs being loaded.

CHANGE name1, name2 might cause the external symbol name1 to be changed
to name2 wherever it appears in the object programs.

x Loader option 3: Involves the automatic inclusion of library routines to satisfy
external references.

Ex. : LIBRARY MYLIB
Such user-specified libraries are normally searched before the standard system
libraries. This allows the user to use special versions of the standard routines.
NOCALL STDDEV, PLOT, CORREL

x To instruct the loader that these external references are to remain unresolved. This

avoids the overhead of loading and linking the unneeded routines, and saves the
memory space that would otherwise be required.

3.4 LOADER DESIGN OPTIONS

x Linking loaders perform all linking and relocation at load time.

x There are two alternatives:
1. Linkage editors, which perform linking prior to load time.
2. Dynamic linking, in which the linking function is performed at execution

time.

x Precondition: The source program is first assembled or compiled, producing an
object program.

x A linking loader performs all linking and relocation operations, including

automatic library search if specified, and loads the linked program directly into
memory for execution.

x A linkage editor produces a linked version of the program (load module or

executable image), which is written to a file or library for later execution.

3.4.1 Linkage Editors

x The linkage editor performs relocation of all control sections relative to the start
of the linked program. Thus, all items that need to be modified at load time have
values that are relative to the start of the linked program.

x This means that the loading can be accomplished in one pass with no external

symbol table required.

x If a program is to be executed many times without being reassembled, the use of a
linkage editor substantially reduces the overhead required.

x Linkage editors can perform many useful functions besides simply preparing an

object program for execution. Ex., a typical sequence of linkage editor commands
used:

 INCLUDE PLANNER (PROGLIB)
 DELETE PROJECT {delete from existing PLANNER}
 INCLUDE PROJECT (NEWLIB) {include new version}
 REPLACE PLANNER (PROGLIB)

x Linkage editors can also be used to build packages of subroutines or other control
sections that are generally used together. This can be useful when dealing with
subroutine libraries that support high-level programming languages.

x Linkage editors often include a variety of other options and commands like those
discussed for linking loaders. Compared to linking loaders, linkage editors in
general tend to offer more flexibility and control.

Fig (7): Processing of an object program using (a) Linking loader and (b) Linkage
editor

3.4.2 Dynamic Linking

x Linkage editors perform linking operations before the program is loaded for

execution.

x Linking loaders perform these same operations at load time.

x Dynamic linking, dynamic loading, or load on call postpones the linking function

until execution time: a subroutine is loaded and linked to the rest of the program
when it is first called.

x Dynamic linking is often used to allow several executing programs to share one
copy of a subroutine or library, ex. run-time support routines for a high-level
language like C.

x With a program that allows its user to interactively call any of the subroutines of a

large mathematical and statistical library, all of the library subroutines could
potentially be needed, but only a few will actually be used in any one execution.

x Dynamic linking can avoid the necessity of loading the entire library for each
execution except those necessary subroutines.

Fig (a): Instead of executing a JSUB instruction referring to an external symbol, the
program makes a load-and-call service request to OS. The parameter of this request is the
symbolic name of the routine to be called.

Fig (b): OS examines its internal tables to determine whether or not the routine is already
loaded. If necessary, the routine is loaded from the specified user or system libraries.

Fig (c): Control is then passed from OS to the routine being called

Fig (d): When the called subroutine completes it processing, it returns to its caller (i.e.,
OS). OS then returns control to the program that issued the request.

Fig (e): If a subroutine is still in memory, a second call to it may not require another load
operation. Control may simply be passed from the dynamic loader to the called routine.

3.4.3 Bootstrap Loaders

x With the machine empty and idle there is no need for program relocation.

x We can specify the absolute address for whatever program is first loaded and this
will be the OS, which occupies a predefined location in memory.

x We need some means of accomplishing the functions of an absolute loader.

1. To have the operator enter into memory the object code for an absolute loader,
using switches on the computer console.

2. To have the absolute loader program permanently resident in a ROM.
3. To have a built –in hardware function that reads a fixed –length record from

some device into memory at a fixed location.

x When some hardware signal occurs, the machine begins to execute this ROM
program.

x On some computers, the program is executed directly in the ROM: on others, the

program is copied from ROM to main memory and executed there.
x The particular device to be used can often be selected via console switches.

x After the read operation is complete, control is automatically transferred to the

address in memory where the record was stored, which contains machine where
the record was stored, which contains machine instructions that load the absolute
program that follow.

x If the loading process requires more instructions that can be read in a single

record, this first record causes the reading of others, and these in turn can cause
the reading of still more records – boots trap.

x The first record is generally referred to as bootstrap loader:

x Such a loader is added to the beginning of all object programs that are to be

loaded into an empty and idle system.

x This includes the OS itself and all stand-alone programs that are to be run without
an OS.

3.5 IMPLEMENTATION EXAMPLE-MSDOS LINKER

 MS-DOS Linker This explains some of the features of Microsoft MS-DOS

linker, which is a linker for Pentium and other x86 systems. Most MS-DOS compilers

and assemblers (MASM) produce object modules, and they are stored in .OBJ files. MS-

DOS LINK is a linkage editor that combines one or more object modules to produce a

complete executable program - .EXE file; this file is later executed for results.

The following table illustrates the typical MS-DOS object module

» THEADER similar to Header record in SIC/XE

» MODEND similar to End record in SIC/XE

» TYPDEF data type

» PUBDEF similar to Define record in SIC/XE

» EXTDEF similar to Reference record in SIC/XE

» LNAMES contain a list of segments and class names

» SEGDEF segment define

» GRPDEF specify how segments are grouped

» LEDATA similar to Text Record in SIC/XE

» LIDATA specify repeated instructions

» FIXUPP similar to Modification record in SIC/XE

THEADR specifies the name of the object module. MODEND specifies the end

of the module. PUBDEF contains list of the external symbols (called public names).

EXTDEF contains list of external symbols referred in this module, but defined elsewhere.

TYPDEF the data types are defined here. SEGDEF describes segments in the object

module (includes name, length, and alignment). GRPDEF includes how segments are

combined into groups. LNAMES contains all segment and class names. LEDATA

contains translated instructions and data. LIDATA has above in repeating pattern.

Finally, FIXUPP is used to resolve external references.

Suppose that the SIC assembler language is changed to include a new form of the

RESB statement, such as

 RESB n„c‟

which reserves n bytes of memory and initializes all of these bytes to the character

„c‟. For example

BUFFER RESB 4096„ ‟

This feature could be implemented by simply generating the required number of

bytes in Text records. However, this could lead to a large increase in the size of

the object program.

Pass 1

» compute a starting address for each segment in the program

– segment from different object modules that have the same

segment name and class are combined

– segments with the same class, but different names are concatenated

– a segment‟s starting address is updated as these combinations and

concatenations are performed

Pass 2

» extract the translated instructions from the object modules

» build an image of the executable program in memory

» write it to the executable (.EXE) file

UNIT IV

 MACROPROCESSORS

INTRODUCTION

Macro Instructions

x A macro instruction (macro)

x It is simply a notational convenience for the programmer to write a
shorthand version of a program.

x It represents a commonly used group of statements in the source
program.

x It is replaced by the macro processor with the corresponding group of
source language statements. This operation is called “expanding the
macro”

x For example:

x Suppose it is necessary to save the contents of all registers before calling a

subroutine.
x This requires a sequence of instructions.
x We can define and use a macro, SAVEREGS, to represent this sequence

of instructions.

Macro Processor

x A macro processor
x Its functions essentially involve the substitution of one group of characters or

lines for another.
x Normally, it performs no analysis of the text it handles.
x It doesn‟t concern the meaning of the involved statements during macro

expansion.
x Therefore, the design of a macro processor generally is machine independent.
x Macro processors are used in

x assembly language
x high-level programming languages, e.g., C or C++
x OS command languages
x general purpose

Format of macro definition

A macro can be defined as follows
MACRO - MACRO pseudo-op shows start of macro definition.
Name [List of Parameters] – Macro name with a list of formal parameters.

…….
…….
……. _ Sequence of assembly language instructions.

MEND - MEND (MACRO-END) Pseudo shows the end of macro definition.

Example:

MACRO

SUM X,Y
LDA X
MOV BX,X
LDA Y
ADD BX

MEND

4.1 BASIC MACROPROCESSOR FUNCTIONS

The fundamental functions common to all macro processors are:

1. Macro Definition
2. Macro Invocation
3. Macro Expansion

4.1.1 Macro Definition and Expansion

x Two new assembler directives are used in macro definition:
x MACRO: identify the beginning of a macro definition
x MEND: identify the end of a macro definition
x Prototype for the macro:

o Each parameter begins with „&‟
label op operands
name MACRO parameters
 :
 body
 :
 MEND

· Body: The statements that will be generated as the expansion of the macro.

x It shows an example of a SIC/XE program using macro Instructions.

x This program defines and uses two macro instructions, RDBUFF and WRDUFF .

x The functions and logic of RDBUFF macro are similar to those of the RDBUFF
subroutine.

x The WRBUFF macro is similar to WRREC subroutine.

x Two Assembler directives (MACRO and MEND) are used in macro definitions.

x The first MACRO statement identifies the beginning of macro definition.

x The Symbol in the label field (RDBUFF) is the name of macro, and entries in the

operand field identify the parameters of macro instruction.

x In our macro language, each parameter begins with character &, which facilitates
the substitution of parameters during macro expansion.

x The macro name and parameters define the pattern or prototype for the macro

instruction used by the programmer. The macro instruction definition has been
deleted since they have been no longer needed after macros are expanded.

x Each macro invocation statement has been expanded into the statements that form
the body of the macro, with the arguments from macro invocation substituted for
the parameters in macro prototype.

x The arguments and parameters are associated with one another according to their

positions.

Macro Invocation

x A macro invocation statement (a macro call) gives the name of the macro
instruction being invoked and the arguments in expanding the macro.

x The processes of macro invocation and subroutine call are quite different.

o Statements of the macro body are expanded each time the macro is

invoked.

o Statements of the subroutine appear only one; regardless of how many
times the subroutine is called.

x The macro invocation statements treated as comments and the statements

generated from macro expansion will be assembled as though they had been
written by the programmer.

Macro Expansion

x Each macro invocation statement will be expanded into the statements that
form the body of the macro.

x Arguments from the macro invocation are substituted for the parameters in the
macro prototype.

o The arguments and parameters are associated with one another
according

to their positions.
The first argument in the macro invocation corresponds to the
first parameter in the macro prototype, etc.

x Comment lines within the macro body have been deleted, but comments on
individual statements have been retained.

x Macro invocation statement itself has been included as a comment line.

Example of a macro expansion

x In expanding the macro invocation on line 190, the argument F1 is substituted

for the parameter and INDEV wherever it occurs in the body of the macro.
x Similarly BUFFER is substituted for BUFADR and LENGTH is substituted

for RECLTH.

x Lines 190a through 190m show the complete expansion of the macro
invocation on line 190.

x The label on the macro invocation statement CLOOP has been retained as a

label on the first statement generated in the macro expansion.

x This allows the programmer to use a macro instruction in exactly the same
way as an assembler language mnemonic.

x After macro processing the expanded file can be used as input to assembler.

x The macro invocation statement will be treated as comments and the

statements generated from the macro expansions will be assembled exactly as
though they had been written directly by the programmer.

4.1.2 Macro Processor Algorithm and Data Structures

x It is easy to design a two-pass macro processor in which all macro definitions are

processed during the first pass ,and all macro invocation statements are expanded
during second pass

x Such a two pass macro processor would not allow the body of one macro
instruction to contain definitions of other macros.

Example 1:

Example 2:

x Defining MACROS or MACROX does not define RDBUFF and the other macro

instructions. These definitions are processed only when an invocation of
MACROS or MACROX is expanded.

x A one pass macroprocessor that can alternate between macro definition and macro
expansion is able to handle macros like these.

x There are 3 main data structures involved in our macro processor.

Definition table (DEFTAB)

1. The macro definition themselves are stored in definition table (DEFTAB), which

contains the macro prototype and statements that make up the macro body.

2. Comment lines from macro definition are not entered into DEFTAB because they

will not be a part of macro expansion.

Name table (NAMTAB)

1. References to macro instruction parameters are converted to a positional entered

into NAMTAB, which serves the index to DEFTAB.

2. For each macro instruction defined, NAMTAB contains pointers to beginning and
end of definition in DEFTAB.

Argument table (ARGTAB)

1. The third Data Structure in an argument table (ARGTAB), which is used during

expansion of macro invocations.

2. When macro invocation statements are recognized, the arguments are stored in
ARGTAB according to their position in argument list.

3. As the macro is expanded, arguments from ARGTAB are substituted for the
corresponding parameters in the macro body.

x The position notation is used for the parameters. The parameter &INDEV has
been converted to ?1, &BUFADR has been converted to ?2.

x When the ?n notation is recognized in a line from DEFTAB, a simple indexing

operation supplies the property argument from ARGTAB.

Algorithm:

x The procedure DEFINE, which is called when the beginning of a macro definition
is recognized, makes the appropriate entries in DEFTAB and NAMTAB.

x EXPAND is called to set up the argument values in ARGTAB and expand a

macro invocation statement.

x The procedure GETLINE gets the next line to be processed

x This line may come from DEFTAB or from the input file, depending upon
whether the Boolean variable EXPANDING is set to TRUE or FALSE.

4.2 MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

Machine independent macro processor features are extended features that are not directly
related to architecture of computer for which the macro processor is written.

4.2.1 Concatenation of Macro Parameter

x Most Macro Processor allows parameters to be concatenated with other character
strings.

x A program contains a set of series of variables:
XA1, XA2, XA3,…

 XB2, XB3,…

x If similar processing is to be performed on each series of variables, the
programmer might want to incorporate this processing into a macro instructuion.

x The parameter to such a macro instruction could specify the series of variables to

be operated on (A, B, C …).

x The macro processor constructs the symbols by concatenating X, (A, B, …), and
(1,2,3,…) in the macro expansion.

x Suppose such parameter is named &ID, the macro body may contain a statement:

LDA X&ID1, in which &ID is concatenated after the string “X” and before the
string “1”.

 LDA XA1 (&ID=A)
 LDA XB1 (&ID=B)

x Ambiguity problem:

E.g., X&ID1 may mean
“X” + &ID + “1”
“X” + &ID1
This problem occurs because the end of the parameter is not marked.

x Solution to this ambiguity problem:

Use a special concatenation operator “ ” to specify the end of the parameter
LDA X&ID 1

So that the end of parameter &ID is clearly identified.

Macro definition

Macro invocation statements

x The macroprocessor deletes all occurrences of the concatenation operator
immediately after performing parameter substitution, so the character will not
appear in the macro expansion.

4.2.2 Generation of Unique Labels

x Labels in the macro body may cause “duplicate labels” problem if the macro is
invocated and expanded multiple times.

x Use of relative addressing at the source statement level is very inconvenient,
error-prone, and difficult to read.

x It is highly desirable to
x Let the programmer use label in the macro body
x Labels used within the macro body begin with $.
x Let the macro processor generate unique labels for each macro invocation and

expansion.
x During macro expansion, the $ will be replaced with $xx, where xx is a two-

character alphanumeric counter of the number of macro instructions expanded.
x XX=AA, AB, AC …….

`Consider the definition of WRBUFF

5 COPY START 0
 :
 :
135 TD =X ‘&OUTDEV’
 :
140 JEQ *-3
 :
155 JLT *-14
 :
255 END FIRST

x If a label was placed on the TD instruction on line 135, this label would be
defined twice, once for each invocation of WRBUFF.

x This duplicate definition would prevent correct assembly of the resulting

expanded program.

x The jump instructions on line 140 and 155 are written using the re4lative
operands *-3 and *-14, because it is not possible to place a label on line 135 of the
macro definition.

x This relative addressing may be acceptable for short jumps such as “ JEQ *-3”

x For longer jumps spanning several instructions, such notation is very
inconvenient, error-prone and difficult to read.

x Many macroprocessors avoid these problems by allowing the creation of special

types of labels within macro instructions.

RDBUFF definition

x Labels within the macro body begin with the special character $.

Macro expansion

x Unique labels are generated within macro expansion.

x Each symbol beginning with $ has been modified by replacing $ with $AA.

x The character $ will be replaced by $xx, where xx is a two-character
alphanumeric counter of the number of macro instructions expanded.

x For the first macro expansion in a program, xx will have the value AA. For

succeeding macro expansions, xx will be set to AB, AC etc.

4.2.3 Conditional Macro Expansion

x Arguments in macro invocation can be used to:
o Substitute the parameters in the macro body without changing the

sequence of statements expanded.
o Modify the sequence of statements for conditional macro expansion (or

conditional assembly when related to assembler).
x This capability adds greatly to the power and flexibility of a macro language.

Consider the example

x Two additional parameters used in the example of conditional macro expansion

o &EOR: specifies a hexadecimal character code that marks the end of a record
o &MAXLTH: specifies the maximum length of a record

x Macro-time variable (SET symbol)

o can be used to

store working values during the macro expansion
store the evaluation result of Boolean expression
control the macro-time conditional structures

o begins with “&” and that is not a macro instruction parameter
o be initialized to a value of 0
o be set by a macro processor directive, SET

x Macro-time conditional structure

o IF-ELSE-ENDIF
o WHILE-ENDW

4.2.3.1 Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF
Structure)

x A symbol table is maintained by the macroprocessor.

o This table contains the values of all macro-time variables used.
o Entries in this table are made or modified when SET statements are

processed.

o This table is used to look up the current value of a macro-time variable
whenever it is required.

x The testing of the condition and looping are done while the macro is being

expanded.

x When an IF statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is

o TRUE

 The macro processor continues to process lines from DEFTAB until it
encounters the next ELSE or ENDIF statement.If ELSE is encountered, then skips to
ENDIF

o FALSE

 The macro processor skips ahead in DEFTAB until it finds the next
ELSE or ENDLF statement.

4.2.3.2 Implementation of Conditional Macro Expansion (WHILE-ENDW
Structure)

x When an WHILE statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is

o TRUE

 The macro processor continues to process lines from DEFTAB until it
encounters the next ENDW statement.

 When ENDW is encountered, the macro processor returns to the preceding
WHILE, re-evaluates the Boolean expression, and takes action again.

o FALSE
 The macro processor skips ahead in DEFTAB until it finds the next

ENDW statement and then resumes normal macro expansion.

4.2.4 Keyword Macro Parameters

x Positional parameters

o Parameters and arguments are associated according to their positions in
the macro prototype and invocation. The programmer must specify the
arguments in proper order.

o If an argument is to be omitted, a null argument should be used to

maintain the proper order in macro invocation statement.

o For example: Suppose a macro instruction GENER has 10 possible
parameters, but in a particular invocation of the macro only the 3rd and 9th
parameters are to be specified.

o The statement is GENER ,,DIRECT,,,,,,3.

o It is not suitable if a macro has a large number of parameters, and only a
few of these are given values in a typical invocation.

x Keyword parameters

o Each argument value is written with a keyword that names the

corresponding parameter.

o Arguments may appear in any order.

o Null arguments no longer need to be used.

o If the 3rd parameter is named &TYPE and 9th parameter is named
&CHANNEL, the macro invocation would be
GENER TYPE=DIRECT,CHANNEL=3.

o It is easier to read and much less error-prone than the positional method.

Consider the example

x Here each parameter name is followed by equal sign, which identifies a keyword
parameter and a default value is specified for some of the parameters.

Here the value if &INDEV is specified as F3 and the value of &EOR is specified as
null.
Macro within macro
 It allows the definition of macro statements inside the assembly language
program or macro.

4.3. MACROPROCESSOR DESIGN OPTIONS

4.3.1 Recursive Macro Expansion

x RDCHAR:

o read one character from a specified device into register A

o should be defined beforehand (i.e., before RDBUFF)

Implementation of Recursive Macro Expansion

x Previous macro processor design cannot handle such kind of recursive macro
o invocation and expansion, e.g., RDBUFF BUFFER, LENGTH, F1

x Reasons:

o The procedure EXPAND would be called recursively, thus the invocation
arguments in the ARGTAB will be overwritten.

o The Boolean variable EXPANDING would be set to FALSE when the
“inner” macro expansion is finished, that is, the macro process would
forget that it had been in the middle of expanding an “outer” macro.

o A similar problem would occur with PROCESSLINE since this procedure

too would be called recursively.

x Solutions:
o Write the macro processor in a programming language that allows

recursive calls, thus local variables will be retained.
o Use a stack to take care of pushing and popping local variables and return

addresses.

x Another problem: can a macro invoke itself recursively?

4.3.2 One-Pass Macro Processor

x A one-pass macro processor that alternate between macro definition and macro
expansion in a recursive way is able to handle recursive macro definition.

x Because of the one-pass structure, the definition of a macro must appear in the

source program before any statements that invoke that macro.

Handling Recursive Macro Definition

x In DEFINE procedure
o When a macro definition is being entered into DEFTAB, the normal

approach is to continue until an MEND directive is reached.

o This would not work for recursive macro definition because the first
MEND encountered in the inner macro will terminate the whole macro
definition process.

o To solve this problem, a counter LEVEL is used to keep track of the level

of macro definitions.

x Increase LEVEL by 1 each time a MACRO directive is read. Decrease LEVEL by
1 each time a MEND directive is read.

x A MEND can terminate the whole macro definition process only when LEVEL

reaches 0.

x This process is very much like matching left and right parentheses when scanning
an arithmetic expression.

4.3.3 Two-Pass Macro Processor

x Two-pass macro processor

o Pass 1:
Process macro definition

o Pass 2:
Expand all macro invocation statements

x Problem

o This kind of macro processor cannot allow recursive macro definition, that
is, the body of a macro contains definitions of other macros (because all
macros would have to be defined during the first pass before any macro
invocations were expanded).

Example of Recursive Macro Definition

x MACROS (for SIC)

o Contains the definitions of RDBUFF and WRBUFF written in SIC
instructions.

x MACROX (for SIC/XE)

o Contains the definitions of RDBUFF and WRBUFF written in SIC/XE
instructions.

x A program that is to be run on SIC system could invoke MACROS whereas a

program to be run on SIC/XE can invoke MACROX.

x Defining MACROS or MACROX does not define RDBUFF and WRBUFF.
These definitions are processed only when an invocation of MACROS or
MACROX is expanded.

4.3.4 General-Purpose Macro Processors

Goal

x Macro processors that do not dependent on any particular programming
language, but can be used with a variety of different languages.

Advantages

x Programmers do not need to learn many macro languages.

x Although its development costs are somewhat greater than those for a
language-specific macro processor, this expense does not need to be repeated
for each language, thus save substantial overall cost.

Disadvantages

x Large number of details must be dealt with in a real programming language

x Situations in which normal macro parameter substitution should not occur,
e.g., comments.

x Facilities for grouping together terms, expressions, or statements

x Tokens, e.g., identifiers, constants, operators, keywords

x Syntax

4.3.5 Macro Processing within Language Translators

Macro processors can be

1) Preprocessors

o Process macrodefinitions.
o Expandmacroinvocations.
o Produce an expanded version of the source program, which is then used as

input to an assembler or compiler.
2) Line-by-line macro processor

o Used as a sort of input routine for the assembler or
compiler. o Read source program.
o Process macro definitions and expand macro
invocations. o Pass output lines to the assembler or
compiler.

3) Integrated macro processor

4.3.5.1 Line-by-Line Macro Processor

Benefits

x It avoids making an extra pass over the source program.

x Data structures required by the macro processor and the language translator
can be combined (e.g., OPTAB and NAMTAB)

x Utility subroutines can be used by both macro processor and the language

translator.
o Scanning input lines
o Searching tables
o Data format conversion

x It is easier to give diagnostic messages related to the source statements.

4.3.5.2 Integrated Macro Processor

x An integrated macro processor can potentially make use of any information
about the source program that is extracted by the language translator.

x As an example in
FORTRAN DO 100 I =
1,20

– a DO statement:
• DO: keyword
• 100: statement number
• I: variable name

DO 100 I = 1
– An assignment statement

• DO100I: variable (blanks are not significant in
FORTRAN)

x An integrated macro processor can support macro instructions that depend

upon

the context in which they occur.

Drawbacks of Line-by-line or Integrated Macro Processor

x They must be specially designed and written to work with a particular
implementation of an assembler or compiler.

x The cost of macro processor development is added to the costs of the language

translator, which results in a more expensive software.

x The assembler or compiler will be considerably larger and more complex.

4.4 IMPLEMENTATION EXAMPLE

4.4.1 MASM Macro Processor

x Conditional assembly statements

x MASM macro

x Conditional statements
 4.4.2 ANSI C Macro language

x Macro definitions with parenthesis
x Nested macro invocation.
x Macro expansion with parenthesis
x Conditional compilation statements

TUTORIAL – I:

Topic: SIC, SIC / XE: Data Movement Operation

1. Write a sequence of instructions to store the data value 8 in the memory
location ALPHA (for SIC and SIC/XE)

SIC:

 LDA EIGHT

 STA ALPHA

 …..

ALPHA RESW 1

EIGHT WORD 8

SIC/XE:

 LDA #8

 STA ALPHA

 …..

ALPHA RESW 1

2. Write a sequence of instructions to store the character “A” in the memory

location BETA (for SIC and SIC/XE)
SIC:

 LDCH CHAR A

 STCH BETA

 …..

CHARA BYTE „A‟

BETA RESB 1

SIC/XE:

 LDA #65

 STCH BETA

 …..

BETA RESB 1

3. Write a sequence of instructions to store the data value 2 and character X in
the memory location (for SIC and SIC/XE)

SIC:

LDA TWO Load 2 into A
STA ALPHA Store in ALPHA

 LDCH CHARX Load character „X‟ into A
 STCH C1 Store in C1
 .
 .

ALPHA RESW 1 one word variable
TWO WORD 2 one word constant
CHARX BYTE ‟X‟ one byte constant
C1 RESB 1 one byte variable

SIC/XE

LDA #2 Load 2into A

 STA ALPHA Store in ALPHA
 LDCH #88 Load character „X‟ into A
 STCH C1 Store in C1
 .
 .

ALPHA RESW 1 one word variable
C1 RESB 1 one byte variable

TUTORIAL – II:

Topic: SIC , SIC / XE : Arithmetic operation

1. Write a sequence of instructions for SIC to ALPHA equal to the product of
BETA and GAMMA. Assume that ALPHA, BETA and GAMMA are defined
as one word

Assembly Code:
LDA BETA

MUL GAMMA

STA ALPHA

….

ALPHA RESW 1

BETA RESW 1

GAMMA RESW 1

2. Write a sequence of instructions for SIC/XE to set ALPHA equal to 4 * BETA
– 9. Assume that ALPHA and BETA are defined as one word. Use immediate
addressing for the constants.
Assembly Code

LDA BETA

LDS #4

MULR S,A

SUB #9

STA ALPHA

…..

ALPHA RESW 1

BETA RESW 1

3. Write a sequence of instructions for SIC to set ALPHA equal to the integer
portion of BETA ÷ GAMMA. Assume that ALPHA and BETA are defined as
one word.

Assembly Code:

LDA BETA
DIV GAMMA
STA ALPHA
….
ALPHA RESW 1
BETA RESW 1
GAMMA RESW 1

4. Write a sequence of instructions for SIC/XE to divide BETA by GAMMA,
setting ALPHA to the integer portion of the quotient and DELTA to the
remainder. Use register-to-register instructions to make the calculation as
efficient as possible.

Assembly Code:

LDA BETA
LDS GAMMA
DIVR S, A
STA ALPHA
MULR S, A
LDS BETA
SUBR A, S
STS DELTA
:
:
ALPHA RESW 1
BETA RESW 1
GAMMA RESW 1
DELTA RESW 1

TUTORIAL – III:

Topic: SIC Looping, Indexing

1. Suppose that ALPHA is an array of 100 words, which is defined as 100 words.

Write a sequence of instructions for SIC to set all 100 elements of the array to
0.

Assembly Code:

LDA ZERO

 STA INDEX

LOOP LDX INDEX

 LDA ZERO

 STA ALPHA, X

 LDA INDEX

 ADD THREE

 STA INDEX

 COMP K300

 TIX TWENTY

 JLT LOOP

 ….

INDEX RESW 1

ALPHA RESW 100

….

ZERO WORD 0

K300 WORD 100

THREE WORD 3

2. Write SIC instructions to swap the values of ALPHA and BETA.
Assembly Code:
 LDA ALPHA

 STA GAMMA

 LDA BETA

 STA ALPHA

 LDA GAMMA

 STA BETA

 ….
 ALPHA RESW 1

BETA RESW 1

GAMMA RESW 1

TUTORIAL – IV:

Topic: SIC / XE Looping

1. Write a sequence of instructions for SIC/XE to clear a 20-byte string to all

blanks.
Assembly Code:
LDX ZERO

LOOP LDCH BLANK

STCH STR1,X

TIX TWENTY

JLT LOOP

:

:

STR1 RESW 20

BLANK BYTE C „ „

ZERO WORD 0

TWENTY WORD 20

2. Write a sequence of instructions for SIC/XE to clear a 20-byte string to all
blanks. Use immediate addressing and register-to-register instructions to
make the process as efficient as possible.
Assembly Code:
LDT #20

LDX #0

LOOP LDCH #0

STCH STR1,X

TIXR T

JLT LOOP

:

:

STR1 RESW 20

TUTORIAL – V:

Topic: SIC / XE Indexing

1. Suppose that ALPHA is an array of 100 words, (Alpha is 100 word). Write a

sequence of instructions for SIC/XE to set all 100 elements of the array to 0.
Use immediate addressing and register-to-register instructions to make the
process as efficient as possible.

Assembly Code:
 LDS #3

 LDT #300

 LDX #0

LOOP LDA #0

 STA ALPHA, X

 ADDR S, X

 COMPR X, T

 JLT LOOP

 ….

ALPHA RESW 100\

2. Suppose that ALPHA and BETA are the two arrays of 100 words. Another

array of GAMMA elements are obtained by multiplying the corresponding
ALPHA element by 4 and adding the corresponding BETA elements.

Assembly Code:
 LDS #3

 LDT #300

 LDX #0

ADDLOOP LDA ALPHA, X

 MUL #4

 ADD BETA, X

 STA GAMMA, X

 ADDR S, X

 COMPR X, T

 JLT ADDLOOP

 ….

ALPHA RESW 100

BETA RESW 100

GAMMA RESW 100

3. Suppose that ALPHA is an array of 100 words. Write a sequence of

instructions for SIC/XE to find the maximum element in the array and store
results in MAX.
Assembly Code:
 LDS #3

 LDT #300

 LDX #0

CLOOP LDA ALPHA, X

 COMP MAX

 JLT NOCH

 STA MAX

NOCH ADDR S, X

 COMPR X, T

 JLT CLOOP

 ….

ALPHA RESW 100

MAX WORD -32768

TUTORIAL – VI:

Topic: SIC, SIC / XE : I/O Programming

1. Suppose that RECORD contains a 100-byte record. Write a subroutine for

SIC that will write this record on to device 05.
Assembly Code:
 JSUB WRREC

 :

 :

WRREC LDX ZERO

WLOOP TD OUTPUT

 JEQ WLOOP

 LDCH RECORD, X

 WD OUTPUT

 TIX LENGTH

 JLT WLOOP

 RSUB

 :

 :

ZERO WORD 0

LENGTH WORD 1

OUTPUT BYTE X „05‟

RECORD RESB 100

2. Write a subroutine for SIC/XE that will read a record into a buffer. The
record may be any length from 1 to 100 bytes. The end of record is marked
with a “null” character (ASCII code 00). The subroutine should place the
length of the record read into a variable named LENGTH. Use immediate
addressing and register-to-register instructions to make the process as
efficient as possible.

Assembly Code:

 JSUB RDREC
 :

 :
RDREC LDX #0
 LDT #100
 LDS #0
RLOOP TD INDEV
 JEQ RLOOP
 RD INDEV
 COMPR A, S
 JEQ EXIT
 STCH BUFFER, X
 TIXR T
 JLT RLOOP
EXIT STX LENGTH
 RSUB
 :
 :
INDEV BYTE X „F1‟
LENGTH RESW 1
BUFFER RESB 100

TUTORIAL – VII:

Topic: Object Code Translation

1. Obtain the object code for the instructions in the following lines in the

program sequence:
9 Line 10
9 Line 12
9 Line 15
9 Line 40
9 Line 55

x Line 10: STL=14, n=1, i=1Æni=3, op+ni=14+3=17, RETADR=0030, x=0,
b=0, p=1, e=0Æxbpe=2, PC=0003, disp=RETADR-PC=030-003=02D,
xbpe+disp=202D, obj=17202D

x Line 12: LDB=68, n=0, i=1Æni=1, op+ni=68+1=69, LENGTH=0033, x=0,
b=0, p=1, e=0Æxbpe=2, PC=0006, disp=LENGTH-PC=033-006=02D,
xbpe+disp=202D, obj=69202D

x Line 15: JSUB=48, n=1, i=1Æni=3, op+ni=48+3=4B, RDREC=01036, x=0,
b=0, p=0, e=1, xbpe=1, xbpe+RDREC=101036, obj=4B101036

x Line 40: J=3C, n=1, i=1Æni=3, op+ni=3C+3=3F, CLOOP=0006, x=0, b=0,
p=1, e=0Æxbpe=2, PC=001A, disp=CLOOP-PC=0006-001A=-14=FEC(2‟s
complement), xbpe+disp=2FEC, obj=3F2FEC

x Line 55: LDA=00, n=0, i=1Æni=1, op+ni=00+1=01, disp=#3Æ003, x=0, b=0,
p=0, e=0Æxbpe=0, xbpe+disp=0003, obj=010003

2. Obtain the object code for the instructions in the following lines in the
program sequence:

9 Line 125
9 Line 133
9 Line 160

op(8) r1(4) r2(4)

x Line 125: CLEAR=B4, r1=X=1, r2=0, obj=B410

x Line 133: LDT=74, n=0, i=1Æni=1, op+ni=74+1=75, x=0, b=0, p=0,
e=1Æxbpe=1, #4096=01000, xbpe+address=101000, obj=75101000

x Line 160: STCH=54, n=1, i=1Æni=3, op+ni=54+3=57, BUFFER=0036,
B=0033, disp=BUFFER-B=003, x=1, b=1, p=0, e=0Æxbpe=C,
xbpe+disp=C003, obj=57C003

TUTORIAL – VIII:

Topic: Object Code generation for SIC program

1. Generate the object code for the following SIC source program.
SUM START 1000

FIRST LDX ZERO

LDA ZERO

LOOP ADD TABLE,X

TLX COUNT

JLT LOOP

STA TOTAL

RSUB

TABLE RESW 2328

COUNT RESW 1

ZERO WORD 0

TOTAL RESW 1

END FIRST

LABEL OPERATION OPERAND OPCODE

SUM START 1000

FIRST LDX ZERO 04 3340

LDA ZERO 00 3340

LOOP ADD TABLE,X 18 9015

TLX COUNT 2C 333D

JLT LOOP 38 1006

STA TOTAL 0C 3343

RSUB 4C 0000

TABLE RESW 2328

COUNT RESW 1

ZERO WORD 0 000000

TOTAL RESW 1

END FIRST

3000*3=9000

IN DECIMAL

2328 IN HEX

TUTORIAL – IX:

Topic: Object Code generation for SIC / XE program

1. Generate the object code for the following SIC / XE source program.
SUM START 0

FIRST LDX #0

LDA #0

+LDB #TABLE 32

LOOP ADD TABLE,X

ADD TABLE2,X

TLX COUNT

JLT LOOP

+STA TOTAL

STA @TOTAL

RSUB

COUNT RESW 1

TABLE RESW 2328

TABLE2 RESW 2328

TOTAL RESW 1

END FIRST

LABEL OPERATION OPERAND OPCODE

SUM START 0

FIRST LDX #0 04 050000

LDA #0 00 010000

+LDB #TABLE 32 68 69

10234B

LOOP ADD TABLE,X 18 113AO

16

ADD TABLE2,X 18

1BCOOO

TLX COUNT 2C

217200D

JLT LOOP 38 3B2FF4

+STA TOTAL OC

OF104673

STA @TOTAL WOR

RSUB 4C

4FOO00

COUNT RESW 1

TABLE RESW 2328

TABLE2 RESW 2328

TOTAL RESW 1

END FIRST

TUTORIAL – X:

Topic: Loader

1. What is the difference between given set of codes?
SET – I

LDA LENGTH

SUB #1

SET – II

LDA LENGTH-1

0033 LENGTH WORD

If length is defined by address 0033 with the value 5. The result of the given
statement is:

a. A is loaded with value 5 and subtracted by 1, thus giving the result 4.
b. A is loaded with value defined in location 0032

2. Find the object code for the program that has to be loaded into the memory.

LOCATION SOURCE STATEMENT

0000 COPY START 0000

0000 FIRST STL
RETADR

0003 LDB #LENGTH

- BASE LENGTH

0006 CLOOP +JSUB
RDREC

000A LDA LENGTH

000D COMP #0

0010 JEQ ENDFIL

0013 +JSUB WRREC

0017 J CLOOP

001A ENDFIL LDA
=C‟EOF‟

- LTORG

0020 STA BUFFER,X

0023 LDA #3

0026 STA LENGTH

0029 RETADR RESW 1

002C LENGTH RESW 1

002F BUFFER RESB 4096

- END FIRST

Solution:

LOCATION SOURCE STATEMENT OBJECT CODE

0000 COPY START
0000

-

0000 FIRST STL
RETADR

172026

0003 LDB #LENGTH 692026

- BASE LENGTH -

0006 CLOOP +JSUB
RDREC

4B5100A

000A LDA LENGTH 03201F

000D COMP #0 290000

0010 JEQ ENDFIL 332007

0013 +JSUB WRREC 4B51031

0017 J CLOOP 3F2FEC

001A ENDFIL LDA
=C‟EOF‟

032003

- LTORG -

0020 STA BUFFER,X 0FC003

0023 LDA #3 030003

0026 STA LENGTH 0F2003

0029 RETADR RESW 1 -

002C LENGTH RESW 1 -

002F BUFFER RESB
4096

-

- END FIRST -

 TUTORIAL – XI:

Topic: Loader

1. Write a sequence of instructions for SIC/XE to divide BETA by GAMMA,
setting ALPHA to the value of the quotient, rounded to the nearest integer.
Use register-to-register instructions to make the calculation as efficient as

possible

LDF BETA
DIVF GAMMA
FIX
STA ALPHA
….

ALPHA RESW 1
BETA RESW 1
GAMMA RESW 1

2. Write a subroutine for SIC that will read a record into a buffer. The record
may be any length from 1 to 100 bytes. The end of record is marked with a
“null” character (ASCII code 00). The subroutine should place the length of
the record read into a variable named LENGTH.

JSUB RDREC
….

RDREC LDX ZERO
RLOOP TD INDEV
 JEQ RLOOP
 RD INDEV
 COMP NULL
 JEQ EXIT
 STCH BUFFER, X
 TIX K100
 JLT RLOOP
EXIT STX LENGTH
 RSUB
….
ZERO WORD 0
NULL WORD 0
K100 WORD 1

INDEV BYTE X „F1‟
LENGTH RESW 1
BUFFER RESB 100

TUTORIAL – XII:

Topic: Loader

1. Write a subroutine for SIC/XE that will read a record into a buffer. The

record may be any length from 1 to 100 bytes. The end of record is marked
with a “null” character (ASCII code 00). The subroutine should place the
length of the record read into a variable named LENGTH. Use immediate
addressing and register-to-register instructions to make the process as

efficient as possible.
JSUB RDREC
….

RDREC LDX #0
 LDT #100
 LDS #0
RLOOP TD INDEV
 JEQ RLOOP
 RD INDEV
 COMPR A, S
 JEQ EXIT
 STCH BUFFER, X
 TIXR T
 JLT RLOOP
EXIR STX LENGTH
 RSUB
….
INDEV BYTE X „F1‟
LENGTH RESW 1
BUFFER RESB 100

2. Generate the object code given for loading during load time
SIC/XE program

EXAMPLE START 100

LDA #12 LOAD 12 INTO REG A

ADD #7 ADD 7 TO REG A

J STORE STORE A IN MEMORY

SAVA RESW 10

STORE STA SAVA

RSUB RETURN

END EXAMPLE

The object code is as follows:

Loc code

EXAMPLE START 100

0100 01000C LDA #12

0103 190007 ADD #7

0106 0F2003 J STORE

0109 SAVA RESW 10

0127 0F2FDF STORE STA SAVA

012A 4F0000 RSUB

END EXAMPLE

TUTORIAL – XIII:

Topic: Macro processor

1. Give the parameter table content when the macro given below is executed.
Source program Macro definition

… ALPHA MACRO ARG1, ARG2,
ARG3

ALPHA A, 2, C

… …

 ENDM

Parameter table

Dummy
parameter

Real
parameter

ARG1 A

ARG2 2

ARG3 C

2. Write a macro to add two integer numbers using SIC instruction set.
SUM MACRO ALPHA, BETA

 LDA ALPHA

 ADD BETA

3. Suppose we have the macro definition of ABSDIFF as
#define ABSDIFF(X,Y) X > Y ? X - Y : Y - X

#define DISPLAY(EXPR) printf(#EXPR "= %d\n", EXPR)

Expand the macro invocation
a. DISPLAY(ABSDIFF(3-1, 9+3));

b. If we execute the C program containing this statement, what output will be

produced?

Solution:

a. printf("ABSDIFF(3-1, 9+3)" "= %d\n", 3-1 > 9+3 ? 3-1 - 9+3 : 9+3 - 3-1);
b. ABSDIFF(3-1, 9+3)= 8

4. Refer to the definition of RDBUFF that appears below. Each of the following
macro invocation statements contains an error. Which of these errors would
be detected by the macro processor, and which would be detected by the
assembler?

a. RDBUFF F3, BUF, RECL, ZZ
i. { illegal value specified for &EOR }

b. RDBUFF F3, BUF, RECL, 04, 2048, 01
i. { too many arguments }

c. RDBUFF F3, ,RECL, 04
i. { no value specified for &BUFADR }

d. RDBUFF F3, RECL, BUF
i. { arguments specified in wrong order }

Solution:

1. Assembler will complain that the value is not a legal hexidecimal number.

2. Macro processor will detect that there are too many arguments.

3. Assembler will complain about a syntax error on line 75 "STCH ,X". Note that

a macro processor simply replaces "&BUBADR" with an empty string. See the

example in Figure above.

4. None: Synax is correct, but there will be a run-time error.

TUTORIAL – XIV:

Topic: Macro processor

1. Write a macro to multiply two one-byte fields.
MPYBYTE MACRO BYTE1,BYTES,PRODUCTER1

;Define Macro to multiply two

one- byte fields

 MOV AL,BYTE1 ;Move multiplicand into AL

 MUL BYTES ;Product is stored in AX

 MOV PRODUCTER1,AX ;Stores the resulting product in

product

 ENDM ;End of Macro

2. Write a macro to multiply two one-word fields.

MPYWORD MACRO WORD1,WORD2,PRODUCT,PRODUCT

;Define Macro to multiply two one-word

fields

 MOV AX,WORD1 ;Move the multiplicand into AX

 MUL WORD2 ;Product is stored in DX:AX

 MOV PRODUCT,AX ;Store product upper half AX

 MOV PRODUCT+2,DX ;lower half DX

 ENDM ;End of Macro

TUTORIAL – XV:

Topic: Macro processor

1. Write a macro to display a string of characters

PUTCHAR MACRO CHAR ;CHAR IS THE
ARGUMENT
 MOV AH,2
 MOV DL,CHAR
 INT 21H
 ENDM
DISPLAYSTR MACRO STR, LNG ;ARGUMENTS ARE
OFFSET AND

; LENGTH OF STRING TO
BE DISPLAYED

 LOCAL TOP
 MOV SI,0 ;INDEX OF NEXT CHARACTER IN

STRING
 MOV CX,LNG
TOP: PUTCHAR STR[SI] ;OUTPUT CURRENT
CHARACTER
 INC SI ;POINT TO NEXT
CHARACTER
 LOOP TOP ;REPEAT
 ENDM
2. Write a macro to determine absolute value and expand it with an example

 ABS MACRO X
 CMP X,0
 JGE DONE
 NEG X ;REVERSE SIGN IF NEGATIVE
 DONE:
 ENDM

Let's use this macro in the following code (source and expansion):

 ...
 MOV AX,-5
 ABS AX ;x will be replaced by AX
 Cmp AX,0
 Jge done
 Neg AX
 Done:
 ...
 ...

 MOV BL,2
 ABS BL ;x will be replaced by BL
 CMP BL,0
 JGE DONE
 NEG BL
Done: ;*** this is an error -- done is a duplicate
label!! ...

