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Learning Objectives
• Understand Linker Functions
• Differentiate between Machine Dependant and 

Independent Functions
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3.2.2  Program Linking
» In Section 2.3.5 showed a program made up of three controls 

sections. 
– Assembled together or assembled independently? 

» Goal  
Resolve the problems with EXTREF and EXTDEF from 
different control sections 

» Linking 
– 1. User, 2. Assembler, 3. Linking loader  

» Example  
– Program in Fig.3.8 and object code in Fig.3.9 
– Use modification records for both relocation and linking 

• address constant  
• external reference 



Lecture Outline
» Direct Linking Loader 

» The process (manually) 
» The Algorithm and the Data Structures 

» Design options 
– linkage editors 
– dynamic linking 
– bootstrap loaders
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3.2.2  Program Linking
» Consider the three programs in Fig. 3.8 and 3.9. 

– Each of which consists of a single control section. 
– A list of items, LISTA---ENDA, LISTB---ENDB, LISTC---

ENDC. 
– Note that each program contains exactly the same 

set of references to these external symbols. 
– Instruction operands (REF1, REF2, REF3). 
– The values of data words (REF4 through REF8). 
– Not involved in the relocation and linking are 

omitted.
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3.2.2  Program Linking
» REF1 In the PROGA is simply a reference to a label 

» REF1     LDA    LISTA                       03201D 
–REF1 In PROGB and PROGC is a reference to an 

external symbols. 
–Need to use extended format, Modification 

record. 
–REF1     LDA   LISTA                         03100000 

» REF2 in PROGA. 
- REF2   LDT     LISTB+4                77100004 

» REF3 in PROGB 

-  REF3   LDX   #ENDA-LISTA       05100000
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3.2.2  Program Linking
» REF4 through REF8,    

– WORD    ENDA-LISTA+LISTC   000014+000000 
» Figure 3.10(a) and 3.10(b)  

– Shows these three programs as they might appear in 
memory after loading and linking. 

– PROGA  004000, PROGB  004063, PROGC  0040E2. 
– REF4 through REF8 in the same value. 

– For the references that are instruction operands, the calculated 
values after loading do not always appear to be equal. 

– because the operand is a Target address to an operation 
that is PC relative in most cases. 

– Example  REF1  is a label in PROGA and operand LISTA is @ 
4040 (relative to PC) loaded in A.
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Program Linking ExampleProgram Linking Example

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDCp , , ,

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA LISTA l l A t l t lREF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external
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Program Linking Example

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDCp , , ,

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA LISTA l l A t l t lREF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external
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Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 4112
5 ENDC 4124

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040
3 ENDA 4054
4 LISTC 4112
5 ENDC 4124
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3.2.3  Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes 
–Pass 1 assigns addresses to all external 

symbols. 
–Pass 2 performs the actual loading, 

relocation, and linking. 
–The main data structure is ESTAB (hashing 

table).
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3.2.3  Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes 
– ESTAB is used to store the name and address of 

each external symbol in the set of control sections 
being loaded. 

– Two variables PROGADDR and CSADDR. 
– PROGADDR is the beginning address in memory 

where the linked program is to be loaded. 
– CSADDR contains the starting address assigned to 

the control section currently being scanned by the 
loader.
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3.2.3  Algorithm and Data Structure for a Linking Loader

» The linking loader algorithm, Fig 3.11(a) & (b). 
– In Pass 1, concerned only Header and Defined records.  
– CSADDR+CSLTH = the next CSADDR. 
– A load map is generated. 
– In Pass 2, as each Text record is read, the object code is 

moved to the specified address (plus the current value of 
CSADDR). 

– When a Modification record is encountered, the symbol 
whose value is to be used for modification is looked up in 
ESTAB. 

– This value is then added to or subtracted from the 
indicated location in memory.
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3.3   Machine-Independent Loader Features  
3.3.1 Automatic Library Search

» Many linking loaders 
– Can automatically incorporate routines form a 

subprogram library into the program being loaded. 
– A standard system library 
– The subroutines called by the program being 

loaded are automatically fetched from the library, 
linked with the main program, and loaded.



25

3.3.1 Automatic Library Search

» Automatic library call 
– At the end of Pass 1, the symbols in 

ESTAB that remain undefined represent 
unresolved external references. 

– The loader searches the library
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3.3.2  Loader Options
» Many loaders allow the user to specify options that modify the standard 

processing. 
– Special command 
– Separate file 
– INCLUDE program-name(library-name) 
– DELETE  csect-name 
– CHANGE name1, name2 

INCLUDE READ(UTLIB) 
INCLUDE WRITE(UTLIB) 
DELETE    RDREC, WRREC 
CHANGE RDREC, READ 
CHANGE WRREC, WRITE 
LIBRARY MYLIB 
NOCALL  STDEV, PLOT, CORREL
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3.4 Loader Design Options  
3.4.1 Linkage Editors

» Fig 3.13 shows the difference between linking loader 
and linkage editor. 
– The source program is first assembled or compiled, 

producing an OP. 
» Linking loader 

– A linking loader performs all linking and relocation 
operations, including automatic library search if 
specified, and loads the linked program directly 
into memory for execution.
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» The essential difference between a linkage 
editor and a linking loader
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3.4.1 Linkage Editors

» Linkage editor 
– A linkage editor produces a linked version of the 

program (load module or executable image), which 
is written to a file or library for later execution. 

– When the user is ready to run the linked program, a 
simple relocating loader can be used to load the 
program into memory. 

– The only object code modification necessary is the 
addition of an actual load address to relative values 
within the program. 

– The LE performs relocation of all control sections 
relative to the start of the linked program.
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3.4.1 Linkage Editors
–All items that need to be modified at load 

time have values that are relative to the 
start of the linked program. 

– If a program is to be executed many times 
without being reassembled, the use of a LE 
substantially reduces the overhead 
required. 

–LE can perform many useful functions 
besides simply preparing an OP for 
execution.
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3.4.2 Dynamic Linking

» Linking loaders perform these same 
operations at load time. 

» Linkage editors perform linking operations 
before the program is loaded for execution.



33

3.4.2 Dynamic Linking
» Dynamic linking (dynamic loading, load on call) 

– Postpones the linking function until execution time. 
– A subroutine is loaded and linked to the rest of the 

program when is first loaded. 
– Dynamic linking is often used to allow several executing 

program to share one copy of a subroutine or library. 
• Run-time library (C language), dynamic link library 
• A single copy of the routines in this library could be 

loaded into the memory of the computer.
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3.4.2 Dynamic Linking

» Dynamic linking provides the ability to load the 
routines only when (and if) they are needed. 
– For example, that a program contains subroutines 

that correct or clearly diagnose error in the input 
data during execution. 

– If such error are rare, the correction and 
diagnostic routines may not be used at all during 
most execution of the program. 

– However, if the program were completely linked 
before execution, these subroutines need to be 
loaded and linked every time.
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3.4.2 Dynamic Linking

» Dynamic linking avoids the necessity of 
loading the entire library for each execution. 

» Fig. 3.14 illustrates a method in which 
routines that are to be dynamically loaded 
must be called via an operating system (OS) 
service request.
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3.4.2 Dynamic Linking
» The program makes a load-on-call service request to OS.  

The parameter of this request is the symbolic name of the 
routine to be loaded. 

» OS examines its internal tables to determine whether or not 
the routine is already loaded.  If necessary, the routine is 
loaded form the specified user or system libraries. 

» Control id then passed form OS to the routine being called. 
» When the called subroutine completes its processing, OS 

then returns control to the program that issued the request. 
» If a subroutine is still in memory, a second call to it may not 

require another load operation.
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3.4.3 Bootstrap Loaders

» An absolute loader program is permanently 
resident in a read-only memory (ROM) 
–Hardware signal occurs 

» The program is executed directly in the ROM 
» The program is copied from ROM to main 

memory and executed there.
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3.4.3 Bootstrap Loaders

» Bootstrap and bootstrap loader 
– Reads a fixed-length record form some device into 

memory at a fixed location. 
– After the read operation is complete, control is 

automatically transferred to the address in 
memory. 

– If the loading process requires more instructions 
than can be read in a single record, this first record 
causes the reading of others, and these in turn can 
cause the reading of more records.


