
CC410: System Programming
Dr. Manal Helal – Fall 2014 – Lecture 4 - Assembler 1

2

Learning Objectives

• Understand Assemblers functions

• Differentiate machine dependant vs
machine independent features

Assembler
Definition: An Assembler is a Program that has the following tasks:
1. Transform assembly instructions (source code, such as MOV) into machine code
(binary, such as 100010)
2. Assign memory addresses to symbolic labels
3. Create an object code file

3

Source
Program

Assembler Object
Code

Loader

Executable
Code

Linker

4

2.1 Basic Assembler Functions

» Figure 2.1 shows an assembler language program for
SIC.
– The line numbers are for reference only.
– Indexing addressing is indicated by adding the

modifier “X”
– Lines beginning with “.” contain comments only.
– Reads records from input device (code F1)
– Copies them to output device (code 05)
– At the end of the file, writes EOF on the output

device, then RSUB to the operating system

5

6

7

8

2.1 Basic Assembler Functions

» Assembler directives (pseudo-instructions)
–START, END, BYTE, WORD, RESB, RESW.
–These statements are not translated into

machine instructions.
– Instead, they provide instructions to the

assembler itself.

9

2.1 Basic Assembler Functions

» Data transfer (RD, WD)
–A buffer is used to store record
–Buffering is necessary for different I/O rates
–The end of each record is marked with a null

character (0016)
–Buffer length is 4096 Bytes
–The end of the file is indicated by a zero-length

record
» Subroutines (JSUB, RSUB)

–RDREC, WRREC
–Save link (L) register first before nested jump

10

2.1.1 A simple SIC Assembler

» Figure 2.2 shows the generated object code for
each statement.
–Loc gives the machine address in Hex.
–Assume the program starting at address 1000.

» Translation functions
–Translate STL to 14.
–Translate RETADR to 1033.
–Build the machine instructions in the proper

format (,X).
–Translate EOF to 454F46.
–Write the object program and assembly listing.

11

12

13

14

2.1.1 A simple SIC Assembler

» A forward reference
– 10 1000 FIRST STL RETADR 141033
– A reference to a label (RETADR) that is defined

later in the program
» Most assemblers make two passes over source

program.
– Pass 1 scans the source for label definitions and

assigns address (Loc).
– Pass 2 performs most of the actual translation.

15

2.1.1 A simple SIC Assembler

» The object program (OP) will be loaded into memory for
execution.

» Three types of records
– Header: program name, starting address, length.
– Text: starting address, length, object code.
– End: address of first executable instruction.

16

2.1.1 A simple SIC Assembler

17

2.1.1 A simple SIC Assembler

» The symbol ^ is used to separate
fields.
–Figure 2.3
 1E(H)=30(D)=16(D)+14(D)

18

2.1.1 A simple SIC Assembler
» Assembler’s Functions

– Convert mnemonic operation codes to their machine
language equivalents

•STL to 14
– Convert symbolic operands (referred label) to their equivalent

machine addresses
•RETADR to 1033

– Build the machine instructions in the proper format
– Convert the data constants to internal machine

representations
– Write the object program and the assembly listing

19

2.1.1 A simple SIC Assembler

» Example of Instruction Assemble
–Forward reference
–STCH BUFFER, X

 (54)16 1 (001)2 (039)16

8 1 15
opcode x address

m

549039

20

2.1.1 A simple SIC Assembler

» Forward reference
–Reference to a label that is defined later

in the program.

 Loc Label OP Code Operand

 1000 FIRST STL RETADR

 1003 CLOOP JSUB RDREC
 … … … …

 1012 J CLOOP
 … … … …

 1033 RETADR RESW 1

21

2.1.1 A simple SIC Assembler

» The functions of the two passes assembler.
» Pass 1 (define symbol)

– Assign addresses to all statements (generate LOC).
– Save the values (address) assigned to all labels for Pass 2.
– Perform some processing of assembler directives.

» Pass 2
– Assemble instructions.
– Generate data values defined by BYTE, WORD.
– Perform processing of assembler directives not done during

Pass 1.
– Write the OP (Fig. 2.3) and the assembly listing (Fig. 2.2).

