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Learning Objectives

• Understand Assemblers functions 

• Differentiate machine dependant vs 
machine independent features



Assembler
Definition: An Assembler is a Program that has the following tasks: 
1. Transform assembly instructions (source code, such as MOV) into machine code 
(binary, such as 100010) 
2. Assign memory addresses to symbolic labels 
3. Create an object code file
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2.1  Basic Assembler Functions

» Figure 2.1 shows an assembler language program for 
SIC. 
– The line numbers are for reference only. 
– Indexing addressing is indicated by adding the 

modifier “X”  
– Lines beginning with “.” contain comments only.  
– Reads records from input device (code F1) 
– Copies them to output device (code 05) 
– At the end of the file, writes EOF on the output 

device, then RSUB to the operating system
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2.1  Basic Assembler Functions

» Assembler directives (pseudo-instructions) 
–START, END, BYTE, WORD, RESB, RESW. 
–These statements are not translated into 

machine instructions. 
– Instead, they provide instructions to the 

assembler itself.
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2.1  Basic Assembler Functions

» Data transfer (RD, WD) 
–A buffer is used to store record  
–Buffering is necessary for different I/O rates 
–The end of each record is marked with a null 

character (0016) 
–Buffer length is 4096 Bytes 
–The end of the file is indicated by a zero-length 

record 
» Subroutines (JSUB, RSUB) 

–RDREC, WRREC 
–Save link (L) register first before nested jump
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2.1.1  A simple SIC Assembler

» Figure 2.2 shows the generated object code for 
each statement. 
–Loc gives the machine address in Hex. 
–Assume the program starting at address 1000. 

» Translation functions 
–Translate STL to 14. 
–Translate RETADR to 1033. 
–Build the machine instructions in the proper 

format (,X). 
–Translate EOF to 454F46. 
–Write the object program and assembly listing.
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2.1.1  A simple SIC Assembler

» A forward reference 
– 10 1000 FIRST STL RETADR 141033 
– A reference to a label (RETADR) that is defined 

later in the program 
» Most assemblers make two passes over source 

program. 
– Pass 1 scans the source for label definitions and 

assigns address (Loc). 
– Pass 2 performs most of the actual translation.
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2.1.1  A simple SIC Assembler

» The object program (OP) will be loaded into memory for 
execution. 

» Three types of records 
– Header: program name, starting address, length. 
– Text: starting address, length, object code. 
– End: address of first executable instruction.
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2.1.1  A simple SIC Assembler
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2.1.1  A simple SIC Assembler

» The symbol ^ is used to separate 
fields. 
–Figure 2.3 
  1E(H)=30(D)=16(D)+14(D)
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2.1.1  A simple SIC Assembler
» Assembler’s Functions 

– Convert mnemonic operation codes to their machine 
language equivalents 

•STL to 14 
– Convert symbolic operands (referred label) to their equivalent 

machine addresses  
•RETADR to 1033 

– Build the machine instructions in the proper format 
– Convert the data constants to internal machine 

representations 
– Write the object program and the assembly listing
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2.1.1  A simple SIC Assembler

» Example of Instruction Assemble 
–Forward reference 
–STCH        BUFFER, X

          (54)16                       1     (001)2                                               (039)16

8 1 15
opcode x address

m

549039
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2.1.1  A simple SIC Assembler

» Forward reference 
–Reference to a label that is defined later 

in the program. 

  Loc Label  OP Code Operand   

  1000 FIRST  STL  RETADR 
  

  1003 CLOOP  JSUB  RDREC 
  …   …  …  …  

 1012   J  CLOOP   
  …   …  …  …  

 1033 RETADR RESW  1
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2.1.1  A simple SIC Assembler

» The functions of the two passes assembler. 
» Pass 1 (define symbol) 

– Assign addresses to all statements (generate LOC). 
– Save the values (address) assigned to all labels for Pass 2. 
– Perform some processing of assembler directives. 

» Pass 2 
– Assemble instructions. 
– Generate data values defined by BYTE, WORD. 
– Perform processing of assembler directives not done during 

Pass 1. 
– Write the OP (Fig. 2.3) and the assembly listing (Fig. 2.2).


