FRANCIS XAVIER @C@b
\)

ENGINEERING COLLEG@\»

QQ

DEPARTMENT OF @PUTER
SCIENCE AND @NEERING
&
&%82304
SYEV@ SOFTWARE NOTES
$c}¢°
&

<

CS2304 - SYSTEM SOFTWARE

UNIT I INTRODUCTION 8

System software and machine architecture — The Simplified Instructional Computer (SIC)
- Machine architecture - Data and instruction formats - addressing modes - instruction
sets - I/0 and programming.

UNIT II ASSEMBLERS @
1
fi\,?

Basic assembler functions - A simple SIC assembler — Assembler algorithm
structures - Machine dependent assembler features - Instruction formats an ing
modes — Program relocation - Machine independent assembler featurSs -Neiterals —
Symbol-defining statements — Expressions - One pass assemblers a ulti pass
assemblers - Implementation example - MASM assembler. 6

UNIT III LOADERS AND LINKERS \5
9

Basic loader functions - Design of an Absolute Loader/~ ple Bootstrap Loader -
Machine dependent loader features - Relocation — Pri Linking — Algorithm and
Data Structures for Linking Loader - Machine-indepe t loader features - Automatic
Library Search — Loader Options - Loader desi fons - Linkage Editors — Dynamic

Linking — Bootstrap Loaders - Implementafié\ ample - MSDOS linker.

UNIT IV MACRO PROCESSORS %
9

Basic macro processor ﬁmction:% o Definition and Expansion — Macro Processor
Algorithm and data struct - Wlachine-independent macro processor features -
Concatenation of Macro % s — Generation of Unique Labels — Conditional Macro

Expansion — Keyword arameters-Macro within Macro-Implementation example -
MASM Macro Procgssar -YANSI C Macro language.

-

\
‘%;T BOOK

I. Leland L. Beck, “System Software — An Introduction to Systems Programming”, 3rd
Edition, Pearson Education Asia, 2006.

REFERENCES
1. D. M. Dhamdhere, “Systems Programming and Operating Systems”, Second

Revised Edition, Tata McGraw-Hill, 2000.
2. John J. Donovan “Systems Programming”, Tata McGraw-Hill Edition, 2000.

UNIT 1

INTRODUCTION
1.1 SYSTEM SOFTWARE AND MACHINE ARCHITECTURE @

e System software consists of a variety of programs that support the operation 0%

computer. \)

e [t is a set of programs to perform a variety of system functions as iting,
resource management, I/0 management and storage management.
e The characteristic in which system software differs from application ware 1s

machine dependency. g}
e An application program is primarily concerned wit ution of some
problem, using the computer as a tool.

e System programs on the other hand are intende ort the operation and use
of the computer itself, rather than any particu iCation.

e For this reason, they are usually relate %h}e architecture of the machine on

which they are run. \

e For example, assemblers transl onic instructions into machine code. The
instruction formats, addressi es are of direct concern in assembler design.

e There are some aspects software that do not directly depend upon the
type of computing tem Ybeing supported. These are known as machine-
independent featur; %’

e For example, t eral design and logic of an assembler is basically the same

on most comp S.
TYPES OF Skﬁ SOFTWARE:

ting system

1.
X age translators
C a. Compilers
‘% b. Interpreters
c. Assemblers
d. Preprocessors
3. Loaders
Q 4. Linkers

5. Macro processors

OPERATING SYSTEM
e [t is the most important system program that act as an interface between the users
and the system. It makes the computer easier to use. It provides an interface that is

more user-friendly than the underlying hardware.

e The functions of OS are:

1. Process management

2. Memory management

3. Resource management %

4. 1/O operations C}

5. Data management

6. Providing security to user’s job. %
LANGUAGE TRANSLATORS \})

It 1s the program that takes an input program in one language and produdes a tput in

another language. 6

Language

Source Program —’ Translator 4’ :5X!e gram
~

Compilers \Q
e A compiler is a language program @s ates programs written in any high-
level language into its equivalent anguage program.
e [t bridges the semantic ga ‘%en a programming language domain and the
execution domain. Q)
e Two aspects of cc@rme:

o Genera to increment meaning of a source program in the execution
domafhe

q;%(&m diagnostics for violation of programming language, semantics in a

Irce program.

rogram instructions are taken as a whole.

Compiler

— > | > Machine language program

£
&,

igh level language
Interpreters:

e [t is a translator program that translates a statement of high-level language to
machine language and executes it immediately. The program instructions are
taken line by line.

The interpreter reads the source program and stores it in memory.

During interpretation, it takes a source statement, determines its meaning and
performs actions which increments it. This includes computational and 1/O

interpreted next. This statement would be subjected to the interpretation cycle.

The interpretation cycle consists of the following steps: \)@

actions.
Program counter (PC) indicates which statement of the source program is to be :%

o Fetch the statement.

o Analyze the statement and determine its meaning. Q
o Execute the meaning of the statement. <)
The following are the characteristics of interpretation: 6

o The source program is retained in the source fc rN f, no target program
exists. %r

o A statement is analyzed during the inte

Interpreter Q) Memory
A

Program -— P Source

counter Program

~
&

&

Assemblers:
Programmers }t difficult to write or red programs in machine language. In a

quest for enient language, they began to use a mnemonic (symbol) for each
maching instructions which would subsequently be translated into machine
language.

Q clra mnemonic language is called Assembly language.

rograms known as Assemblers are written to automate the translation of
assembly language into machine language.

Assembler .
Assembly language program —p» +— Machine language program

e Fundamental functions:
1. Translating mnemonic operation codes to their machine language equivalents. %

2. Assigning machine addresses to symbolic tables used by the programmers. %

1.2 THE SIMPLIFIED INSTRUCTIONAL COMPUTER (SIC):

It is similar to a typical microcomputer. It comes in two versions:

e The standard model

e XE version C}Q)
SIC MACHINE STRUCTURE: @
Memory: A\})

e There are totally 32,768 bytes in memory. ; 6
Registers: \

There are 5 registers namely
1. Accumulator (A) @
. Index Register(X)
Linkage Register(L)
Program Counter(PC)
Status Word (SW). ®

Accumulator is a special ‘%register used for arithmetic operations.

TIENRRN

e Index register is usgd¥or addressing.

e Linkage regi tores the return address of the jump of subroutine
instructions (.

e Pro an%bunter contains the address of the current instructions being
ex%

\;Ea)us word contains a variety of information including the condition code.

ormats:
e Integers are stored as 24-bit binary numbers: 2’s complement representation
is used for negative values characters are stored using their 8 bit ASCII
% codes.

e They do not support floating — point data items.

Instruction formats:

All machine instructions are of 24-bits wide

e X-flag bit that is used to indicate indexed-addressing mode.

Addressing modes: < Q
Two types of addressing are available namely, ; 6

[Opcode (8) | X (1) [Address (15) | \%)

1. Direct addressing mode
2. Indexed Addressing Mode Or Indirect Addre ¢

PN \
Mode Indication | Target Address cals q)/
Direct | X=0 TA=Address | A
Indexe X=1 TA= Addres

d |

where(x) represents the conte ts ndex register(x)

Instruction set:

It includes mstructlor@Q ~

. Data
1nstruct ns LDA
LD
ithrpetic operating
ction

ADD, SUB, MUL,
This involves register A and a word in memory, with the result being left in
the register.
3. Branching
instructions Ex:

JLT, JEQ, TGT.

4. Subroutine linkage

mstructions Ex: JSUB,
RSUB.

Input and Output programming:

e /O is performed by transferring one byte at a time to or from the rightmost 8
bits of register A.

e Each device is assigned a unique 8-bit code. Q)

is ready to send or receive a byte of data.
2) A program must wait until the device is ready, and then e
3) Data (RD) or Write Data (WD).

e There are 3 I/O instructions, x)
1) The Test Device (TD) instructions tests whether the addrejs vice

e a read

4) The sequence must be repeated for each byte o be read or
written. \v
1.3 SIC/XE ARCHITECTURE : @%"
Memory: Q)

e 1 word = 24 bits (3 8-bit bytes) é)
e Total (SIC/XE)=2* (1,048,§@es (1Mbyte)

Registers: %
e 10 x 24 bit regist %r
ANX)

MNEMONIC Register Purpose
A 0 Accumulator
X 1 Index register
L 2 Linkage register (JSUB/RSUB)
B 3 Base register

1S 4 General register

C T 5 General register
F 6 Floating Point Accumulator (48 bits)
PC 8 Program Counter (PC)
9 Status Word (includes Condition Code, CC)

@»’ SW
% Data Format:

e Integers are stored in 24 bit, 2's complement format

e Characters are stored in 8-bit ASCII format

¢ Floating point is stored in 48 bit signed-exponent-fraction format:

| S | exponent {11} | fraction {36} |

e The fraction is represented as a 36 bit number and has value between 0 and 1.

and 2047.

e The exponent is represented as a 11 bit unsigned binary number betwe%
e The sign of the floating point number is indicated by s : 0 v
I=negative.

e Therefore, the absolute floating point number value is: m“@

Instruction Format: &%
[1 There are 4 different instruction formats availa@

8 @
Format I (1 byte) q ‘%

P \X

. A%
Format 2 (2 bytes) op 1 r2

&
111111 12

Format 3 (3 bytesuﬂ op nli|x/blple disp

Y’ 6 111111 20
Format 4 (4 by'tes) op nli|x|o|ple address

‘%(mats 3 & 4 introduce addressing mode flag bits:

e n=0 & i=1
Immediate addressing - TA is used as an operand value (no memory
reference)

e n=1&i=0

Indirect addressing - word at TA (in memory) is fetched & used as an address
to fetch the operand from

&

&

e 1n=0&i=0
Simple addressing TA is the location of the operand

e n=1 &=l
Simple addressing same as n=0 & i=0

Flag x: C}Q)
x=1 Indexed addressing add contents of X register to TA @

calculation
e b=0&p=0 Q
Direct addressing displacement/address field containSTé ormat 4 always

Flag b & p (Format 3 only):

uses direct addressing)

e b=0&p=1
PC relative addressing - TA=(PC)+disp (-204

e b=1&p=0

Base relative addressing - TA(B)+dis%%€isp<4095)**
Flage: X
e=0 use ‘:\

Format 3

e=1 use @
Format 4 @% f
Instruction set: ;\

o Loa store the new registers: LDB, STB, etc.
o\ Floating-point arithmetic operations: ADDF, SUBF, MULF, DIVF
o) Register move: RMO

\bo Register-to-register arithmetic operations : ADDR, SUBR, MULR,
C,) DIVR

E: o Supervisor call: SVC

(RMO, RSUB, COMPR, SHIFTR, SHIFTL, ADDR, SUBR, MULR, DIVR, etc)
Input and Output (I/O) programming:

e 2%(256) I/O devices may be attached, each has its own unique 8-bit address

e | byte of data will be transferred to/from the rightmost 8 bits of register A

&

‘% b=0, p=1, TA=(PC)+disp (-2048<disp <2047)

Three 1/O instructions are provided:
e RD Read Data from I/O device into A
e WD Write data to I/0O device from A

e TD Test Device determines if addressed I/O device is ready to send/receive C}Q)
a byte of data. The CC (Condition Code) gets set with results from this test: @

< device is ready to send/receive A\})

= device isn't ready

SIC/XE Has capability for programmed I/O (I/O device may input/outhde
while CPU does other work) - 3 additional instructions are providc@

. SIO Start I/0 ‘%
e HIO Halt /O @

° TIO Test I/O

Addressing modes of SIC/XE @
€ Base Relative Addressing \®
i b p e

n i E
opcode @/ 1 0 disp
<

=Np=0, TA=(B)+disp (0<disp <4095)

P OW-COunter Relative Addressing Mode
‘%' n i x b p e
(% opcode 011 disp

€ Direct Addressing Mode

n i X b P e

opcode 0 0 disp

b=0, p=0, TA=disp (0<disp <4095)
n i X b P e
opcode 1 0 0 disp

€ Immediate Addressing Mode

Q
Q%Q@

b=0, p=0, TA=(X)+disp (with index addressing modeb

6@

P €

opcode

0 1 0 disp

>
S

@ Indirect Addressing Mode

.S
n=0, i=1, x=0, operandd%%

A\

e
Q%%

&

n i ; P e
> y
opcode 1 0 disp
1 a3 4

0, x=0, TA=(disp)

€ Simple Addressing Mode

n i b p e
opcode 0 0 disp @
i=0, n=0, TA=bpe-+disp (SIC standard) @6
O
opcode+n+i = SIC standard opcode (8-bit) C)Q
n i b p e
N\
opcode 1 1 \’flisp
—

UNIT 1I

ASSEMBLERS

2.1. BASIC ASSEMBLER FUNCTIONS C&
Fundamental functions of an assembler: Q)

e Translating mnemonic operation codes to their machine language equivdlents.

e Assigning machine addresses to symbolic labels used by the progr?

Figure 2.1: Assembler language program for basic SIC versi 6

AN

Line Source statement
| s COPY START 1000 COPY FILE FROM INPUT TG OUTPUT
10 FIRST ST, RETADR SAVE RETURN ADDRESS
15 CLOOP JSUB RDREC READ INPUT RECORD
20 LDA LENGTH TEST FOR EOF (LENGTH = 0)
25 COMP ZERO
30 JEQ ENDFIL EXIT IF EOF FOUND
&l s JSUB WRREC WRITE OUTPUT RECCRD
9l & J cLooP LOOP
c| 45 ENDFTL LDA FOF INSERT END OF FILE MARKER
© 50 STA BUFFER
=| 55 LDA THREE SET LENGTE = 3
50 STA LENGTH
&5 JSUB WRREC WRITE EQF
7 LDL RETADR GET RETURN ADORESS
75 RSB RETURN TO CALLER
80 EOF BYiE G EOr
85 THREE WORD 3
90 ZERO WORD 0
95 RETADR RESH 1t
100 LENGTH RESW 1 LENGTH OF RECORD
105 BUFFER RESB 4096 4096-BYTE BUFFER AREA
A [T :
? 115 2 SUBROUTINE 7O READ RECORD TNTO BUFFER
120

125 RDREC LDX ZERO CLEAR LOOP COUNTER

130 LDA ZERO CLEAR A TO ZERO
135 RLOOP D INPUT TEST INPUT DEVICE

140 JEQ RLOOP LOOP UNTIL READY

145 RD INPUT READ CHARACTER INTO REGISTER A
150 COMP ZERO TEST FOR END OF RECORD (X’'00')
155 JBQ EXIT EXIT LOOP IF EOR

160 STCH BUFFER, X STORE CHARACTER IN BUFFER

165 TIX MAXLEN LOOP UNLESS MAX LENGTH

270 JLT RLOOP HAS BEEN REACHED

175 EXIT STX LENGTH SAVE RECORD LENGTH \
180 RSUB RETURN TO CALLER < ,)
185 INPOT BUIE 4 o TO

190 MAXLEN WORD 4096

195 :

200 . SUBROUTINE TO WRITE RECORD FROM BUFFER

205 :

220 WRREC LDX ZERO

218 WLOOP D QUIPUT

220 JEQ WLOOP

225 LDCH BUFFER, X

230 WD QUTPUT :

235 TIX LENGTH PNPIL ALL CHARACTERS

240 JLT WLOOP JE BEEN WRITTEN

245 RSUB p TO_CALLER

250 OUTPUT BYTE X' 05 CODE FOR OUTPUT DEVICE

255 END FIRST

&
Indexed addressing is indicated by%adjng the modifier “ X” following the operand.
Lines beginning with “.” 0011@ ents only.
The following assemb A&c}ives are used:

e START: Speciffsname and starting address for the program.

icate the end of the source program and specify the first executable
ihstruction in the program.

o E: Generate character or hexadecimal constant, occupying as many bytes as
eeded to represent the constant.

@ e WORD: Generate one- word integer constant.
% e RESB: Reserve the indicated number of bytes for a data area.

e RESW: Reserve the indicated number of words for a data area.

The program contains a main routine that reads records from an input device(code F1)
and copies them to an output device(code 05).

The main routine calls subroutines:

e RDREC - To read a record into a buffer. Cg)

e WRREC - To write the record from the buffer to the output device. The %
each record is marked with a null character (hexadecimal 00). \)

2.1.1. A Simple SIC Assembler ()

The translation of source program to object code requires the follo;i@ctlons.

1. Convert mnemonic operation codes to their machme&
Translate STL to 14 (line 10).

ge equivalents. Eg:

2. Convert symbolic operands to their equival %ne addresses. Eg:Translate
RETADR to 1033 (line 10).

3. Build the machine instructions in the rmat

4. Convert the data constants specifiedin the source program into their internal
machine representations. ate EOF to 454F46(line 80).
é@e

assembly listing.

5. Write the object prog%f
All fuctions except ﬁ13® an be established by sequential processing of source

program one line at a
Consider the stat t

10 1000 FIRST STL RETADR 141033

1 later in the program. It is unable to process this line because the address that

ThigA on contains a forward reference (i.e.) a reference to a label (RETADR) that
@
e assigned to RETADR is not known. Hence most assemblers make two passes

r the source program where the second pass does the actual translation.
The assembler must also process statements called assembler directives or pseudo
instructions which are not translated into machine instructions. Instead they provide

instructions to the assembler itself.

Examples: RESB and RESW instruct the assembler to reserve memory locations without

generating data values.
The assembler must write the generated object code onto some output device. This object
program will later be loaded into memory for execution.

Object program format contains three types of records:

e Header record: Contains the program name, starting address and length. %C}Q)

e Text record: Contains the machine code and data of the program. Y
¢ End record: Marks the end of the object program and specifies the a W e
program where execution is to begin. Q

Record format is as follows:

Header record: ‘ 56
Col. 1 H \
Col.2-7 Program name @

Col.8-13 Starting address of object program

Col.14-19 Length of object program in bytes @

Text record: &%
Col.1 T g?
Col.2-7 Starting address for oh% e in this record

Col.8-9 Length of object cadeyin‘this record in bytes

Col 10-69 Object code, represe in hexadecimal (2 columns per byte of object
code)

End record: &

Col.1

E
Col.2-7 . ﬁ(&g of first executable instruction in object program.

Header
HCOPY GU100CU0I07A | Text
TUO10001E410134620390010362810303010154620613C10030010240¢ 1039001020
TOG101E150C10364620610810334C0000454746000003000000
T0G620391E0461030002030E0205030203ED8205D261030302057,5490392C205E38203F
1002057161010364C0000F 100100004 103080207 33020645090 39PC20792C1036
10020730738206446000005

FfEh@ two passes of assembler:

Pass 1 (Egline 33nbole):t program corresponding to Fig. 2.2,

1. Assign addresses to all statements in the program.
2. Save the addresses assigned to all labels for use in Pass 2.
3. Perform some processing of assembler directives.

Pass 2 (Assemble instructions and generate object programs)

1. Assemble instructions (translating operation codes and looking up addresses).
2. Generate data values defined by BY TE,WORD etc. %
3. Perform processing of assembler directives not done in Pass 1. \)
4. Write the object program and the assembly listing. \)
2.1.2. Assembler Algorithm and Data Structures ()

Assembler uses two major internal data structures: 6
1. Operation Code Table (OPTAB) : Used to looku @ic operation codes
and translate them into their machine language eq @b
2. Symbol Table (SYMTAB) : Used to store V@I‘GSSGS) assigned to labels.
Location Counter (LOCCTR) : %
e Variable used to help in the assi n@ addresses.

e [t is initialized to the beginnt ess specified in the START statement.

* After each source staethent 15 processed, the length of the assembled instruction
or data area is added 1o 'ROCCTR.

e Whenever a@eached in the source program, the current value of LOCCTR
gives the address*to be associated with that label.

Operation e%;ible (OPTAB) :
¢, “Contdins the mnemonic operation and its machine language equivalent.
9

Iso contains information about instruction format and length.

e In Pass 1, OPTAB is used to lookup and validate operation codes in the source
Q program.

e InPass 2, it is used to translate the operation codes to machine language program.

e During Pass 2, the information in OPTAB tells which instruction format to use in
assembling the instruction and any peculiarities of the object code instruction.

&

Symbol Table (SYMTAB) :

e Includes the name and value for each label in the source program and flags to
indicate error conditions.

e During Pass 1 of the assembler, labels are entered into SYMTAB as they are %
encountered in the source program along with their assigned addresses. C}

e During Pass 2, symbols used as operands are looked up in SYMTAB to obtaj th@
addresses to be inserted in the assembled instructions. \)
W

her
with its assigned address, error indicators. This file is used as the input §o Pass 2. This

Pass 1 usually writes an intermediate file that contains each source state

copy of the source program can also be used to retain the results of ceftaig operations that

may be performed during Pass 1 such as scanning the operand fiel bols and
addressing flags, so these need not be performed again during Pags'2.

2.2. MACHINE DEPENDENT ASSEMBLER FE@

Consider the design and implementation of an ass@ r SIC/XE version.

5 COPY START 0 COPY FILE FROM INPUT TO OUTPUT
10 FIRST STL RETADR SAVE RETURN ADDRESS

12 LDB #LENGTH ESTABLISH BASE REGISTER
13 BASE LENGTH

15 CLOOP +JSUB RDREC READ INPUT RECORD

20 LDA LENGTH TEST FOR EOF (LENGTH = 0)
25 COMP #0

30 JEQ ENDFIL EXIT IF EOF FOUND

35 +JSUB WRREC WRITE OUTPUT RECORD

40 J CLOOP LOOP

45 ENDFIL LDA EQF INSERT END OF FILE MARKER
50 STA BUFFER

~ D9 LDA #3 SET LENGTH = 3

60 STA LENGTH

65 +JSUB WRREC WRITE EOF

70 J @RETADR RETURN TO CALLER

80 EQF BYTE C'EOF!

95 RETADR RESW 1

100 LENGTH RESW i LENGTH OF RECORD

105 BUFFER RESB 4096 4096-BYTE BUFFER AREA

110

Q

115 . SUBRCUTIHE TO READ RBCORD INTO BUFFER

25 EDREC CLEAR

X CLEAR LOOP COUNTER
130 CLEAR A CLEAR

112 P CLEAR § 70 ZERD Cg)
133 HOT §409% %
35 ROP T INAT TEST INEOP DEVICE x)

140 JB) RGP LOOP UNTTL, READY

7l) THPOT READ CHARACTER TiQ RBGIET® A
150 COMFR A8 D (X00')
55 JB) EYIT _

160 SICH BUFFER.X {IN BUFFER

165 TR T LO0) MAK LENGTH

170 JILT RLOOP %) REACHED

RETT STX LENGTH %) RECORD LEWGTH

RSUB @ TURN 70 CALLER

185 Y BPIR X'FL &% COUE FOR XHPOT DEVICE

{8 <::§,

Indirect addressing is indicated{b sding the prefix @ to the operand (line70).
Immediate operands are denoted with' the prefix # (lines 25, 55,133). Instructions that
refer to memory are norma bled using either the program counter relative or base
counter relative mode.

The assembler dir&&ASE (line 13) is used in conjunction with base relative
addressing. The byte extended instruction format is specified with the prefix + added

to the opera% e in the source statement.
RegisterftosregiSter instructions are used wherever possible. For example the statement
on lime is changed from COMP ZERO to COMPR A,S. Immediate and indirect
addressing have also been used as much as possible.

ister-to-register instructions are faster than the corresponding register-to-memory
@Derations because they are shorter and do not require another memory reference.

While using immediate addressing, the operand is already present as part of the
instruction and need not be fetched from anywhere. The use of indirect addressing often
avoids the need for another instruction.

2.2.1 Instruction Formats and Addressing Modes

e SIC/XE
o PC-relative or Base-relative addressing: op m
o Indirect addressing: op @m
o Immediate addressing: op #c %
o Extended format: +op m C}
o Index addressing: op m,X @
0 register-to-register instructions \)
o larger memory -> multi-programming (program allocation)

Translation CJQ

Register translation

o register name (A, X, L, B, S, T, F, PC, SW) an@alues (0,1, 2,3, 4,

5,6,8,9)

o preloaded in SYMTAB Qg));

Address translation %
o Most register-memory instné\v:'oﬁ% use program counter relative or base

relative addressing

o Format 3: 12-bit ad ‘%d
base-relativ 95

pc-relatiVe: 8~2047
o Format Kb' address field
2.2.2 Program l&n
The need fo relocation

o:&%sirable to load and run several programs at the same time.

he system must be able to load programs into memory wherever there is room.

@V e The exact starting address of the program is not known until load time.
Q Absolute Program

e Program with starting address specified at assembly time

e The address may be invalid if the program is loaded into somewhere else.
e Example:

Example: Program Relocation

0000
0006 | 4B101036 | (+JSUB RDREC)

1036“| B410 l¢ — RDREC Q)(,

1076

5000

7420

7426 | 4B108456 | (+JSUB RDREC)
8456" | B410 le— RDREC

8496

5006 | 4B106036 | (+JSUB RDREC) V
6026 “| B410 [~ RDREC Q

6076

4

e The only parts of the program that require m % at load time are those that
specify direct addresses. @
e The rest of the instructions need not @fmed.
o Not a memory address (%ate addressing)
o PC-relative, Base-@%

e From the object pr ft'is not possible to distinguish the address and constant.

o The @ must keep some information to tell the loader.

o The oBject program that contains the modification record is called a

e%ble program.
The way,: s‘(%\e relocation problem

an address label, its address is assigned relative to the start of the

strogram(START 0)

e Produce a Modification record to store the starting location and the length of the
address field to be modified.

Q e The command for the loader must also be a part of the object program.

Modification record

e One modification record for each address to be modified

e The length is stored in half-bytes (4 bits)

e The starting location is the location of the byte containing the leftmost bits of the
address field to be modified.

the middle of the first byte.

Modification record Q)
Col. 1 M

Col. 2-7 Starting location of the address field to be modified, x)
relative to the beginning of the program (Hex) Q

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

Relocatable Object Program 6

HCOPY ULUUOOU()]UY? 5 half- bytes
Tocoonomnzozobgzoznasl032026290000332007&133F2}Ec032010
T()UOO1Dl30}2(;1601000}0}200D43_3E200365A1—ﬁ6 '
roomsemsa|osz.uugz.4075101000h32019332nAszm3A00433200857c0033850
Iuo1cu31uzu:>,nm340004}0000,5&3410774000531011332?;A53c003m20083850
100107907332&;55061»005

00000705 _—=

MO000 14505

M00002705

E:,\OOOOOU

e If the field contains an odd number of half-bytes, the starting location begins in :%

2.3. MACHINE INDEPE &SEMBLER FEATURES

2.3.1 Literals ®

e The prog er ertes the value of a constant operand as a part of the instruction
that ys@s it This avoids having to define the constant elsewhere in the program
and ma abel for it.

@ n operand is called a Literal because the value is literally in the instruction.

%
&

e Consider the following example

LDA FIVE

FIVE WORD 5

| _“> LDA =X05 Q\)
e It is convenient to write the value of a constant operand as a ?C)instruction.

e A literal is identified with the prefix =, followed b@lﬁcaﬁon of the literal

value.

\

45 001A ENDFIL LDA =C’EOF’ 032010
7 “nixbpe disp
] 000000 110010 010
93 ~__—LTORG
002D * =C’ EOF’ 454F46
215 1062 WLOOP TD =X'05’ E3Z01T
230 106B WD =X'05" ~ DF2008
1076%— =x'05’ 05

Literals Vsb*ggate Operands
. \%ls

the assembler generates the specified value as a constant at some other memory
location.

@ 45 001A ENDFIL LDA =C’EOF’ 032010]
Q e Immediate Operands

55 0020 LDA #3 01do03]

The operand value is assembled as part of the machine
instruction

e We can have literals in SIC, but immediate operand is only

valid in SIC/XE. @
Literal Pools Q)@
e Normally literals are placed into a pool at the end of the V

program

e In some cases, it is desirable to place literals into a @9

some other location in the object program

e Assembler directive LTORG 6

o When the assembler encounters a]%1}« tatement, it
ter

generates a literal pool (contaim al operands
used since previous LTORG

e Reason: keep the literal opera se)to the instruction

0o Otherwise PC-re@ ressing may not be allowed

Duplicate literals

e The same literalA&)nore than once in the program

0 | copy of the specified value needs to be stored

A& rexample, =X’05’
. der to recognize the duplicate literals

o Compare the character strings defining them

X\O Easier to implement, but
<) has potential problem e.g.
% =X’05"

3’7 o Compare the generated data value

e Better, but will increase
the complexity of the
assembler

e.g. =C’EOF’ and =X"454F46’

Ay

4

C_) literal
Pass 2

Problem of duplicate-literal recognition

e ‘¥’ denotes a literal refer to the current value
of program counter o BUFEND EQU *

e There may be some literals that have the same name,
but different values o BASE *
o LDB=* #LENGTH)

e The literal =* repeatedly used in the program has the samew

name, but different values

e The literal “=*" represents an “address” in the program, Quk
assembler must generate the appropriate ‘“Modification

records”.

Literal table - LITTAB Q%'A\
Content @
o Literal name Q)
0 Operand value and le
o Address \
e LITTAB is often orga g?as a hash table, using the literal
name or value a% .
Implementation 0@1
Pass 1 ®

uil TTAB with literal name, operand value and length,
lég¥img the address unassigned

address to each literal not yet assigned an address

[]
C\AOJWhen LTORG or END statement is encountered, assign an

o updated to reflect the number of bytes occupied by each

e Search LITTAB for each literal operand encountered

e Generate data values using BYTE or WORD statements

e Generate Modification record for literals that represent an
address in the program

&
>

SYMTAB & LITTAB

SYMTAB __wame va 1ue0 LITTAB

COPY
FIRST 0 Literal Hex Length | Address

CLOOP 6 value
ENDFIL 1A ¢’ EOF’ 454F46 |3 002D @
SETADR dt X’ 05’ 05 1 1076 6
LENGTH 33
BUFFER 36 @
BUFEND 1036 v

)

MAXLEN 1000

RDREC 1036
RLOOP 1040
EXIT 1056
INPUT 105C
WREC 105D
WLOOP 1062
2.3.2 Symbol-Defining Statements Q)
e Most assemblers provide an ass ective that allows the
programmer to define symbo 01fy their values.

Assembler directive used is

e Syntax: symbol E a

e Used to i e t ¢ program readability, avoid using magic
numbers eas1er to find and change constant values

: Ren,%\

MAXLEN
\v EQU 4096

%\C,) +LDT #MAXLEN
e Define mnemonic names for registers.
A EQU 0RMO A X

X EQU 1

e Expression is allowed
MAXLEN EQU BUFEND-BUFFER

Ay

Assembler directive ORG

e Allow the assembler to
reset the PC to values
o Syntax: ORG value

e When ORG is encountered, the assembler resets its LOCCTR
ORG.

to the specified value. @
e ORG will affect the values of all labels defined until the next @

remembered, we can return to the normal use of LOCCTR

simply writing (
o ORG
Example: using ORG 56

e [f the previous value of LOCCTR can be automaticallfwV

e [fORG statements are used) Q‘
STAB RESBE 1100
ORG STAB g SetLOCCTRto STAB
SYMBOL RESB |6
VALUE RESW |1 .
FLAGS RESE |2 <4 Sjze of each field

ORG STAB+1100 == Restore LOCCTR

K

e We can fetch
V

AALDA
VALU
EX

X\O X=0,11,22, ... for each entry

‘%C') Forward-Reference Problem

e Forward reference is not allowed for either EQU or ORG.

e All terms in the value field must have been defined previously
in the program.

e The reason is that all symbols must have been defined during
Pass 1 in a two-pass assembler.

e Allowed:

ALPHA RESW 1
BETA EQU ALPHA
e Not Allowed:
BETA EQU ALPHA @
ALPHA RESW 1 6
2.3.3 Expressions 6)
e The assemblers allow “the use of expressions as operand” V

e The assembler evaluates the expressions and produces a @
operand address or value.

e Expressions consist of Operator l%
o +-%/ (division is usually defi N
produce an integer result) Individual ter Q'

o Constants

o User-defined symbols %‘
o Special terms, e.g., *, t A&é} value of LOCCTR
e Examples
MAXLEN EQU 6 FEND-BUFFER
(

STAB RESB 6+3+2)*MAXENTRIES
Relocation Problem in ssions
e Values ban be
0 te (independent of
Q program
location)

E y constants
o Relative (to the
(| beginning of

the program)

< \) Address labels
‘ E * (value of LOCCTR)
X’V e Expressions can be
o Absolute

" o Only absolute terms.
o MAXLEN EQU 1000
. Relative terms in pairs with opposite signs for
each pair.

MAXLEN EQU BUFEND-BUFFER
° Relative

S
o

4

All the relative terms except one can be paired as described in
“absolute”. The remaining unpaired relative term must have a
positive sign.

STAB EQU OPTAB + (BUFEND -
BUFFER) 6
Restriction of Relative Expressions @
e No relative terms may enter into a multiplication or Vw
division operation o 3 * BUFFER Q
e Expressions that do not meet the conditions of either “absglu

or “relative” should be flagged as errors.
« BUFEND + BUFFER @
e 100 - BUFFER x
Handling Relative Symbols in SYMTAB Q%’
e To determine the type of an exp%%ﬂe must keep track of

the types of all symbols define e program.
e We need a “flag” in the SY r indication.
AL

~

Symbol Type Value

RETADR R 0030 » Absolute value

BUFFER R 0036 BUFEND - BUFFER

BUFEND R 1036 . Illegal

MAXLEN A 1000 BUFEND + BUFFER
100 - BUFFER
3 * BUFFER

Blocks

N

the object program in a different order

2.34Pr
q e) Allow the generated machine instructions and data to appear in
[

Separating blocks for storing code, data, stack, and larger data
block

e Program blocks versus. Control sections
o Program blocks
e Segments of code that are rearranged

within a single object program unit.
o Control sections

e Segments of code that are translated into
independent object program units.

e Assembler rearranges these segments to gather together the
pieces of each block and assign address.

e Separate the program into blocks in a particular order &
e Large buffer area is moved to the end of the object program &

e Program readability is better if data areas are placed in t V
source program close to the statements that reference them. 6
Assembler directive: USE Cj
e USE [blockname] ‘%C>
e At the beginning, statements are assume@ part of the

unnamed (default) block

e Ifno USE statements are include ,&dtire program belongs
to this single block

e FEach program block N lly contain several separate
segments of the sourc gar.

Example Q)

(defaulf) block _~ Block nhumber

10000 ! 0 COPY START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JsuB RDREC 4B2021
0006 0 LDA LENGTH 032060
0009 0 COMP #0 290000
000C 0 JEQ ENDFIL 332006
000F 0 JSUB WRREC 4B2038
0012 0 J CLOOP 3F2FEE
0015 0 ENDFIL LDA =C’EOF’ 032055
0018 0 STA BUFFER 0F2056
0018 0 LDA # 010003
001E 0 STA LENGTH 0F2048
0021 0 JSUB WRREC 4B2029
0024 0 J @RETADR 3E203F
10000 1 USE CDATA 4 CDATA block

< 0000 1 RETADR RESW 1
0003 1 LENGTH RESW 1
10000 § 2 USE CBLKS < CBLKS biock
0000 2 BUFFER RESE 4006
1000 2 BUFEND EQU .

1000 MAXLEN EQU BUFEND-BUFFER

O

RDREC

RLOOP

EXIT

[
=
fe]
&=

e = =R=1=R=R=R=R=R=R=N=R=N ==

INFUT

WRREC

WLOOP

=
=
(]
==

PR e T o e e B e B e e e Y e W '

USE+
“CLEAR

CLEAR
CLEAR
+LOT
D
JEQ

COMPR
JEQ
STCH
TIXR
JLT
5TX
R5SUB
USE

B BIORG
0007 1 . ~C'EOF
ZX05

000A 1 ®

Three bl%%’ used

END

° deh@cutable instructions.

o % A: all data areas that are less in length.

e VCBLKS: all data areas that consists of larger blocks of memory.

(default) block

X
A
)
#MAXLEN
INPUT
RLOOP
INPUT
AS
EXIT
BUFFER,X
=
RLOOP
LENGTH

CDATA ™
KFET

LENGIH

o,

T
WLOOP

CDATA =

FIRST

CDATA

CBLKS

B410
B400
B440
76101000

E32028
332FFA Q)
DB2032
ADD4
332008
57TA02F
Baso \)
3B2FEA
13201F
4F000D
CDATA block Q
Fi C)

\%6

_— (default) b-—ocE
x B410

2017
E3201B
332FFA
53A016
DF2012
Bas0
3B2FEF
4F0000

CDATA block

454F46
05

Rearrange Codes into Program Blocks
Pass 1

e A separate location counter for each program block

o At the beginning of a block, LOCCTR is set to 0.

o Save and restore LOCCTR when switching between blocks C}Q)

e Store the block name or number in the SYMTAB along with the assig
address of the label

e Indicate the block length as the latest value of LOCCTR fo @lock at the end
of Pass1 ,%
by

e Assign to each block a starting address in the Ob%@ concatenating the

program blocks in a particular order (
) B

Block name Block number Address Length

e Assign each label an address relative to the start of the block \)
Ao

(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2. 0071 1000

Pass 2 \)

e C(Calculate the address for%ﬁymbol relative to the start of the object program
by adding

o The location ofithe symbol relative to the start of its block
o The s@ dress of this block

Program Blocks(Ldaded in Memory

Program loaded pgejasive

Line Source program Object program in memory address
5 [Default(1) Default(1) Default(1) 0000
|
3 0027
Default(2) Defauli(2)
70 y
T — 3| CDATA(1)
df—’_"r‘j"fﬁ?‘*ﬁ"i {100 / 4CDATA®) \ Default(3) o2
n _,\;'.f:‘(,t program |1os CBLKS(1) / Default(3) -..:______.-"
125 | Default(2) . [coatam 0088
\\l 006C
_ YcDATAQR)
i A CDATA(3) G0eD
135|CDATA(2) CBLKS(1) oor
210 Default(3)
245
253 |CDATA(3)

1070
2n

Object Program

e It is not necessary to physically rearrange the generated code in the object
program

e The assembler just simply inserts the proper load address in each Text record. :%

e The loader will load these codes into correct place Q)

HCOPY 000000001071

T000000]E1720634B20210320602900003320064B203B3F 2FEE0320550F 2056010003 \)
T00001EQ90F 20484B20293E203F \0

T0000271DB410B400B44075101000E 32038332F F ADB2032A0043320085 TA02FBB50
T000044093B2FEA1 3201F4F0000

T00006CO1F1

T00004D198410772017E3201B332FFA53A016DF 2012B8503B2F EF 4F0000
T00006D04454F 4605

E000000

\‘y
2.3.5 Control Sections and Program Linking %&
Control sections Q)
e can be loaded and relocated independent other
0

e are most often used for subrouting§ o 1 logical subdivisions of a program

e the programmer can assem
separately

e Dbecause of this, th %‘ﬂ be some means for linking control sections together
e assembler d;@ SECT
o secnam@CSECT

. sepaﬂlﬁition counter for each control section
Exterl@ﬁnition and Reference

E structions in one control section may need to refer to instructions or data located

; , and manipulate each of these control sections

in another section

e [External definition

o EXTDEF name [, name]
o EXTDEF names symbols that are defined in this control section and may
be used by other sections

o Ex: EXTDEF BUFFER, BUFEND, LENGTH

e External reference
o EXTREF name [,name]
o EXTREF names symbols that are used in this control section and are
defined elsewhere
o Ex: EXTREF RDREC, WRREC
[]

-Implicitly defined as an external symbol
i __ first control section

To reference an external symbol, extended format instruction is needed.

F 3
CoPY START4— 0 COPY FILE FROM INPUT TO QUTPUT
[_EXTDEF __ BUFFER,BUFEND,LENGTH | V
[EXTREF _ RDREC,WRREC | 0
FIRST STL RETADR SAVE RETURN ADDRESS
CLOOP HJSUB RDREC READ INPUT RECORD
LDA LEMGTH TEST FOR EOF (LENGTH=0)
COMP %0
JEQ ENDFIL EXIT IF EOF FOUND
[hsue WRREC WRITE OUTPUT RECORD
] CLOOP LooP
ENDFIL LDA =C'EOF INSERT END OF FILE
STA BUFFER
LDA #3 SET LENGTH =
STA LENGTH
[+hsuB WRREC WRITE EOF %’
] @RETADR RETURM T
RETADR RESW 1
LENGTH RESW 1 LEM D
LTORG
BUFFER RESB 4096 FFER AREA
BUFEND EQU
MAXLEN EQU BUFFEND-BUFFER X
- Implicitly defined as ap e tg?;wmpl
.
offec csecT L — S itrol section
SUBROUTINE TO REA RD INTO BUFFER
LN
EXTREE o ENGTH,EUFFEND
CLEA "IN CLEAR LOOP COUNTER
cL CLEAR A TO ZERO
fola:1} CLEAR S TO ZERO
MAXLEN
RLOOP T INPUT TEST INPUT DEVICE
RLOOP LOOP UNTIL READY
R INPUT READ CHARACTER INTO REGISTER A
COMPR. A5 TEST FOR END OF RECORD (X'00°)
JEQ EXIT EXIT LOOP IF EOR
+STCH BUFFER.X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAX LENGTH HAS
T RLOOP BEEN REACHED
T +STH LENGTH SAVE RECORD LENGTH
RSUB RETURN TO CALLER
INPUT BYTE XFL CODE FOR INPUT DEVICE
MAXLEN WORD BUFFEND-BUFFER

~ Implicitly defined as an external symbol
-~ third control section
"

P
WREEC CSECT 4

SUBROUTINE TO WRITE RECORD FROM BUFFER

{EXTREF LENGTH,BUFFER |

CLEAR X CLEAR LOOP COUNTER
+LDT LENGTH Q)
WLOOP ™ =X05' TEST OUTPUT DEVICE
JEQ WLOOP LOOP UNTIL READY C}
+LDCH BUFFER X GET CHARACTER FROM BUFFER %
) =X05' WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE \)

T WLOOP BEEN WRITTEN
RSLB RETURN TO CALLER \)
END FIRST Q
External Reference Handling 6
Case 1 \é \
e 15 0003 CLOOP +JSUB RD%% < 4B100000
e The operand RDREC is an external refere@

e The assembler ‘%

o Has no idea where RD is
Inserts an address of
o Can only use extedded Mprmat to provide enough room (that is, relative

addressing for exte eference is invalid)
e The assembler t it’informa‘[ion for each external reference that will allow
the loader to Q e required linking.
Case 2

p
e 190 %;;AXLEN WORD BUFEND-BUFFER

000000

o

C}re are two external references in the expression, BUFEND and BUFFER.

E e The assembler
@’ o inserts a value of zero
Q o passes information to the loader

e Add to this data area the address of BUFEND

e Subtract from this data area the address of BUFFER

Case 3
e On line 107, BUFEND and BUFFER are defined in the same control section and

the expression can be calculated immediately.
e 107 1000 MAXLEN EQU BUFEND-BUFFER

Records for Object Program

loader to insert proper values where they are required.

e The assembler must include information in the object program that will cau@

e Define record (EXTDEF) Q\)
o Col.1D ‘
o Col. 2-7 Name of external symbol defined in thi@;1 ection

o Col 8-13 Relative address within this control s§ ion thexadeccimal)

o Col.14-73 Repeat information in Col. 2-13 f ternal symbols

e Refer record (EXTREF)

o Col.1 R ,;
o Col.2-7 Name of external sym d to in this control section

o Col. 8-73 Name of other exte‘% nce symbols
e Modification ‘%
record Col. 1 M C}
o Col. 2-7 Starting N‘} of the field to be modified
(hexiadecimal) C@ ength of the field to be modified, in

half-bytes (hexadeccitmal)

from & icHted field

e Control sectiep name is automatically an external symbol, i.e. it is available for
use imModification records.
Object l}mgra

COPY
HCOPY 000000001033
DBUFFERO00033BUFENDOO1033LENGTHO0002D |
RRDREC WRREC

-~
70000007 D1720274B1000000320232900003320074B1000003F 2FEC0320160F 2016
@ T00001D0DO100030F200A4B1000003E2000

T00003003454F 46
MD0000405+RDREC
MDO00O01 105+ WRREC
NO0002405+WRREC
EOO0OOO0

RDREC
HRDREC 00000000002B
RBUFFERLENGTHBUFEND |

T000000] DB410B400B44077201FE3201B332FFADB2015A00433200957900000B860
T00001DOE3B2FEY131000004F000QF 1000000
N000O01805+BUFFER

N00002105+LENGTH %
M00002806+BUF END -.. _ -

MO0002806-BUFFER - BUFEND - BUFFER %

E

WRREC \)

HWRREC 00000000001C
[RLENGTHBUFFER |

T000000] CB41077100000E 3201232FF A53900000DF 2008B8503B2FEE 4F 000005 Q
N00000305+LENGTH <)
NDOD0ODD5+BUFFER

: &
Expressions in Multiple Control Sections ‘\%
e Extended restriction %’

o Both terms in each pair of an expressi st be within the same control

section
o Legal: BUFEND-BUFFER
o Illegal: RDREC-COPY \
e How to enforce this restrictio;%zf
o When an express@l/olves external references, the assembler cannot

determine w r or hot the expression is legal.
o The asse uates all of the terms it can, combines these to form an

initial expeession value, and generates Modification records.
o The leader Shecks the expression for errors and finishes the evaluation.
240NEP AXEMBLERS AND MULTI PASS ASSEMBLERS

241 g\l%A S ASSEMBLER

d-Go Assembler

e Load-and-go assembler generates their object code in memory for immediate
execution.

e No object program is written out, no loader is needed.
e [t is useful in a system with frequent program development and testing

e The efficiency of the assembly process is an important consideration.

e Programs are re-assembled nearly every time they are run; efficiency of the
assembly process is an important consideration.

One-Pass Assemblers
e Scenario for one-pass assemblers C}Q)
o Generate their object code in memory for immediate execution — @)

and-go assembler

o External storage for the intermediate file between two passes i M 1S
inconvenient to use :
e Main problem - Forward references 6
o Data items
o Labels on instructions \
e Solution %&

Require that all areas be defined befor: are referenced.
It is possible, although inconveni o0 so for data items.

Forward jump to instruction i not be easily eliminated.

© © © ©

Line Object code

/0 2033 LC

2036 . | FETHR
Forward Reference in One-pass Assembler

e Omits the operand address if the symbol has not yet been defined.

Enters this undefined symbol into SYMTAB and indicates that it is undefined.

Adds the address of this operand address to a list of forward references associated
with the SYMTAB entry.

When the definition for the symbol is encountered, scans the reference list and C}Q)
inserts the address.

indicated undefined symbols.

For Load-and-Go assembler <) :

Search SYMTAB for the symbol named in the END state e@i jumps to this
location to begin execution if there is no error.

At the end of the program, reports the error if there are still SYMTA@

Object Code in Memory and SYMTAB Q%\,

After scanning line 40 of the above program

R

L
:‘:d"r‘:g Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
1010 XXXXXXXX ~XXXXXXXX XXXXXXXX XXXXXXXX RDREC | % l .__’{2013 l 0 l
: THREE | 1003
20-00 XXXXXX XXXXXXKX XXXXXXXX XXXxxx14 ZERO 1006
:gég égzgoéiz —Joolooc 28100630 TE‘;E nce |a] "_’Pm 2 m
¥ EOF 1000
. ENDFIL | * &-'—-blzmcl 0 l
RETADR | 1009

BUFFER | 100F

CLOOP |2012

FIRST 200F

&

After scanning line 160 of the above program

Memory Symbol Value
address Contents LENGTH | 100C
1000 454F4600 00030000 OOXXXXXX XXXXXXXX RDREC 203D
1010 AXXXXAXX XXXXXXXX XAXXXXXX XXXXXXXX —t
. ___—{"THAREE | 1003
= D
P e ZERO 1006
2000 XXXXXXAX — XFXXRRAK XAXXKXXXX xxxxxx14 | II |
2010 10094820 3D00100C 28100630 20244 < WRRAEC -+ [= .201 £] -2031 | @
2020 3C2012 0010000C 100F001Q oSbEJr@ —1"EOF 1000
2030 4 1T0094C00 O0O0F10010 00041006
2040 O01006E0 20393020 43D82039 28100630 ENDHL,,, 2024

20-50 55490 4 RETADR | 1009
: BUFFER 100F
CLOOP 2012 V
FIRST 200F Q
MAXLEN | 203A A
INPUT 2038 u
x|+ [=p—{zwo]]

RLOOP 2043)

If One-Pass Assemblers need to produce object codes ‘\\'

e [f the operand contains an undefined symbo!@)s the address and write the

Text record to the object program.

e Forward references are entered into lji he load-and-go assembler.
e When the definition of a symb eneountered, the assembler generates another
Text record with the correct address of each entry in the reference list.

e When loaded, the incorrec%ﬁress 0 will be updated by the latter Text record
containing the symb finitton.

Object code generate -pass assembler
A

OPY A001000A00107A

TP0100009454F46000003000000
P0200E1514100948000000100G2810063000004800003C2012
[T00201C022024 | -

T002024190010000C100E0010030C100C4800000810094C0000F1001000
[gpozo1§pggo3n|
T00203D1EQ041006001006E02039302043D8203928100630000054900F2C2034382043
T00205002205B

T00205B07,10100€4C000005

T00201E022062

1002031022062
T00206218041006E0206130206550900EDC20612C10063820654C0000

EAOOZOOF

.
o

M

2.4.2 MULTI-PASS ASSEMBLERS

Multi Pass Assembler:

« If we use a two-pass assembler, the following symbol definition cannot be %

allowed.
ALPHA EQU BETA %
BETA EQU DELTA \)
DELTA RESW1 \)
* This is because ALPHA and BETA cannot be defined in pass 1. @, if we
allow multi-pass processing, DELTA is defined in pass 1, BET ANs”defined in
pass 2, and ALPHA is defined in pass 3, and the above de‘%@

» This is the motivation for using a multi-pass assembler.

an be allowed.
* It is unnecessary for a multi-pass assembler to % e than two passes over

the entire program.
* Instead, only the parts of the program 1} %)forward references need to be
processed in multiple passes.
* The method presented here can ux process any kind of forward references.
Multi-Pass Assembler Implement
* Use a symbol table to store ols that are not totally defined yet.
* For a undefined sy HLits entry,
- We st % ames and the number of undefined symbols which
t

cont the calculation of its value.

—‘%.em keep a list of symbols whose values depend on the defined value

is symbol.

. X\% a symbol becomes defined, we use its value to reevaluate the values of all

~
&

he symbols that are kept in this list.

The above step is performed recursively.

DRl

Forward Reference Example:

HATLFSZ
MAXT.EN
PREVBT

BUFFER
BUFEND

But one symbol is pnknown yet

HALFSZ |&1(MAXLEN/2

Defined

MAXLEN | *

HALFSZ |0

q
v

Not defined yet

&

S

N4

>
S

EQU
EQU
EQU

RESB

D

After first line

&

MAXL.EN/2
BUFEND-BUFFER

fUFFER_l C§°
N

O

&
N

4096

*

BUFEND | *

v

MAXLEN |0

HALFSZ &1

MAXLEN/2 0

After second line

But two symbols are unkjown vet

MAXLEN (82| BUFEND-BUFFER | e+—{ HALFSZ |0
Now defined
BUFFER |* o+—| MAXLEN |0
L %
BUFEND | * o~+—>{ MAXLEN | 0
HALFSZ |&1|MAXLEN/2 0
After third line

PREVBT |&1|BUFFER-1 0
MAXLEN |&2 | BUFEND-BUFFER o—p{ HALFSZ |0
BUFFER | * o+—p| MAXLEN | e+ PREVBT |0

O

&

BUFEND

MAXLEN | 0

HALFSZ |&1| MAXLEN/2
After 4'th line x%)
PREVBT {1033 Q\)
MAXLEN |&1| BUFEND-BUFFER HALFSZ |0 QC)
BUFFER |1034 Q%’
)
%
N
y
BUFEND | 2034 0
HALFSZ | 800 0
After 5°th line
PREVBT | 1033 0
All symbols are
MAXLEN | 1000 0 defined and their
values are known
NOW,
BUFFER | 1034 0

2.5 IMPLEMENTATION EXAMPLE MASM ASSEMBLER.
* A collection of segments.
— Each segment belongs to a specific class

* Common classes: CODE, DATA, CONST, STACK

— Segments are addressed by segment registers: @6

* Segment registers are automatically set by loader.
+ CODE: CS, Q\)

— 1s set to the segment containing the starting label specified

in the END statement. 6

 STACK: SS

— Is set to the last stack segmen@sed by the loader.
+ DATA: DS, ES,FS,GS Q)

— Can be specified b % mers in their programs.
— Otherwise, onx“%ﬂ is selected by assembler.
ent register by default

— DS is the data
P n be changed and set by: ASSUME
%:DATASEGZ
% Any reference to the labels defined in DATASEG?2
@ will be assembled based on ES

Q Must be loaded by program before they can be used.
Yw » MOV AX,DATASEG2
: » MOV ES, AX

— ASSUME is somewhat similar with BASE in SIC,

programmer must provide instructions to load the value to
registers.

@V * Collect several segments into a group and use ASSUME to link a

register with the group.

» Parts of a segment can be separated and assembler arranges them
together, like program blocks in SIC/XE
* JMP is a main specific issue:

— Near JMP: 2 to 3 bytes, same segment, using current CS

— Far JMP: 5 bytes, different segment, using a different segment register, as
the instruction prefix.

— Forward JMP: e.g., IMP TARGET,
* Assembler does not know whether it is a near jump or far jump, so
not sure how many bytes to reserve for the instruction. C}

* By default, assembler assumes a forward jump is near jump.
Otherwise,

. JMP FAR PTR TARGET , indicate a jump to a different 5&6}1
— Without FAR PTR, error will occur. QJQ
(0]

— Similar to SIC/EX extended format inst
* JMP SHORT TARGET, indicate a within; t jump.
* Other situations that the length of an instruction dep%' perands. So more

complicate than SIC/EX %)
— Must analyze operands, in addition t

— Opcode table is more complex. :EQ)

* References between segments that % bled together can be processed by

assembler
* Otherwise, it must be pro%@loader.

— PUBLIC is sigatlar to EXTDEF

* Object progxﬁﬁ
. MASﬁVca?bo generate an instruction timing list.

S
‘%CJ
&

MASM can have different formats.

UNIT III

LOADERS AND LINKERS

INTRODUCTION

e Many loaders also support relocation and linking.

e Loader is a system program that performs the loading function. %Cg)

e Some systems have a linker (linkage editor) to perform the linking op and
a separate loader to handle relocation and loading.

e One system loader or linker can be used regardless of @riginal source
programming language.

e Loading Brings the object program into memory f %’on.

e Relocation Modifies the object program so n be loaded at an address
different from the location originally speci

e Linking Combines two or more object programs and supplies the
information needed to allow refereCe> etween them.

3.1 BASIC LOADER FUNCTI

Fundamental functions of a l%;
1. Bringing an o '@ram into memory.
2. Starting its tioh.

3.1.1 Desigg@olute Loader

For a 'r%bsolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has
resented for loading.

As each —Text record is read, the object code it contains is moved to the indicated
Q address in memory.

3) When the End record is encountered, the loader jumps to the specified address to begin
execution of the loaded program.

ZaN

An example object program is shown in Fig (a).

BEOPY 001000001074
10010001 51410334820390010362810303010158820613€1003000249C103800102D

TO0101K}1 500103648206 10810334 CO0004 54F46000003,000000
100203518041030001030202050302037,082050281030302057,5490392C205338203F

1002057161 010364000007 100100004 10308020793020645090330C20792C1036

70020730738206440000005 \)

001000
(s) Object program

O

Fig (b) shows a representation of the program from Fig (a) at;ter@ng

Memory
addrese Contents

0000 xXXXXXXL AXKAAXAXX IXXXIXXX XXXAXXXAX
0c10 EXAXAAXT AAAXXAKX AXXXXXEIX XAAXXIRX

0FFO RARX XXX XXAK
1000 A4 3348 20390010 36281030 3QICi34B
1010 20613C10. Q3001024 QC103900 102DOC1D
1020 36482061 0O810334C QO0004534F 46000003
1030 |000000xx xxxxxxxx xxxxxxxx xzxxxzxsx[*COPY

o * » L o
- L L4 » -
L] - L < L

2030 Xxxaxxxy xxxxxxxx xx04}030 OC01030EQ
2040 20503020 3FDE8203D 28103030 20575490
2050 392C203E 3J8203F1D 10384C00 O00FPi0010
2060 00043030 EQ2075310 20845090 349DC207%
2070 2C103638 20644C00 000Skxxx AxxXRXNX
2080 EXAAXRAAE KARXNRXAE NXXXAXXX RAXXIEXXX

L] - a L .
» - . - L
- - - °]

(b) Program loaded in memory
y

©

Algorithm for Absolute Loader

begin
read Header record

verify progran name and length
read first Text record

S &
\ﬂo

{if object code is in character form, convert into
internal representation}

move cbject code to specified location in memory \)
read next okject program record Q
and :

jump to address spscified in End record
end

byte of the object program record.

e [t is very important to realize that in Fig (a), each p@iacter represents one

e In Fig (b), on the other hand, each printed represents one hexadecimal
digit in memory (a half-byte).

e Therefore, to save space and exe 'OE time of loaders, most machines store
object programs in a binary for i ch byte of object code stored as a single

byte in the object program.
e In this type of representati%) € may contain any binary value.

3.1.2 A Simple Bo%o er
When a computer is turned on or restarted, a special type of absolute loader, called a

bootstrap lo e%xecuted. This bootstrap loads the first program to be run by the
computer — n operating system.

Worki simple Bootstrap loader
. hen a computer is first turned on or restarted, a special type of absolute
‘% loader must be executed (stored in ROM on a PC).

e The bootstrap loader loads the first program to be run by the computer —
usually the operating system, from the boot disk (e.g., a hard disk or a floppy
disk)

e It then jumps to the just loaded program to execute it.

e Normally, the just loaded program is very small (e.g., a disk sector’s size, 512

bytes) and is a loader itself.

e The just loaded loader will continue to load another larger loader and jump to
it.

e This process repeats another entire large operating system is loaded.

e The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded \%)

Loop Q\)
A«—GETC (and convert it from the ASCII character Cfdthﬂe value of

the hexadecimal digit)

save the value in the high-order 4 bits of S %\'S
A—GETC %
combine the value to for @Ae (A+S)

store the value (in @ address in register X

End %
e Jtusesa su:;rolﬁﬂ'c, which is
GE

read one character

‘JV: if A=0x04 then jump to 0x80

if A<48 then GETC

,%C-) A «— A-48 (0x30)

&

if A<10 then return

A «—A-7 return

Source code for bootstrap loader

BOOT START 0 BOOTSTRAP LOADER FOR SIC/XE
. THIS BOOTSTRAP READS OBJECT CODE FROM DEVICE F1 AND ENTERS IT %
. INTO MEMORY STARTING AT ADDRESS 80 (HEXADECIMAL). AFTER ALL OF
. THE CODE FROM DEVF1 EAS BEEN SEEN ENTERED INTO MEMORY, THE

. BOOTSTRAP? EXECUTES A JUMP TC ADDRESS BC TC EEGIN EXECUTION OF

. THE PRCGRAM JUST LOADED, REGISTER X CONTAINS THE NEXT ADDRESS

T Q\)

CLEAR A CLEAR REGISTER A TC ZERO
Lo 128 INITIALIZE REGISTER X TO EEX BO
Locp JEus GETC READ)E(DIGITFWPROGRMBRIM[OADEDJ
RO A, S SAVE IN REGISTER S
SHIFTL 5.4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDR S,A COMEBINE DIGITS TO FORM ONE EBYTE
STCH 0.X STORE AT ADDRESS IN REGISTER X
TIXR XX ADD 1 TO MEMCRY ACDRESS BEING LCADED

J LCOP LOOP UNTIL END OF INPUT IS REACHED

. SUBROUTINE TO READ ONE CHARACTER FROM INPUT DEVICE AND

. CONVERT IT FROM ASCII CODE TO HEXADECIMAL DIGIT VALUE. THE
, CONVERTED DIGIT VALUE IS RETURNED IN REGISTER A. WHEN AN

. END-CF-FILE IS READ, CONTROL IS TRANSFERRED TO THE STARTING
. ADDEESS (HEX 80).

GETC TD INFUT MD}ME

ﬂmmmm
{E;E; IF CHARACTER, 1§ KEX 04 (BND OF FLLE),
mQ\a JINP 70 START OF PROGRAN JUST LOADED
CONPARE 10 HEX 30 (CHARACTER /0"
AJ‘ g m: SKIP CHARACTERS LESS THAY *0°
CD gm he SUBTRACT HEX 3C FROM ASCIT CODE
OF M0 P RESULT IS LASS THAN 10, CONVERSION IS

\
‘%CJ Jar RETURN COMPLETE, OTHERWISE, SUBTRACT 7 MORE

s N (FOR KEX DIGITS ‘A’ THROUGH 'F')
RETURN 10 CALLER
<¢ R0 BYIE X'FLY CODE POR INFUT DEVICE
280 LooP

3.2 MACHINE-DEPENDENT LOADER FEATURES

e The absolute loader has several potential disadvantages. One of the most obvious
is the need for the programmer to specify the actual address at which it will be

loaded into memory.
e On a simple computer with a small memory the actual address at which the C}Q)
program will be loaded can be specified easily.

programs together, sharing memory between them. We do not know 4 ce
where a program will be loaded. Hence we write relocatable progr. ead of
absolute ones.

e Writing absolute programs also makes it difficult to u @u‘[ine libraries
efficiently. This could not be done effectively if all of routines had pre-
assigned absolute addresses. \

e The need for program relocation is an indir quence of the change to
larger and more powerful computers. The reldcation is implemented in a
loader is also dependent upon machine ch eristics.

e Loaders that allow for program relo&:: are called relocating loaders or relative

e On a larger and more advanced machine, we often like to run several ind%

loaders.

&
3.2.1 Relocation ‘%
Two methods for specifying@c'%gn as part of the object program:
The first method: ®
e A Modiﬁ@ used to describe each part of the object code that must be

changﬂw he program is relocated.

‘%CJ
&

Q
) 1S€
2c¢

Fig(1) :Consider the program

Line

5
10
12
13
15
20
35
30
35
ap
a5
50
55
&0
£S
70
20
95

100
105
110
115
120
125
130
132
133
135
140
145
150
155
150
165

A 170

175
180

2Cs
21¢
212
215
220
225
230
235
240
245
250
255

Loc

0000
Q000
opo3

ooD6
000A
cOo0D
0010
0013
a017
001
001D
0020
0023
0026
DO2ZA
002D
0630
0033
0036

1036
1038
103A
103C
1040
1043
1046
1049
104B
104E
1051
1053
1056
1059
105¢C

105D
105F
1062
1065
1068
106B
106E
1070
1073
107¢

Source statement Object code

COPY START 0

FIRST STL RETADR 17202D
LDB #LENGTH 69202D
BASE LENGTH

CLOOP +JSUB RDREC 4B101036
LDa LENGTH 032026
oocMe #0 290000
JEQ ENDFIL 332007

+JSUB WRREC 4B10105D

J CLOCP 3F2FEC

ENDFIL LDA EOP 032010
STA BUFFER 0Fz016
LDA #3 010003
STA LENGTH OF200D

-~JSUB WRREC 4B10105D

J @RETADR 3E2003

EOF BYTE C’EQF* 454F46

RETADR RESW 1

LENGTH RESW 1
RESB 4096

SUBROUTINE TC READ RECORD INTO BUFFER

CLEAR X B410
CLEAR A B400
CLEAR 5 B440
+LDT #4096 75101000

™ INPUT E32019
JEQ RLOOP 332FFA
RD INPUT DB2013
COMPR A,S AN04
J2Q EXIT 332008
STCH BUFFER, X 57C003
TTXR T BA50
JuT RLOOP 3E2FEA
STX LENGTH 134000
RSUB 4F0000
BYTE X'F1’ FL

SUBROUTINE TO WRITE RECCRD FROM BUFFER

CLEAR X B41C
ior LENGTH 774000
™ QUTPUT E32011
JEQ WLOOP 332FFA
LICH BUFFER, X 53C003
WD OUTPUT DF2008
TR T BE50
JAT WLOCP 3B2FEF
RSUB 4F00C0
BYTE X 05 05

END

e Most of the instructions in this program use relative or immediate addressing.

e The only portions of the assembled program that contain actual addresses are the
extended format instructions on lines 15, 35, and 65. Thus these are the only items
whose values are affected by relocation.

Object program

&
o eesguar \%)

‘IAOOOOOOAI ol 7202!;\69202 IB“I 101 OJOAOJIOZ 63 90009‘1)2007"6) 101 OSI!‘JII FEC032010

‘IAOOOOJ DAl SAOHOMAO1000JAOYNODAQI10105%332003’\65‘?‘& \)
1;00!03&1 DAIHO‘IQOQ‘lt‘DA?Sl0100%320I&SSZPYAADIZOX%AOOQASS 2000"370003,‘!350 \Q
‘&00!05% qenrug)6000&!0000.!’1*!‘ lq‘”GODo‘lSIOI 133271?30003,?!200*.!30

?AOOIONAO;‘JIIIIPAQ POOOOPS

KP0000705+COPY
K000 14D3+COPY
HO00027,05+COPY
E000000 '
Y
e FEach Modification record specifies the sta ress and length of the field

whose value is to be altered.

e [t then describes the modification t @mmed.
e In this example, all modificati igd the value of the symbol COPY, which
represents the starting address program.

Fig(2) :Consider a Relocat@o am for a Standard SIC machine
)

A
Line Lac Source statement Object code
5 0000 CoPY START 0

12 9000 FIRST STL RETADR 140033
15 0003 CLCoP JSUB RDREC 481039
20 0006 DA LENGTH 000036
25 0009 coMp ZERO 280030
ao oooc JEQ ENDFIL 300015
35 00CF JsuB WRREC 481061
40 0012 J CLoCP 3C0003
45 001s ENDFTL LDA 20F 000022
56 ocls STA BUFFER 0C0039
55 cols LoA THREE 000¢2D
&0 001E STA LENGTH DCDO36
5 0021 JSUB WRREC 481061

49

Q

200 : SUBROUTTNE TC WRITE RECORD FROM BUFFER
205 .

210 1061 WRREC L ZERC 046C30
215 1064 wWLOCP ™ oUTHUT ED1079
229 1067 JEQ WLOOF 301064
228 106a LDCH BUFFER., X 508039
210 106D v OUTPUT DC107¢
235 1070 TIX LENGTH 2C0036
240 1073 JLT ooP 381064
245 1076 R3UB 4C0000
250 1079 OUTPUT BYTE X'05° 05

s D FIRST

e The Modification record is not well suited for use with all 4pac
architectures.Consider, for example, the program in Fig (2) .This is a Q le
program written for standard version for SIC.

e The important difference between this example and the one jh Eig (1) is that the
standard SIC machine does not use relative addressing.

e In this program the addresses in all the instructions exce SUB must modified
when the program is relocated. This would requi Modification records,
which results in an object program more than twiceas)large as the one in Fig (1).

The second method:

There are no Modification records@é

The Text records are the sa bdfore except that there is a relocation bit
associated with each word jeet code.
Since all SIC instructions one word, this means that there is one relocation

bit for each possible @i n.

Fig (3): Object pr(&n with relocation by bit mask

ton

(\

Jo0809p01074

&g@w«lw 400} IACCIOJ&OOOUJQ‘”OOSQ‘)OOO 1548106 &SCOOO\WOOIAPCOOJ!AOOWII
WE@DI &l SMCOOM*QMOG IKNOOHAQ00000:36!36&00000&000000

TROOlOJ&IM“OOJOAOOOOSQ‘IOlOS?MOJf'\DllO!wOOO)q‘!Ol 0373480352C105838103F

0] 05&0&‘0_0‘1 000364 COOOQ! 1001000

l‘,?OlOOkl MOGOOS%OIW 9“301OS%SOIOJ&DC!OI&ZCOOJ?MO“A‘ €000003

£000000

3.2.2 Program Linking 6)

Consider the three (separately assembled) p s'in the figure, each of which consists

The relocation bits are gathered together into a bit mask following the length
indicator in each Text record. In Fig (3) this mask is represented (in character
form) as three hexadecimal digits.

If the relocation bit corresponding to a word of object code is set to 1, the
program’s starting address is to be added to this word when the program is

relocated. A bit value of 0 indicates that no modification is necessary.

corresponding to unused words are set to 0.

If a Text record contains fewer than 12 words of object code, the‘{)&)
For example, the bit mask FFC (representing the bit string 111111 @?‘[he

first Text record specifies that all 10 words of object code are to b

during relocation.

Example: Note that the LDX instruction on line 210 (Fi
record. If it were placed in the preceding Text record,

aligned to correspond to a relocation bit beca
generated from line 185.

of a single control section.

&

Program 1 (PROGA): @%

o000

Dozo @ LOA LISTA
0023 Au% -LDT LISTE+4

o027

Yoo
«% L
04 LISTA BQU

O
54

o REF4 WCORD BEMDA-LISTA+LISTC
oasy REFS WORD ENDC-LISTC-10
00SA EEF& WoRD ENDC-LISTC+LISTA-1
oCsD REF7 WOoRD ENDA-LISTA- (ENDB-LISTE)
o080 REFS WORD LISTB-LISTA
BEND REFL

odified

;egins a new Text

e 1-byte data value

03z01p
77100004
050014

0Co014

FEFFFF6
QODO3F
cOooCls
FFF=C0

&

N
4

Program 2 (PROGB):

Q@em

Loc Source statement
0000 PROGE START O
EXTODEF LISTB, =208
EXTREF LISTA,ENDA,LISTC,ENDC
0036 REF1 +LDA LISTA
DO3A REF2 LDT LISTB+4
003D REF3 ~LDX #ENDA-LISTA
00860 LisTR o -
0070 ENDB QU »
0070 REF4 WORD ENDA-LISTA+LISTC
0073 REFS WORD ENDC-LISTC-10
0076 REF6 WORD ENDC-LISTC+LISTA~1
0079 REF7 WORD ENDA-LISTA~ (ENDB~LISTSB)
Qo7cC RrREPS WORD LISTB-LISTA
=D
Program 3 (PROG!

<

Qo0lc

0030

a04 =
0042
oo4s
po4a
DO4B
DO4E
Y

REF1
REFZ

REF2

LISTCT

REF4

REFS

REF®

S
&

Source statement

START O
EXTDEF LISTC, ENDC
EXTREF LIETA.ENDA,LISTE.ENDB

+LIA 1LISTA

+LDT 1ISTE-4

+LJITK #ENDAR-LISTA

pow v =

BOU L

TCRD FHNOA-IL.ISTA+LISTC

WORD ENDC-1LISTC-10

WORD ENDC-LISTCHLISTA=L
TNTRT ENDA-LISTA— (ENTB-LISTB}
WORD LISTE~LLSTA

Object code

03100000
772027
05100000

000000
FFTFF6

FFXFFY
FFFFFO
ao00s0

Object code

Q3100000
TTLO00004
C5100000

oooo3c
cagons
0Qooll
coooon
©0o0000

Consider first the reference marked REF1.
For the first program (PROGA),
e REFI is simply a reference to a label within the program.
e [tis assembled in the usual way as a PC relative instruction.

e No modification for relocation or linking is necessary. \%)

In PROGB, the same operand refers to an external symbol. \)

e The assembler uses an extended-format instruction with addre@;; set to
00000.

e The object program for PROGB contains a Modiﬁcat'd%ord instructing the
loader to add the value of the symbol LISTA to & ess field when the
program is linked.

For PROGC, REFI is handled in exactly the sam(@)
Corresponding object programs &%

ROGA HO00CD 3
ISTA POOC A DOOOSS

LISTS X TC JEMDC

-

;onoaqu%z 1D7 7100004050014
-

PROGB:

ISTS 00 ~De ooGrFo

ROGEH e DOCOOTF

ISTaA WDA AA-XISTC NoDCo
-
-

TOOOO3IAOROI 1000007 7202705100000
-

-

mpoOoo ? FOOOOOQFFFFFEF PP P REFFFFFQO00060
POOOITFOSFLISTA
pPOCO3 rENDA

MPpOOoOOD3 ~LISTA

&
NS
?:‘32 coc3dENDe poc0sz Q%\"

PROGC:

ISTA _ENDaA LISTE ENDB
TOOCDLESCOI I O000GT T 1000040 S 100000 A<2;)
-
-

C004Z0E00003900000R00001 1000000000

o001 +LIST

001 R LIST®E

oD0zZ > EN DA

opo32 LISTA

T e ENDA

Qooa E-~LISTA

oooa > FROGC
(= L=l B AENDA E
(s Palu I8 ~—LIBTA

OOOABRD& ENDE

O O FLISTE
Lalale B +ALESTHE
OO0 & ~LISTA

e The reference ma e%ﬁ is processed in a similar manner.

e REF3 is ar»&%‘;e ate operand whose value is to be the difference between
ENDA angLISTA (that is, the length of the list in bytes).

e InP , the assembler has all of the information necessary to compute this
. During the assembly of PROGB (and PROGC), the values of the labels are

'WI1.

n these programs, the expression must be assembled as an external reference

E (with two Modification records) even though the final result will be an absolute
(&?’ .

value independent of the locations at which the programs are loaded.

Consider REF4.

e The assembler for PROGA can evaluate all of the expression in REF4 except for
the value of LISTC. This results in an initial value of ‘000014’H and one
Modification record.

e The same expression in PROGB contains no terms that can be evaluated by the
assembler. The object code therefore contains an initial value of 000000 and three

Modification records.

e For PROGC, the assembler can supply the value of LISTC relative to the
beginning of the program (but not the actual address, which is not known until the

program is loaded).

e The initial value of this data word contains the relative address of LES&

(‘000030°’H). Modification records instruct the loader to add the begin
address of the program (i.e., the value of PROGC), to add the value ﬁp
and to subtract the value of LISTA.

Fig (4): The three programs as they might appear in memory after.loading’ and

ﬁnkjng Object programs Memory contents
FROGA | HPROGA ===
- (REF4)

acoo HEX XXX EXEXRENE REXEXX XX MM AN

Jd e
o
oro

CBO0
OAT »
BO
GDCOD Juerosmne ssscmsss saswm=ss smsm s
& 0D0
LOED -
4O0FD
4100
4llo
4120

4130 | HEXXEEXE
4140 M MMM N WMWK AXXAXXEX bs S5 8 8 5%

9

&

PROGA has been loaded starting at address 4000, with PROGB and PROGC
immediately following.

For example, the value for reference REF4 in PROGA is located at address 4054 (the
beginning address of PROGA plus 0054).

Fig (5): Relocation and linking operations performed on REF4 in PROGA

The initial value (from the Text record) is 000014. To this is added the address assigned
to LISTC, which 4112 (the beginning address of PROGC plus 30). \3)

e The algorithm for a linking loader is considerably more c@cated than the
absolute loader algorithm.

3.2.3 Algorithm and Data Structures for a Linking Loader

e A linking loader usually makes two passes over itginput,’just as an assembler
does. In terms of general function, the two pas a“Tinking loader are quite

similar to the two passes of an assembler: %
e Pass 1 assigns addresses to all external s %
e Pass 2 performs the actual loadin &%1, and linking.
e The main data structure need% r linking loader is an external symbol table

ESTAB. %

e This table, which is us to SYMTAB in our assembler algorithm, is used to
store the name a ss of each external symbol in the set of control sections
being loadec&

e A hashed ization is typically used for this table.

Two other’important variables are PROGADDR (program load address) and

(control section address).
xPROGADDR is the beginning address in memory where the linked program
isto be loaded. Its value is supplied to the loader by the OS.

(2) CSADDR contains the starting address assigned to the control section
currently being scanned by the loader. This value is added to all relative
Q addresses within the control section to convert them to actual addresses.
3.23.1 PASS1

During Pass 1, the loader is concerned only with Header and Define record types
in the control sections.

&

Algorithm for Pass 1 of a Linking loader
Pass I:

begin
get PROGADDR from cperating system
set CSADDR to PROGADDR (for first contrel section)

while not end of input do

begin

read next input record (Header r=cord for control section}

set CSLTH to contrul section length
scarch ESTAB for control sectlorn name

if found then
sert error flag (duplicate external gsymbol}
else
enter control sectionm name into ESTAB with value CSADDR V
while record tvpe # ‘E’' do
begin
read next input record
if record type = 'D’ then Q

for each symbol in the record do N

begin

seaxrch ESTAE for symbol name A)
if found then

set error flag {(duplicate exterral cymwbol)
else
enter symbel into ESTAB with value
(CSADDR + indicated addresa)
end {for}
and ‘vhile = *Z*}
add CSLTH to CSADDR (starting adéress for next control section)
end (while not EOF)
end {Pzoss 1)

1) The beginning load address for the linked pro WGADDR) is obtained from
the OS. This becomes the starting address (CS)yfor the first control section in the
input sequence.

reX’is entered into ESTAB, with value given
ing in the Define record for the control
eir addresses are obtained by adding the value
R.

2) The control section name from Head
by CSADDR. All external symb

section are also entered into ES .
specified in the Define record to
3) When the End recordds yeagd, the control section length CSLTH (which was saved

from the End record) i ‘%’ 0o CSADDR. This calculation gives the starting address for
the next control sec in s€quence.

e At th nc&ﬂ’ass 1, ESTAB contains all external symbols defined in the set of
contro ons together with the address assigned to each.

bols and their addresses.

3%;53.2 PASS 2
@ e Pass 2 performs the actual loading, relocation, and linking of the program.
Q Algorithm for Pass 2 of a Linking loader

1) As each Text record is read, the object code is moved to the specified address (plus the
current value of CSADDR).

C}\ loaders include as an option the ability to print a load map that shows these
S

2) When a Modification record is encountered, the symbol whose value is to be used for

modification is looked up in ESTAB.
3) This value is then added to or subtracted from the indicated location in memory.

4) The last step performed by the loader is usually the transferring of control to the

loaded program to begin execution. %

e The End record for each control section may contain the address of the Er%
instruction in that control section to be executed. Our loader takes this he
transfer point to begin execution. If more than one control section sp@&gifi
transfer address, the loader arbitrarily uses the last one encountered.

e If no control section contains a transfer address, the loader us inning of
the linked program (i.e., PROGADDR) as the transfer point. @

e Normally, a transfer address would be placed in t record for a main

program, but not for a subroutine.
Pass 2: @
begin
set CSADDR to PROGADOR \
set EXECADIR to PROGADOR
while not end of input do
begin

read next input, <recc"d {Header record)

sat CSLTH to con ecticn length
vh.uo reco) wi"!sz'

/{ud input record
i’?{pcbrd type = 'T' then

Q (1f. object code ig in character form, convert
into internal representation}

Yw move object code from record to location
(CEADDR + gpecified address)
‘JV end {if 'T’}

Q c:lu ie rocord type = 'M’ them

\ search ESTAB for modifying symbol name
if found then

acdd or subtract symbol value at location
(CSADDR + specified address|

alse
set error flag (undefined external symbol)
end (if 'M'}
end (while # 'E‘} ’
if an addrecs is specified (in End record} them

set EXECADDR tc (CSADDR + specified address)
add CSLTH to CSADDR
end (while not BOF)
jurp to location given by EXECADDR {to start execution of loaded program)
end (Pass 2}

Fig (6): Object pr

ROGA OO0 00063
ISTA 004 00054

AOZ2LISTE DIENDE utxstc [SENDC
;poooquqp:zolqgvxooooqpsoo:t

DODO1AFFFFFE00003F0000LAFFFFCO
02

RCCSB o000 felilel b
IST® o006 NDB oooro
BO2LISTA D3IE A LSALISTC OSENDC

TOOCOO3I6E0RC3I1I000007 72027053 C000C0
-

o0QO07 FOOOOOCQFFFFFOFFFFFEFFFFFOOOOQG60D
%ooo:%b&ox « “ ~

ROGC 0000 QoosS1
ISTC o003 NDC {0006

2LISTA e:- ~ LsLIsT
-

H
TOOOC180CO3I 100000771 ‘%’Arooooo

-

H

npooosgpifooosqpoo ﬁzshgg 1L,000000Q000C0

o
0001

oocn.:g 0%“4
CO0ZLOSe0S
C002 L0502
00042 064+0D3
0004 ZD6~ X
D0 OL 206~
oooax +02,
coo4 6+ 03
CO04ABCE~TZ
ooO0a TS

I%%‘,

00 Ry ISOx

CUO s EDO

D00 & 3 =
/4

- \%

&

&sing reference numbers for code modification

orithm can be made more efficient. Assign a reference number, which is
used (inst€ad of the symbol name) in Modification records, to each external

| referred to in a control section. Suppose we always assign the reference
er 01 to the control section name.

3.3 MACHINE-INDEPENDENT LOADER FEATURES

e Loading and linking are often thought of as OS service functions. Therefore, most
loaders include fewer different features than are found in a typical assembler.

e They include the use of an automatic library search process for handling external
reference and some common options that can be selected at the time of loading
and linking.

3.3.1 Automatic Library Search A\})

e Many linking loaders can automatically incorporate routines from ogram
library into the program being loaded.

e Linking loaders that support automatic library search mus %ck of external
symbols that are referred to, but not defined, in the primanyei o the loader.

e At the end of Pass 1, the symbols in ESTAB t n undefined represent
unresolved external references.

e The loader searches the library or libraries ed for routines that contain the
definitions of these symbols, and proces subroutines found by this search
exactly as if they had been part of th: ary input stream.

e The subroutines fetched fro Q&ry in this way may themselves contain
external references. It is t ecessary to repeat the library search process
until all references are re

e [f unresolved ext &k’rences remain after the library search is completed,
these must be trKa ITOTS.
3.3.2 Loader Optié&
. Mawf%‘d;s allow the user to specify options that modify the standard
essihg

%;cal loader option 1: Allows the selection of alternative sources of input.

‘% Ex : INCLUDE program-name (library-name) might direct the loader to read the
designated object program from a library and treat it as if it were part of the
primary loader input.
Q .

Loader option 2: Allows the user to delete external symbols or entire control
sections.

Ex : DELETE csect-name might instruct the loader to delete the named control
section(s) from the set of programs being loaded.

&

CHANGE namel, name2 might cause the external symbol namel to be changed
to name2 wherever it appears in the object programs.

e Loader option 3: Involves the automatic inclusion of library routines to satisfy
external references.

Ex. : LIBRARY MYLIB
Such user-specified libraries are normally searched before the standard syste

libraries. This allows the user to use special versions of the standard routines\)
NOCALL STDDEV, PLOT, CORREL A\)

e To instruct the loader that these external references are to remain u, e@d. This
avoids the overhead of loading and linking the unneeded routines, saves the
memory space that would otherwise be required. @

3.4 LOADER DESIGN OPTIONS \%
e Linking loaders perform all linking and relocatio@; time.

e There are two alternatives: %%)

1. Linkage editors, which perform linki r to load time.

2. Dynamic linking, in which theﬁl function is performed at execution
time. (:

e Precondition: The source pr0 is first assembled or compiled, producing an
object program.

e A linking loaf@&ﬂhs all linking and relocation operations, including
r

automatic libra ch’if specified, and loads the linked program directly into

memory for @ oY

e A link itor produces a linked version of the program (load module or
exec% ge), which is written to a file or library for later execution.
e

34.1 le% ditors

¢ linkage editor performs relocation of all control sections relative to the start
of the linked program. Thus, all items that need to be modified at load time have

E values that are relative to the start of the linked program.
@» e This means that the loading can be accomplished in one pass with no external
Q symbol table required.

e Ifaprogram is to be executed many times without being reassembled, the use of a
linkage editor substantially reduces the overhead required.

e Linkage editors can perform many useful functions besides simply preparing an

&

object program for execution. Ex., a typical sequence of linkage editor commands
used:

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {delete from existing PLANNER}

INCLUDE PROJECT (NEWLIB) {include new version}

REPLACE PLANNER (PROGLIB) 6@

e Linkage editors can also be used to build packages of subroutines or other cont
sections that are generally used together. This can be useful when dealing wit
subroutine libraries that support high-level programming languages.

e Linkage editors often include a variety of other options and comma \gose
discussed for linking loaders. Compared to linking loaders, linKage @ditors in

general tend to offer more flexibility and control.

Fig (7): Processing of an object program using (a) Linking | (b) Linkage

editor
Rl

Linkage
editor

2T
Memory Linked
program
(»)

Relocating
loader

'

Memory

(o)

SN

Q%

3.4.2 Dynamic Linking

e Linkage editors perform linking operations before the program is loaded for
execution.

e Linking loaders perform these same operations at load time. : %

¢ Dynamic linking, dynamic loading, or load on call postpones the linking functio
until execution time: a subroutine is loaded and linked to the rest of the program
when it is first called. I&)

e Dynamic linking is often used to allow several executing programs ne
copy of a subroutine or library, ex. run-time support routines for{a high-level

language like C. 6

e With a program that allows its user to interactively call an subroutines of a
large mathematical and statistical library, all of the libwary, subroutines could
potentially be needed, but only a few will actually be ny one execution.

e Dynamic linking can avoid the necessity of i

execution except those necessary subroutin

e entire library for each

Dynamic
loader
(part of the
operating
system)
Load-and-call
ERRHANDL

User
program

(a) (b)

Dynamic
loader

Dynamic
loader

r

Load-and-call
ERRHANDL

User
program

ERRHANDL

ERRHANDL

(d)

il
Fig (a): Instead of executing a JSUB instruction r%%)o an external symbol, the

program makes a load-and-call service request to e parameter of this request is the
symbolic name of the routine to be called

Fig (b): OS examines its internal ta ermme whether or not the routine is already
loaded. If necessary, the routine i % om the specified user or system libraries.

Fig (c): Control is then pass to the routine being called

Fig (d): When the ca % utine completes it processing, it returns to its caller (i.e.,
OS). OS then retu trd1 to the program that issued the request.

Fig (e): If a subro is still in memory, a second call to it may not require another load
operation. Co ay simply be passed from the dynamic loader to the called routine.

3.4.3.Beotstrap Loaders

ith the machine empty and idle there is no need for program relocation.

e We can specify the absolute address for whatever program is first loaded and this
will be the OS, which occupies a predefined location in memory.

e We need some means of accomplishing the functions of an absolute loader.
1. To have the operator enter into memory the object code for an absolute loader,
using switches on the computer console.

2. To have the absolute loader program permanently resident in a ROM.
3. To have a built —in hardware function that reads a fixed —length record from
some device into memory at a fixed location.

e When some hardware signal occurs, the machine begins to execute this ROM %
program.

e On some computers, the program is executed directly in the ROM: on otherSyth

program is copied from ROM to main memory and executed there. x)
e The particular device to be used can often be selected via console swit@

e After the read operation is complete, control is automatically, trahgferred to the
address in memory where the record was stored, which con%nachine where
the record was stored, which contains machine instructions ad the absolute

program that follow. \
t

e If the loading process requires more instructio, S%Han be read in a single
record, this first record causes the reading of 6théss, and these in turn can cause
the reading of still more records — boots trap:

e The first record is generally referred strap loader:

e Such a loader is added to the b%@i g of all object programs that are to be
loaded into an empty and idl :

e This includes the OS itself ahd-all stand-alone programs that are to be run without
an OS.

3.5 IMPLEMENT@XAMPLE-MSDOS LINKER

MS-DOS \Binker This explains some of the features of Microsoft MS-DOS

linker, whi nker for Pentium and other x86 systems. Most MS-DOS compilers
and as rs (MASM) produce object modules, and they are stored in .OBJ files. MS-
DOS LI is a linkage editor that combines one or more object modules to produce a

cte executable program - .EXE file; this file is later executed for results.
The following table illustrates the typical MS-DOS object module

Q » THEADER similar to Header record in SIC/XE
» MODEND similar to End record in SIC/XE
» TYPDEF data type
» PUBDEF similar to Define record in SIC/XE

» EXTDEF similar to Reference record in SIC/XE
» LNAMES contain a list of segments and class names
» SEGDEF segment define
» GRPDEF specify how segments are grouped
» LEDATA similar to Text Record in SIC/XE C}Q)
» LIDATA specify repeated instructions %
» FIXUPP similar to Modification record in SIC/XE \)
THEADR specifies the name of the object module. MODEND speci nd
of the module. PUBDEF contains list of the external symbols (called @@ames).
EXTDEF contains list of external symbols referred in this module, b fined e
TYPDEF the data types are defined here. SEGDEF describes,se

module (includes name, length, and alignment). GRPDE@
angd, ¢

combined into groups. LNAMES contains all segm% lass names. LEDATA

contains translated instructions and data. LIDA %
negs.

Isewhere.

s in the object

how segments are

bove in repeating pattern.

Finally, FIXUPP is used to resolve external refe

Suppose that the SIC assembler 1@; is changed to include a new form of the
RESB statement, such as

RESB n‘c@i
which reserves I@tmemory and initializes all of these bytes to the character
‘c’. For exa@

AV UFFER RESB 4096¢°
'%ea ure could be implemented by simply generating the required number of

< %&: in Text records. However, this could lead to a large increase in the size of
e object program.

%
&

» compute a starting address for each segment in the program
— segment from different object modules that have the same
segment name and class are combined

— segments with the same class, but different names are concatenated

— a segment’s starting address is updated as these combinations and
concatenations are performed

Pass 2

» extract the translated instructions from the object modules

» build an image of the executable program in memory Q)BQ)

» write it to the executable (.EXE) file

UNIT IV

MACROPROCESSORS

INTRODUCTION C}Q)

Macro Instructions %
e A macro instruction (macro) \)V
@vri‘[e

e [t is simply a notational convenience for the progra
shorthand version of a program.
e [t represents a commonly used group of staten@in the source

a

program.
e [t is replaced by the macro processor with t rresponding group of
source language statements. This operatiGh isNealled “expanding the

macro”’

e For example: &
e Suppose it is necessary to save l‘%{ nts of all registers before calling a
subroutine. x
e This requires a sequenc% insfructions.

e We can define and cro, SAVEREGS, to represent this sequence
of instructions. @

Macro Processor @'
"\

e A macro pr%5
e [ts functigns eSSentially involve the substitution of one group of characters or

lines for a I.
. Nor% performs no analysis of the text it handles.

o %es t concern the meaning of the involved statements during macro
X

apsion.
@erefore, the design of a macro processor generally is machine independent.
acro processors are used in
e assembly language
e high-level programming languages, e.g., C or C++
e OS command languages
Q e general purpose
Format of macro definition
A macro can be defined as follows

MACRO - MACRO pseudo-op shows start of macro definition.
Name [List of Parameters] — Macro name with a list of formal parameters.

....... _ Sequence of assembly language instructions.

MEND - MEND (MACRO-END) Pseudo shows the end of macro definition. %

Example: Q)
MACRO \})
SUM X,Y Q
LDA X (
MOV BX,X

LDAY

ADD BX 6
MEND x
4.1 BASIC MACROPROCESSOR FUNCTIONS Q)’;
<)

The fundamental functions common to all macro@

1. Macro Definition
2. Macro Invocation \

3. Macro Expansion

4.1.1 Macro Definition and EX[@&% N

e Two new assem rectives are used in macro definition:
e MACRO: idenfify the beginning of a macro definition
end of a macro definition

e MEND: id;ﬁqn i
e Protot th€ macro:
o E arameter begins with ‘&’
%l op operands
ame MACRO parameters
C}% body

MEND

@E - Body: The statements that will be generated as the expansion of the macro.

1685

GET CHARACTER FROM BUFFER
TEST QUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOCP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

e It shows an example of a SIC/XE program using macro Instructions.

e This program defines and uses two macro instructions, RDBUFF and WRDUFF .

e The functions and logic of RDBUFF macro are similar to those of the RDBUFF
subroutine. %
e The WRBUFF macro is similar to WRREC subroutine. %C}

e Two Assembler directives (MACRO and MEND) are used in macro definition
e The first MACRO statement identifies the beginning of macro deﬁﬁ;@

e The Symbol in the label field (RDBUFF) is the name of macyo, and €htries in the
operand field identify the parameters of macro instruction. g

e In our macro language, each parameter begins with @

&, which facilitates
the substitution of parameters during macro expangsio

e The macro name and parameters define t
instruction used by the programmer. T
deleted since they have been no longer

e Each macro invocation statement h &t
the body of the macro, with the @e

the parameters in macro protot

or prototype for the macro
instruction definition has been
fter macros are expanded.

expanded into the statements that form
s from macro invocation substituted for

e The arguments and paramet€rs Jare associated with one another according to their
positions.

Macro Invocation ®

e A macro ocation statement (a macro call) gives the name of the macro
instru or%’ﬂlg invoked and the arguments in expanding the macro.

. rog¢esses of macro invocation and subroutine call are quite different.

invoked.

o Statements of the subroutine appear only one; regardless of how many
Q times the subroutine is called.

e The macro invocation statements treated as comments and the statements
generated from macro expansion will be assembled as though they had been
written by the programmer.

‘ \0 Statements of the macro body are expanded each time the macro is

CUP¥ PILE PR TNPUT 10 OOV

i

=

READ RBCCRD INT) BOFFRR

CLEAR LACP CTATER Cgo

170 YAIN PROGRAM

o Cgo
180 FIRST SIL RETAIR SAVE RETURN ADDRESS <¢)
190 CLOOP ROBUFF F1,BUFFER,LEVGTH READ RECCRD TNTO BUFFE

195 A LENGTH TEST FOR END OF FIL

200 P 4 Q

205 J) ENDFIL EXIT IF EOF, 50U

210 WRBUFF (5, BUFFER, LENGTH WRITE‘U\‘@ ! RECORD

215 J CLOOP g%,

20 EUFIL WRBUFF 05, EOF, THREE HOF MARKER

25 I GRETAR 40

30 KF BTE (VRO ‘%

%5 TREE ORD

20 RETAR 1%

05 LRGTH % LENGTH OF RECORD

250 BUFFER ﬁ; 4096 4096-BYTE BUFFER AREA

255 FIRST

Macro Expansion

Each macro invocation statement will be expanded into the statements that
form the body of the macro.
Arguments from the macro invocation are substituted for the parameters in th

macro prototype.
o The arguments and parameters are associated with one a oabs)

according

to their positions.
The first argument in the macro invocation corre@ggls to the
first parameter in the macro prototype, etc. Cf

Comment lines within the macro body have been d =but comments on
individual statements have been retained.

Macro invocation statement itself has been inch@rcomment line.

&
&

Example of a macro expansion %%

In expanding the macro invocation i , the argument F1 is substituted

for the parameter and INDEV wh, ﬁxea' occurs in the body of the macro.
@ UFADR and LENGTH is substituted

Similarly BUFFER is substityt
for RECLTH. ;
Lines 190a through 1&)& ow the complete expansion of the macro

invocation on line %’

The label o o invocation statement CLOOP has been retained as a
label on th‘r&t tement generated in the macro expansion.

This 4llows *he programmer to use a macro instruction in exactly the same
wdy assembler language mnemonic.

@r macro processing the expanded file can be used as input to assembler.

The macro invocation statement will be treated as comments and the
statements generated from the macro expansions will be assembled exactly as
though they had been written directly by the programmer.

&

4.1.2 Macro Processor Algorithm and Data Structures

e [t is easy to design a two-pass macro processor in which all macro definitions are

during second pass

processed during the first pass ,and all macro invocation statements are expanded %

e Such a two pass macro processor would not allow the body of one macr
instruction to contain definitions of other macros.

Example 1:

1 MACROS

2 RDBUFF

3

4 WRBUFF

5

6
Example 2:

1 MACROX

2 RDBUFF

3

4 WRBUFF

5

6

Q\’

/k
MACRO {Defines SIC standard version macros}
MACRO &INDEV, &BUFADR, &RECLTH
{SIC standard version}
MEND {End of RDBUFF}
MACRO &OUTDEV, &BUFADR,, &§RECLTH

{SIC standard version}

MEND {End of WRBUFF}

{End of MACROS}

@*

MACRO

xoy

{Defines SIC/XE macros}
&INDEV, &§BUFADR, &RECLTH

{SIC/XE version}

{End of RDBUFF}
&OUTDEV, &§BUFADR, &RECLTH

{SIC/XE wversion}

{End of WRBUFF}

{End of MACROX}

Defining MACROS or MACROX does not define RDBUFF and the other macro
instructions. These definitions are processed only when an invocation of
MACROS or MACROX is expanded.

expansion is able to handle macros like these.

There are 3 main data structures involved in our macro processor. %

A one pass macroprocessor that can alternate between macro definition and macro Q)

Definition table (DEFTAB)

contains the macro prototype and statements that make up the macro o

Comment lines from macro definition are not entered into D F@because they
will not be a part of macro expansion.

Name table NAMTAB) %\'

References to macro instruction parameters are d to a positional entered
into NAMTAB, which serves the index to D .

For each macro instruction defined, N ontains pointers to beginning and
end of definition in DEFTAB.

Argument table (ARGTAB) C}

The macro definition themselves are stored in definition table (DEFT @ ch
Q dy:

The third Data Structure in ment table (ARGTAB), which is used during
expansion of macro invgations”

When macro invogats
ARGTAB accordjy

As the macto™s expanded, arguments from ARGTAB are substituted for the
correspbrnding parameters in the macro body.

atements are recognized, the arguments are stored in
their position in argument list.

NAMTAB DEFTAB
.
5 RDBUFF &INDEV, &BUFADR, &RECLTH
/ CLEAR X
RDBUFF I"i"‘
CLEAR A
= CLEAR s
+LDT #4096
TD L P
JEQ 3
RD =X'?1’
COMPR ALS
JEQ *+11
STCH 22,%
TIXR T
JLT *—19
sSTX ?3
—»| MEND

ARGTAB (a)
1| F1

2| BUFFER

3| LENGTH

(b)

e The position notation is used for the parameters. The parameter &INDEV has
been converted to ?1, & BUFADR has been converted to ?2.

e When the ?n notation is recognized in a line from DEFTAB, a simple indexing
operation supplies the property argument from ARGTAB.

Algorithm:

e The procedure DEFINE, which is called when the beginning of a macro defindtion
is recognized, makes the appropriate entries in DEFTAB and NAMTAB. x}

e EXPAND is called to set up the argument values in ARGTAB and a

macro invocation statement.

e The procedure GETLINE gets the next line to be processed;l 6

e This line may come from DEFTAB or from the 4ap le, depending upon
whether the Boolean variable EXPANDING is 5% or FALSE.

procedure EXPAND
begin
EEPANDING := TRUE
get first line of macro definidiody{prototype} from DEFTAB
set up arguments from m t@ ation in ARGTAB
write macro invoeatid panded file as a comment
while not end of %) finition do
begin

d if EXPENDING then

\ begin
get next line of mecro definitien from DEFTAB

gubstitute arguments from ARGTAB for positional notation

end {if}
else

réad next line from irput file
end {GETLINE}

Figure 4.5 (contd)

&

4.2 MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

Machine independent macro processor features are extended features that are not directly
related to architecture of computer for which the macro processor is written.

4.2.1 Concatenation of Macro Parameter %

e Most Macro Processor allows parameters to be concatenated with other charac%
strings.

e A program contains a set of series of variables: Q\)

XAl, XA2, XA3,...
XB2, XB3,... ()
e If similar processing is to be performed on each se @V'&riables, the
programmer might want to incorporate this processing i cro instructuion.

e The parameter to such a macro instruction could &'rhe series of variables to
be operated on (A, B, C ...).

e The macro processor constructs the sy @ncawnating X, (A, B, ...), and

(1,2,3,...) in the macro expansion.

e Suppose such parameter is nam @, e macro body may contain a statement:
LDA X&IDI, in which &ID‘% tenated after the string “X” and before the

string “1”.
7 LDA XAKX&IDZA)
| LDA ® ID-B)
m

E.g., X& may mean

‘CX’, _"_
lem occurs because the end of the parameter is not marked.

i r
C}fution to this ambiguity problem:

Use a special concatenation operator
LDA X&ID 1

(134

to specify the end of the parameter

Q So that the end of parameter &ID is clearly identified.

Macro definition

1 SM MACRO &ID
7 LDA X&ID—1 @
3 ADD X&ID—2 C}
L ADD X&ID—3 %
5 STA X&ID-S \)
oo O
Macro invocation statements CJ

SUM A E@

LDA XAl %@

ADD XA2

S go

STA XAS

e The macroprocessor de occurrences of the concatenation operator
immediately after pﬁ%gn parameter substitution, so the character will not

appear in the mac% on.
4.2.2 Generation of'Ag

ue Labels

e Lab macro body may cause “duplicate labels” problem if the macro is
invocated and expanded multiple times.

f relative addressing at the source statement level is very inconvenient,
r-prone, and difficult to read.

is highly desirable to
o Let the programmer use label in the macro body

e Labels used within the macro body begin with §$.

e Let the macro processor generate unique labels for each macro invocation and
expansion.

e During macro expansion, the § will be replaced with $xx, where xx is a two-
character alphanumeric counter of the number of macro instructions expanded.

o XX=AA,AB,AC.......

“Consider the definition of WRBUFF

5 COPY START 0 %
135 TD =X ‘&OUTDEV’ &
120 JEQ ~3 \})
155 JLT 14 Q
255 END FIRST BCJ

If a label was placed on the TD instruction on line& this label would be
defined twice, once for each invocation of WRBUFE%'

This duplicate definition would prevent @ssembly of the resulting

expanded program.

The jump instructions on line 14 5 are written using the re4lative
operands *-3 and *-14, because it sible to place a label on line 135 of the

macro definition.
This relative addressing ma ‘%eptable for short jumps such as “ JEQ *-3”

For longer jumps several instructions, such notation is very
inconvenient, error d difficult to read.

Many macropfac s avoid these problems by allowing the creation of special
types of labelS™within macro instructions.

RDBUFF d@

25
30
35
40

A 45

50
55
60
65
70
75
80
85
90
95

RDBUFF MACRO &INDEV, &BUFADR, &RECLTH

CLEAR X CLEAR LOOP COUNTER
CLEAR A
CLEAR S
+LDT #4096 SET MAXIMUM RECORD LENGTH
$SLOOP D =X'&INDEV’ TEST INPUT DEVICE
JEQ $LOOP LOOP UNTIL READY
RD "=X'&INDEV' READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF EOR
STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
JLT $SLOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORD LENGTH
MEND

Labels within the macro body begin with the special character $.

Macro expansion

RDBUFF F1,BUFFER, LENGTH

CLEAR X CLEAR LOOP COUNTER \%)

30

35 CLEAR A

40 CLEAR S \)

45 +LDT #4096 SET MAXIMUM RECORD LENGTH

50 _$AALOOP TD =X'F1' TEST INPUT DEVICE

55 JEQ $BATOOP LOOP UNTIL READY

60 RD =XFT READ CHARACTER INTO REG A

65 COMPR A,S TEST FOR END OF RECORD

70 JEQ SAAEXIT EXIT LOOP IF EOR

75 STCH BUFFER, X STORE CHARACTER IN BUREE

80 TIXR T LOOP UNLESS MAXT FNGE

85 JLT $AALOOP HAS BEEN REACHED

90 $AAEXIT STX LENGTH SAVE RECORD LQ)

e Unique labels are generated within n&*ﬁ expansion.

e Each symbol beginning with $ @ modified by replacing $ with $AA.

e The character $ will 6%? aced by $xx, where xx is a two-character
alphanumeric countex@s mber of macro instructions expanded.

e For the first ansion in a program, xx will have the value AA. For
succeeding macxo ansions, xx will be set to AB, AC etc.

4.2.3 Condi acro Expansion

%wnts in macro invocation can be used to:

sequence of statements expanded.
o Modify the sequence of statements for conditional macro expansion (or

[
‘ «{0 Substitute the parameters in the macro body without changing the

&

conditional assembly when related to assembler).
This capability adds greatly to the power and flexibility of a macro language.

25 RDBUFF

MACRO

26 or thE («EOR NE ')
27 C ggrt %gg(amplel

28 @f! ENDIF

30 CLEAR X

35 CLEAR A

38 IF (&EORCK EQ 1)
40 LDCH =X'&EOR’

42 RMO A,S

43 ENDIF &
44 IF (§&MAXLTH EQ '')
45 +LDT #4096

46 ELSE

47 +LDT #&MAXLTH

48 ENDIF

50 SLOOP TD =X'&INDEV'

55 JEQ SLOOP

60 RD =X'&INDEV'

63 IF (&EORCK EQ 1)
65 COMPR A, S

70 JEQ SEXIT

73 ENDIF

75 STCH &BUFADR, X

80 TIXR

85 JLT

90 SEXIT STX

95

e Two addition

<~
&

§
v

specifies a hexadecimal character code that marks the end of a record

&E

&INDEV, &BUFADR,

&RECLTH, &EOR, &MAXLTH

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

SET MAXIMUM RECORD LENS @

TEST INPUT DEVICE \

LOOP UNTIL Rﬂgm%,

READ CHARACT REG A

TEST FOI ? RECORD
e

EOR

OPYUNLESS MAXIMUM LENGTH
S BEEN REACHED

T
$LOOP
SRECLTH % SAVE RECORD LENGTH

[N

meters used in the example of conditional macro expansion

XLTH: specifies the maximum length of a record

@o-time variable (SET symbol)

o can be used to

store working values during the macro expansion
store the evaluation result of Boolean expression
control the macro-time conditional structures
o begins with “&” and that is not a macro instruction parameter
o be initialized to a value of 0
o be set by a macro processor directive, SET

e Macro-time conditional structure
o IF-ELSE-ENDIF
o WHILE-ENDW

4.2.3.1 Implementation of Conditional Macro Expansion (IF-ELSE-ENDIF
Structure) 6

e A symbol table is maintained by the macroprocessor. %
o This table contains the values of all macro-time variables used. ‘\’})
o Entries in this table are made or modified when SET sta are

processed. <

o This table is used to look up the current value of a @)-time variable
whenever it is required.

e The testing of the condition and looping are do Xe the macro is being
expanded. Q)

e When an IF statement is encountered dutin expansion of a macro, the
a

specified Boolean expression is evaluate
o TRUE \;‘:
1

The macro processor c@ntifimes to process lines from DEFTAB until it
encounters the next ELSE or END)% ent.If ELSE is encountered, then skips to

ENDIF @

o FALSE

The m: éessor skips ahead in DEFTAB until it finds the next
ELSE or ENDLF st@

4.2.3.2 Imple er%&n of Conditional Macro Expansion (WHILE-ENDW
Structure) JV

o en) an WHILE statement is encountered during the expansion of a macro, the
specified Boolean expression is evaluated. If value is

t
€ 1S

o TRUE
The macro processor continues to process lines from DEFTAB until it
encounters the next ENDW statement.

When ENDW is encountered, the macro processor returns to the preceding
WHILE, re-evaluates the Boolean expression, and takes action again.

o FALSE
The macro processor skips ahead in DEFTAB until it finds the next

S

ENDW statement and then resumes normal macro expansion.
424 Keyword Macro Parameters
e Positional parameters

o Parameters and arguments are associated according to their positions in
the macro prototype and invocation. The programmer must specify t
arguments in proper order.

o If an argument is to be omitted, a null argument should be SN
maintain the proper order in macro invocation statement. Q

o For example: Suppose a macro instruction GENER has 10 pgssible
parameters, but in a particular invocation of the macro the 3" and 9™

parameters are to be specified. ‘%
o The statement is GENER ,,DIRECT,,,,,,3. \
o It is not suitable if a macro has a larg of parameters, and only a
few of these are given values ina t % cation.
e Keyword parameters %

o Each argument value i@en with a keyword that names the

corresponding paramet

0 Arguments may ap i any order.
o Null argu &ﬂbnger need to be used.
o If the 3" ameter is named &TYPE and 9™ parameter is named

&CH EL, the macro invocation would be
TYPE=DIRECT,CHANNEL=3.

0 is easier to read and much less error-prone than the positional method.
Co@@ example

Here each parameter name is followed by equal sign, which identifies a keyword

parameter and a default value is specified for some of the parameters.

FRERBFISOOBRESOREELEBYRE

MACRO &INDEV=FL,&BUFADR=, GRECLTH=, 4EOR=04, MAXLTH=4096
¥ TREOR NE)
sET 1
ENDIF
CLEAR X CLEAR LOOP COUNTER
CLEAR A
i 4 {&BORCK BQ 1)
LOCH =K’GEOR’ SET EOR CHARACTER Cg)
BO A8
BNDIF %
+IOT AEHAXLTH SET MAXTMUB RECORD LENGTH \)
™ =R'GINDEV TEST INPUT DEVICE
aw $uoop LOOP UNTTL, READY \)
RO =X’&INDEV READ CHARACTER INTO REG A Q
IF (WEORCK BQ 1) ()
COMPR A,8 TEST FOR END OF KECORD
m) SEXI C}
ENDIF
SICH &BUFADR,X
TIXR T
JLE SLOOP
§TX% &RECLMH
RUBUFF BUFADR<BUFERR
CLEAR X @ CLEAR LOOF COUNTER
CLEAR
LOCH SET EOR CHARACTER
+& 096 SET MAXIMOM RECORD LENGTH
rm =2'P1¢ TEST THPUT DEVICE
SARLOCP LOOP UNTIL. READY
B =¥ READ CHARACTER INTO REG A
COPR A8 TEST FOR END OF RECORD

Q

Here the value if &KINDEYV is specified as F3 and the value of &EOR is specified as

null.

Macro within macro

It allows the definition of macro statements inside the assembly language

program or macro.

4.3. MACROPROCESSOR DESIGN OPTIONS C}Q)
4.3.1 Recursive Macro Expansion 6)

10
15
20
25
30
35
40
45
50
65
70
75
80
85
90
95

5

10

15

20

~ 25
30

35

40

A

RDBUFF MACRO &BUFADR, &RECLTH , &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X CLEAR LOOP COUNTER
CLEAR A
CLEAR S
+LDT #4096 SET MAXIMUM RECORD LENGTH
LOOP RDCHAR &TINDEV READ CHARACTER INTO REG A
COMPR A,S TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF ECR
STCH &BUFADR, X STORE CHARACTER IN BUFFER
TIXR iy LOOP UNLESS MAXIMUM LENGTH
JLT SLOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORD LENGTH
MEND

ROCHAR ~ MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

iy =X'&IN' TEST INPUT DEVICE
JEQ 3 LOOP UNTIL READY
RD =X'&IN' READ CHARACTER
MEND

e RDCHAR:
o read one character from a specified device into register A

o should be defined beforehand (i.e., before RDBUFF)

Implementation of Recursive Macro Expansion C}Q)

e Previous macro processor design cannot handle such kind of recursive macro,
o 1invocation and expansion, e.g., RDBUFF BUFFER, LENGTH, F \)

e Reasons: Q
o The procedure EXPAND would be called recursively, thu@ej Vocation

arguments in the ARGTAB will be overwritten.
o The Boolean variable EXPANDING would be se t%\.SE when the
p

“inner” macro expansion is finished, that is, t rocess would
forget that it had been in the middle of expandinghanouter” macro.

o A similar problem would occur with PR éINE since this procedure
too would be called recursively.

rogramming language that allows
will be retained.

recursive calls, thus local yvari
o Use a stack to take cir% ing and popping local variables and return

e Solutions:
o Write the macro processorl

addresses.
e Another problem: ca g)mvoke itself recursively?
4.3.2 One-Pass Macro

e A one-pass &o processor that alternate between macro definition and macro
expansion ecursive way is able to handle recursive macro definition.

e Begcaus the one-pass structure, the definition of a macro must appear in the
s% program before any statements that invoke that macro.

@ ecursive Macro Definition

e In DEFINE procedure
o When a macro definition is being entered into DEFTAB, the normal
Q approach is to continue until an MEND directive is reached.
o This would not work for recursive macro definition because the first
MEND encountered in the inner macro will terminate the whole macro

definition process.

o To solve this problem, a counter LEVEL is used to keep track of the level

of macro definitions.

e Increase LEVEL by 1 each time a MACRO directive is read. Decrease LEVEL by
1 each time a MEND directive is read.

e A MEND can terminate the whole macro definition process only when LEVEL %
reaches 0. C}

e This process is very much like matching left and right parentheses when scannin
an arithmetic expression. K)

4.3.3 Two-Pass Macro Processor C)

L Two-pass macro processor

o Passl: ‘%
Process macro definition \

o Pass?2:

Expand all macro invocation state @
e Problem %

o This kind of macro processor %}gw recursive macro definition, that
is, the body of a macro contdinsdefinitions of other macros (because all
macros would have to beld during the first pass before any macro
invocations were exp

Example of Recursive Macro De

e MACROS (for SL%%’

o Con@ definitions of RDBUFF and WRBUFF written in SIC
instructiohs.

C-A program that is to be run on SIC system could invoke MACROS whereas a
program to be run on SIC/XE can invoke MACROX.

@» e Defining MACROS or MACROX does not define RDBUFF and WRBUFF.
Q These definitions are processed only when an invocation of MACROS or

MACROX is expanded.

{End
of WRBUFF
}

%jvv Q?&% :

4.3.4 General-Purpose Macro Processors
Goal

e Macro processors that do not dependent on any particular programming

language, but can be used with a variety of different languages. Q)
Advantages QS}

e Programmers do not need to learn many macro languages. \)

e Although its development costs are somewhat greater than(thos€~for a
language-specific macro processor, this expense does not n@ repeated

for each language, thus save substantial overall cost.
Disadvantages x‘;\ :
e Large number of details must be dealt with in a@kgramming language

e Situations in which normal macro par ef\substitution should not occur,
e.g., comments.

e Facilities for grouping together @ ressions, or statements

e Tokens, e.g., identifiers, ¢ operators, keywords

e Syntax %
4.3.5 Macro Processi@y- Language Translators

Macro processors cdimbe
1) Pr CesSsors

cess macrodefinitions.

xpandmacroinvocations.
0 Produce an expanded version of the source program, which is then used as
input to an assembler or compiler.

E 2) Line-by-line macro processor
Q o Used as a sort of input routine for the assembler or

compiler. o Read source program.
o Process macro definitions and expand macro
invocations. o Pass output lines to the assembler or
compiler.

3) Integrated macro processor

4.3.5.1 Line-by-Line Macro Processor
Benefits

e It avoids making an extra pass over the source program. Q)

e Data structures required by the macro processor and the language translato%

can be combined (e.g., OPTAB and NAMTAB)
e Utility subroutines can be used by both macro processor and the @&‘

translator.
0 Scanning input lines C)
o Searching tables
o Data format conversion C}

e [t is easier to give diagnostic messages related to the s& tatements.

4.3.5.2 Integrated Macro Processor %&
e An integrated macro processor can pot%%)nake use of any information

about the source program that is extrac e language translator.
e As an example in

FORTRAN DO 100 I = (.Xj
ord

1,20
— a DO state

. 00:statement number
=wvariable name
DO 1001=1 %{;
S

gnment statement
* DO100I: variable (blanks are not significant in

?., FORTRAN)

ﬁn infegrated macro processor can support macro instructions that depend

J in
(X)the context in which they occur.

awbacks of Line-by-line or Integrated Macro Processor
Q e They must be specially designed and written to work with a particular

implementation of an assembler or compiler.

e The cost of macro processor development is added to the costs of the language
translator, which results in a more expensive software.

e The assembler or compiler will be considerably larger and more complex.

4.4 IMPLEMENTATION EXAMPLE
4.4.1 MASM Macro Processor

e Conditional assembly statements

e MASM macro

® (Conditional statements

4.4.2 ANSI C Macro language
e Macro definitions with parenthesis
e Nested macro invocation.

e Conditional compilation statements

e Macro expansion with parenthesis

TUTORIAL - 1I:

Topic: SIC, SIC / XE: Data Movement Operation

1. Write a sequence of instructions to store the data value 8 in the memory

location ALPHA (for SIC and SIC/XE) &

SIC:

LDA EIGHT Q\)
STA ALPHA C)

ALPHA RESW 1 Q%\'

EIGHT WORD 8 @
SIC/XE: é)

NN
;‘}&@RESW 1

2. Write a4eq e of instructions to store the character “A” in the memory
n %Eﬂ

loc% A (for SIC and SIC/XE)
SIi i'\

,% LDCH CHAR A
@“’ STCH BETA
CHARA BYTE N

BETA RESB 1

SIC/XE:

BETA

LDA

STCH

#65

BETA

RESB 1

3. Write a sequence of instructions to store the data value 2 a

the memory location (for SIC and SIC/XE)

\%@

$
QY
lg;{ter X in

SIC:
LDA TWO Load 2 1 %
STA ALPHA Store,1 A
LDCH CHARX Lo ter ‘X’ into A
STCH Cl % 1
ALPHA RESW 1 Gone word variable
TWO WORD 2 one word constant
CHARX BYTE ’)@ one byte constant
C1 RESB % one byte variable
SIC/XE ®
DA #2 Load 2into A
S ALPHA Store in ALPHA
H #88 Load character ‘X’ into A
: CH Cl1 Store in C1
@ RESW 1 one word variable
RESB 1 one byte variable

Q

TUTORIAL - II:

Topic: SIC , SIC / XE : Arithmetic operation

1. Write a sequence of instructions for SIC to ALPHA equal to the product of %
BETA and GAMMA. Assume that ALPHA, BETA and GAMMA are defined 6

as one word V\Q
Assembly Code: \)
LDA BETA C)Q

MUL GAMMA

STA ALPHA @6

ALPHA RESW I %% '
BETA RESW 1 %

GAMMA RESW 1 ;
A

2. Write a sequence of instructions for SI‘CD(E to set ALPHA equal to 4 * BETA

« \

— 9. Assume that ALPHA and BETA are defined as one word. Use immediate

A -

addressing for the constants{)

Assembly Code &'

LDA BETA>
£ \ Y
LDS #4
Ay G
MULR S,A
\f’
SUB #9
PR
STA ALPHA
< Y
ALPHA RESW 1
BETA RESW 1

3. Write a sequence of instructions for SIC to set ALPHA equal to the integer
portion of BETA + GAMMA. Assume that ALPHA and BETA are defined as
one word.

Assembly Code: %
LDA BETA %

DIV GAMMA \)

STA ALPHA Q\)

ALPHA RESW 1 ()

BETA RESW 1

GAMMA RESW 1 6
NS
&

Ve
4. Write a sequence of instructions for SIC/XE to divide BETA by GAMMA,

setting ALPHA to the integer portion of the quotient and DELTA to the
remainder. Use register-to-register instru‘ctions to make the calculation as
efficient as possible.

Assembly Code: 56

LDA BETAY

LDS GAMMA™

DIVR %

STA 'ALPHA

MULR _ S,A

LDS __ BETA

SUBR A,S

STS DELTA
<_\ ~

~/

% ALPHA RESW 1
BETA RESW 1
GAMMA RESW 1

1

DELTA RESW

TUTORIAL - III:

Topic: SIC Looping, Indexing

1. Suppose that ALPHA is an array of 100 words, which is defined as 100 words.

Write a sequence of instructions for SIC to set all 100 elements of the array to

0.

Assembly Code:
LDA ZERO
STA INDEX

LOOP LDX INDEX
LDA ZERO
STA ALPHA, X
LDA INDEX Qg)
ADD THREE %
STA INDEX ®
COMP K300
TIX TWENTY
ILT LOOP

, «®

INDEX RESW 1
RESW

ALPHA RESW 100

~)r'y
A

ZERO WORD 0

A\) 7

K300 WORD 100
WORD 3

S

2. Write SIC instructions to swap the values of ALPHA and BETA.
Assembly Code:

LDA ALPHA
STA GAMMA
LDA BETA
STA ALPHA
LDA GAMMA
STA BETA

ALPHA RESW 1 6

BETA RESW 1

D
GAMMA RESW 1 Q%\'

TUTORIAL - 1V:

Topic: SIC / XE Looping

1. Write a sequence of instructions for SIC/XE to clear a 20-byte string to all < %:
blanks. %
Assembly Code: V
LDX ZERO Q\)

LOOP LDCH BLANK C
STCH STRI1,X

TIX TWENTY C}
LT LOOP \
STRI RESW 20 Qg)

BLANK BYTE C ¢

b
ZERO WORD 0 ®

TWENTY WORD 20
2. Write a sequence of instr&)\s for SIC/XE to clear a 20-byte string to all
blanks. Use immt%é ressing and register-to-register instructions to

make the proce
Assembly Code:
\

ient as possible.

LDT #0Y
ALY
LDX #0
«. _ 7
LOOP LDCH #0
OOP

STCH STRI,X
TIXR T

~
Q@ im Loop

STRI RESW 20

TUTORIAL - V:

Topic: SIC / XE Indexing

1. Suppose that ALPHA is an array of 100 words, (Alpha is 100 word). Write a C}Q)

sequence of instructions for SIC/XE to set all 100 elements of the array to 0. %

Use immediate addressing and register-to-register instructions to make t e

process as efficient as possible. Q\)
Assembly Code: ‘
LDS #3

LDT #300 @

LDX #0 x
LOOP LDA #0 %’

STA ALPHA, X 6)

ADDR %

COMPR ‘\%

- @6

ALPHA RESW 100\

O

2. Suppose that ALP}& and BETA are the two arrays of 100 words. Another
array of GAMMA elements are obtained by multiplying the corresponding

ALPHA elemsnt by 4 and adding the corresponding BETA elements.
Assem‘bly CO(’ie:'

LDS 3
- N\
) LDT #300
\v
Y LDX 40
b4
ADDLOOP LDA ALPHA, X
Q MUL 44
ADD BETA, X
STA GAMMA, X

ADDR S, X

ALPHA
BETA
GAMMA

COMPR
JLT

RESW
RESW
RESW

X, T
ADDLOOP

100
100
100

results in MAX.
Assembly Code:
LDS
LDT #300
LDX
CLOOP LDA ALPHA X
\)’
COMP MA\X)
N\
JLT NOCH
£ 2 O
STA MAX
e >
NOCH ADDR S, X
ANV
COMPR X, T
PR e
JLT CLOOP
A L)
Al Y
ALPHA RESW 100
(o 1 4
MAX WORD -32768
NG

S

3. Suppose that ALPHA is an array of 100 words. Write a sequence of

\ O
N

3
@C}
Q\)

instructions for SIC/XE to find the maximum element in the array and store

TUTORIAL - VI:

Topic: SIC, SIC / XE : I/0O Programming

1. Suppose that RECORD contains a 100-byte record. Write a subroutine for C}Q)

SIC that will write this record on to device 05. %
Assembly Code: V
JSUB WRREC Q\)

WRREC LDX ZERO E@
WLOOP TD OUTPUT x
JEQ WLOOP %% -

LDCH RECORD, X%
WD OUTPUT
TIX LENGTH
PN A\y‘y
JLT WLOOP

S
?,zflfo

ZERO WORD 0
+ \ N\
LENGTH WORD 1
\ i
OUTPUT BYTE X ‘05°
Al Y
RECORD RESB 100
« - 7

record may be any length from 1 to 100 bytes. The end of record is marked
with a “null” character (ASCII code 00). The subroutine should place the
length of the record read into a variable named LENGTH. Use immediate
addressing and register-to-register instructions to make the process as

Q efficient as possible.

Assembly Code:

2. <Write a subroutine for SIC/XE that will read a record into a buffer. The

JSUB RDREC

RDREC

RLOOP

EXIT

INDEV
LENGTH
BUFFER

LDX
LDT
LDS
TD
JEQ

COMPR
JEQ
STCH
TIXR

STX
RSUB

BYTE
RESW
RESB

#0

#100

#0
INDEV
RLOOP
INDEV
A, S
EXIT
BUFFER, X
T
RLOOP
LENGTH

<§

TUTORIAL - VII:

Topic: Object Code Translation

1. Obtain the object code for the instructions in the following lines in the

program sequence:

v" Line 10
v" Line 12
v" Line 15
v" Line 40
v" Line 55
5 Qo000
10 o000
12 0003
i3
1% Q006
20 QO0A
25 000D
30 0010
a5 0013
40 apl17
45 001Aa
&0 Q01D
55 0020
&0 0023
65 0n2&
70 0024
R0 402D
a5 {030
100 0033
145 0038
&7
Format 3
Format 4

é()
\3’
"\»)

QQ
O

COFY START G

FTEST STL EETATE 172020
LDE #LENGTH 692020
BASE LEMGTH

CLOOP +JSUB ROREC 4B1010324
LDA LENGTH 032026
COME #0 290000
JEQ ENDFIL 332007
+ ISR WEREC 4B140105D
g CLOOP 3FAFEC

FNDFTIT, L& FOF 0320106
5TA BUFFER 0Fz2016
LA #3 010003
STA LENGTH QF200D
+J5UE WEREC 4B10105D
J BEETADR 3E2003

EOF BYTE C EQF' 454F46

EETATR RESW 1

LENGTH RESW 1

BUFFER RESEB 4096

op®) |n|i|x|blp|e disp(12)

op®) [n|i|x/b|p|e address(20)

e Line 10: STL=14, n=1, i=12>ni=3, op+ni=14+3=17, RETADR=0030, x=0,
b=0, p=1, e=0->xbpe=2, PC=0003, disp=RETADR-PC=030-003=02D,
xbpe+disp=202D, obj=17202D

e Line 12: LDB=68, n=0, i=1 2>ni=1, op+ni=68+1=69, LENGTH=0033, x=0,
b=0, p=1, e=0->xbpe=2, PC=0006, disp=LENGTH-PC=033-006=02D,
xbpe+disp=202D, obj=69202D

e Line 15: JSUB=48, n=1, i=1 2>ni=3, op+ni=48+3=4B, RDREC=01036, x=0,
b=0, p=0, e=1, xbpe=1, xbpe+tRDREC=101036, obj=4B101036 C}Q)

e Line 40: J=3C, n=1, i=12>ni=3, op+ni=3C+3=3F, CLOOP=0006, x=0, b=0, Q)
p=1, e=0->xbpe=2, PC=001A, disp=CLOOP-PC=OOO6-OO1A=-14=FEC(21V
complement), xbpe+disp=2FEC, obj=3F2FEC

e Line 55: LDA=00, n=0, i=1->ni=1, op+ni=00+1=01, disp=#3>0 ,b=0,
p=0, e=0->xbpe=0, xbpe+disp=0003, obj=010003
A é B

2. Obtain the object code for the instructions in the following lines in the

program sequence: Q)@;

v" Line 125 @

v' Line 133

v' Line 160 \,
110 . '\
115 . SUBEQUTINE TO READ RECORED INTO BUFFER
120 .
125 1036 ROREC CLEAR X B410
130 1038 CLEAR iy B4{10
132 1034 CLEAR b B440
133 103C +L.DT #A0E6 75101000
135 1040 RLOOP ™ INPUT E32019
140 1043 JEQ RLOOP 132FFA
145 1G46 ED TINFOT TB2013
150 10348 {COMPR 4.5 Anl4
155 104B JEQ EXTT 332008
160 104E STCH BUFFER, X SRC003
165 1051 TIXR T B850
170 1053 JLT RLOOF 3B2ZFEA
175 1056 EXIT STE LENGTH 134000
180 1058 RSB 4AF0{00
135 105C INPUT BYTE X'Fl* Fl
185

op(8) r1(4) r2(4)

Line 125: CLEAR=B4, r1=X=1, 12=0, obj=B410

Line 133: LDT=74, n=0, i=1 2 ni=1, op+ni=74+1=75, x=0, b=0, p=0,
e=1->xbpe=1, #4096=01000, xbpe+address=101000, obj=75101000

Line 160: STCH=54, n=1, i=1->ni=3, op+tni=54+3=57, BUFFER=0036,
B=0033, disp=BUFFER-B=003, x=1, b=1, p=0, e=0->xbpe=C,
xbpe+disp=C003, obj=57C003

$
>

S

TUTORIAL — VIII:

Topic: Object Code generation for SIC program

1. Generate the object code for the following SIC source program. C}Q)

SUM START 1000 %

FIRST LDX ZERO \)
LDA ZERO < Q

LOOP ADD TABLE,X

- §@
RSUB ®

JLT LOOP

TABLE RESW

COUNT RESW

ZERO WO

TOTAL g% 1
END ST

Q)&% OPERATION OPERAND OPCODE

START 1000
FIRST LDX ZERO 04 3340
LDA ZERO 00 3340
LOOP ADD TABLE,X 18 9015

TLX COUNT 2C 333D

JLT

STA

RSUB

TABLE

COUNT

ZERO

TOTAL

END

LOOP

TOTAL

RESW

RESW

WORD

RESW

FIRST

2328

38 1006

0C 3343

4C 0000

3000*3=9000

IN DECIMAL

TUTORIAL - IX:

Topic: Object Code generation for SIC / XE program

1. Generate the object code for the following SIC / XE source program.

SUM

FIRST

LOOP

S &
RS

LDX #0 \)
LDA #0 C)Q

+LDB #TABLE 32

o §@
SRS

ADD TABLE2,X

+STA L

STA %@TOTAL

TAfs'éEv RESW 2328

LE2

O
N ron
&

SUM

FIRST

RESW 2328

RESW 1

END FIRST

OPERATION OPERAND OPCODE
START 0

LDX #0 04 050000

LDA

+LDB
10234B

LOOP ADD
16

ADD
1BCOOO

TLX
217200D

JLT

+STA
OF104673

STA

COUNT S

e <

AL RESW

SC.) END FIRST

#0

#TABLE 32

TABLE,X

TABLE2,X

00 010000

68 69

18 113A0 Cg)
18 \%)

QQ

\%Cb

2328

2328

38 3B2FF4

oC

WOR

TUTORIAL - X:

Topic: Loader

1. What is the difference between given set of codes?

. S

LDA LENGTH \)
SUB #1 (Q

LDA LENGTH-1 xs
0033 LENGTH WORD ,;

If length is defined by address 0033 with %5. The result of the given

SET — 11

statement is:

a. A is loaded with value 5 angl%C&d by 1, thus giving the result 4.

b. A is loaded with value d% in location 0032
e

2. Find the object code f program that has to be loaded into the memory.
LOCATION. SOURCE STATEMENT
A
w Yy COPY START 0000
2 Y FIRST STL
‘er 000 RETADR
N
) 0003 LDB #LENGTH

X

:_:C) - BASE LENGTH

0006 CLOOP +JSUB
Q RDREC

000A LDA LENGTH

000D COMP #0

0010 JEQ ENDFIL

R4

0013 +JSUB WRREC
0017 J CLOOP
ENDFIL LDA
001A CEOP”
- LTORG
0020 STA BUFFER,X
0023 LDA #3
~
0026 STA LENGTH \
o
0029 RETADR RESW : \'D)
Vi
002C LENGTH RESW N1
QU
002F BUFFER NZ 4096
X
- END Q)
A\

y

Solution:

/I;

LOCATION SOURCE STATEMENT OBJECT CODE
COPY START
0000 0000 -)
&\
FIRST STL
0000 RETADR 172026 \)
~
0003 LDB #LENGTH 692026
=y
- BASE LENGTH : 0
CLOOP +JSUB N
0006 RDREC q} 4B5100A
V
000A LDA LENGTH<<)\/ 03201F
000D COMP ‘_\V 290000
0010 JEQ WL 332007
A
0013 +JSUB ‘$:VRR 4B51031
0017 \) CLOOP 3F2FEC
LDA
001A 032003
- LTORG -
1
STA BUFFER,X 0FC003
\‘@23 LDA #3 030003
I~ 0026 STA LENGTH 0F2003
y 0029 RETADR RESW 1 -
002C LENGTH RESW 1 -
BUFFER RESB
002F 4096 i
- END FIRST -

Topic: Loader

1. Write a sequence of instructions for SIC/XE to divide BETA by GAMMA,
setting ALPHA to the value of the quotient, rounded to the nearest integer.

TUTORIAL — XI:

<

Use register-to-register instructions to make the calculation as efficient as\)

possible

LDF
DIVF
FIX
STA

ALPHA RESW
BETA RESW
GAMMA RESW

e

2. Write a subroutine for SIC that will read a record into a buffer. The record
may be any length from 1 to 100 bytes. The end of record is marked with a
“null” character (ASCII code 00). The subroutine should place the length of
the record read into a variable named LENGTH.

JSUB

RDREC _ LDX
RLOOP _ TD
JEQ
RD

¢ COMP

_ JEQ
C) STCH

‘% TIX
JLT
EXIT STX
Q RSUB

ZERO WORD
NULL WORD
K100 WORD

&
<5

ZERO
INDEV
RLOOP
INDEV
NULL
EXIT
BUFFER, X
K100
RLOOP
LENGTH

TUTORIAL — XII:

Topic: Loader

1. Write a subroutine for SIC/XE that will read a record into a buffer. The C}Q)
record may be any length from 1 to 100 bytes. The end of record is marked%
with a “null” character (ASCII code 00). The subroutine should plfl‘ce the

length of the record read into a variable named LENGTH. Use il‘nm(%divate

efficient as possible.

%6 '
JSUB RDREC
RDREC LDX #0 %%’

LDT #100
LDS #0 Q)
RLOOP TD INDEV Q)
JEQ RLOOPN
RD INDEVY
COMPR A,S
JEQ _ EXIT
STCH ~ BUFFER, X
TIXR _ T
LT RLOOP
EXIR _ STX LENGTH
RSUB
e A4
INDEV BYTE X ‘FI’
(LENGTH RESW 1

QBUFFER RESB 100
Y

. Generate the object code given for loading during load time

SIC/XE program
Q EXAMPLE START 100

LDA #12 LOAD 12 INTO REG A

ADD #7 ADD 7 TO REG A

SAVA

STORE

The object code is as follows:

Loc

0100

0103

0106

0109

0127

012A

&

RESW
STA
RSUB

END

code

01000C
190007

0F2003

O0F2FDF

4F0000

O

>
%C’{:v

STORE STORE A IN MEMORY
10
SAVA

RETURN

o S
RS

LDA
NS
‘\@ STORE
ESW 10

STA SAVA

%END EXAMPLE

TUTORIAL — XIII:

Topic: Macro processor

Source program Macro definition

ALPHA MACRO AR @
ARG3
ALPHA A2, C : C}

Parameter table A,\%

Dummy, S Real

p er parameter
)

Q|

<Q’ARG2 2

A
A

2. Write a macro to add two integer numbers using SIC instruction set.

N <7
SUM MACRO ALPHA, BETA

1. Give the parameter table content when the macro given below is executed. BQ)

.-

LDA ALPHA

Yy

ADD BETA

3. Suppose we have the macro definition of ABSDIFF as
#define ABSDIFF(X,Y) X>Y?X-Y:Y-X
#define DISPLAY(EXPR) printf(#EXPR "= %d\n", EXPR)

Expand the macro invocation QS}

a. DISPLAY(ABSDIFF(3-1, 9+3));

b. If we execute the C program containing this statement, what o@é

produced?

Solution: C}
a. printf("ABSDIFF(3-1, 9+3)" "= %d\n", 3-1 > 9+ &E 9+3 : 9+3 - 3-1);
b. ABSDIFF(3-1, 9+3)=8 @

4. Refer to the definition of RDBUFF that appea ow. Each of the following
macro invocation statements contains '%1;) hich of these errors would
be detected by the macro processor, ich would be detected by the
assembler?

a. RDBUFF F3, BUF,
i. {illegal value s or &EOR }

b. RDBUFF F3,B
i. {too many ar nts }
c. RDBUFF ECL, 04

i. { no xalue Specified for &BUFADR }
d. RDB , RECL, BUF
i.

uments specified in wrong order }

&

25 RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &EOR, &MAXLTH

26 TF (CEOR NE “)

27 &FORCK SET 1

28 ENDIF

30 CLEAR X CLEAR LOOP COUNTER

35 CLEAR A

38 IF {&EORCK EQ 1}

40 LDCH =X’ &EOR' SET EOR CHARACTER

42 RMD A,S

43 ENDIF

44 IF {&MAXITH E ¢ ")

45 +LDT #4096 SET MAX LENGTH = 4086

46 ELSE

47 +LDT #SMAXTTH SET MAXIMUM RECORD LENGTH
48 END1K

50 SLO0OP TD =%'&INDEV’ TEST INPUT DEVICE

R5 JEQ SLOOP LOOP UNTIL READY

60 RD =X' &INDEV READ CHARACTER INTO REG A
63 IF (&EORCK EQ 1)

65 COMPR. A.S TEST FOR END OF RECORD

70 JEQ SELIT EXTIT LOOP IF EOR

73 ENDIF

75 STCH &BUFADR, X STORE CHARZCTER IN BUFFER
80 TIXR i LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOOP HAS BEEN REACHED

30 SEXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

{a)

Y
Solution: %
1. Assembler ch&ain that the value is not a legal hexidecimal number.

2. Macro p?i'%or will detect that there are too many arguments.
ill complain about a syntax error on line 75 "STCH ,X". Note that

ple in Figure above.

3. Assét‘
@ rocessor simply replaces "& BUBADR" with an empty string. See the

C)None Synax is correct, but there will be a run-time error.

TUTORIAL — XIV:

Topic: Macro processor

1. Write a macro to multiply two one-byte fields. C}Q)
MPYBYTE MACRO BYTE1,BYTES,PRODUCTERI1 %

;Define Macro to multiply two

~a\
one- byte fields

(™

MOV AL,BYTEI ;Move multiplicand into AL
A\D
MUL BYTES ;Product is stored in AX
AN
MOV PRODUCTERI,AX ;Stores the resulting product in
y
product (\)@V
« \

ENDM ;End of Macro

2. Write a macro to multiply@word fields.

N\
MPYWORD MACRO WORDI,WORD2,PRODUCT,PRODUCT
Y

‘JT'Y» fields
N

;Define Macro to multiply two one-word

s
A

MOV AX,WORDI1 ;Move the multiplicand into AX
MUL WORD2 ;Product is stored in DX:AX
Q MOV PRODUCT,AX ;Store product upper half AX

MOV PRODUCT+2,DX ;lower half DX

ENDM ;End of Macro

TUTORIAL — XV:

Topic: Macro processor

1. Write a macro to display a string of characters

ARGUMENT

PUTCHAR MACRO CHAR ;CHAR IS THE V@

MOV AH,2 \)
MOV DL,CHAR C)Q

INT 21H

ENDM
DISPLAYSTR MACRO STR, LNG ;ARGU ARE
OFFSET AND ‘%

; OF STRING TO
LAYED
LOCAL TOP
MOV SL0 ;IN NEXT CHARACTER IN
ST

MOV CX,LN
TOP: PUTCHAR ST ;OUTPUT CURRENT
CHARACTER

INC é ;POINT TO NEXT
CHARACTER

LOOP % P ;REPEAT

ENDM
2. Write a macro to deter absolute value and expand it with an example

ABS g) X
X,0
E DONE

% NEG X ;REVERSE SIGN IF NEGATIVE
O

D :
X% ENDM
gs@e this macro in the following code (source and expansion):
MOV AX,-5
ABS AX ;x will be replaced by AX
AX,0

Cmp
Jge done
Neg AX

Done:

MOV

BL,2

ABS BL ;x will be
CMP BL,0
JGE DONE
NEG BL

replaced by BL

