
CC410: System Programming
Dr. Manal Helal – Fall 2014 – Lecture 10 –Linkers

2

Learning Objectives
• Understand Linker Functions
• Differentiate between Machine Dependant and

Independent Functions

2

Source
Program

Assembler Object
Code

Loader

Executable
Code

Linker

3

3.2.2 Program Linking
» In Section 2.3.5 showed a program made up of three controls

sections.
– Assembled together or assembled independently?

» Goal  
Resolve the problems with EXTREF and EXTDEF from
different control sections

» Linking
– 1. User, 2. Assembler, 3. Linking loader

» Example
– Program in Fig.3.8 and object code in Fig.3.9
– Use modification records for both relocation and linking

• address constant
• external reference

Lecture Outline
» Direct Linking Loader

» The process (manually)
» The Algorithm and the Data Structures

» Design options
– linkage editors
– dynamic linking
– bootstrap loaders

4

5

3.2.2 Program Linking
» Consider the three programs in Fig. 3.8 and 3.9.

– Each of which consists of a single control section.
– A list of items, LISTA---ENDA, LISTB---ENDB, LISTC---

ENDC.
– Note that each program contains exactly the same

set of references to these external symbols.
– Instruction operands (REF1, REF2, REF3).
– The values of data words (REF4 through REF8).
– Not involved in the relocation and linking are

omitted.

6

7

8

9

10

11

12

3.2.2 Program Linking
» REF1 In the PROGA is simply a reference to a label

» REF1 LDA LISTA 03201D
–REF1 In PROGB and PROGC is a reference to an

external symbols.
–Need to use extended format, Modification

record.
–REF1 LDA LISTA 03100000

» REF2 in PROGA.
- REF2 LDT LISTB+4 77100004

» REF3 in PROGB

- REF3 LDX #ENDA-LISTA 05100000

13

3.2.2 Program Linking
» REF4 through REF8,

– WORD ENDA-LISTA+LISTC 000014+000000
» Figure 3.10(a) and 3.10(b)

– Shows these three programs as they might appear in
memory after loading and linking.

– PROGA 004000, PROGB 004063, PROGC 0040E2.
– REF4 through REF8 in the same value.

– For the references that are instruction operands, the calculated
values after loading do not always appear to be equal.

– because the operand is a Target address to an operation
that is PC relative in most cases.

– Example REF1 is a label in PROGA and operand LISTA is @
4040 (relative to PC) loaded in A.

14

15

Program Linking ExampleProgram Linking Example

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDCp , , ,

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA LISTA l l A t l t lREF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external

14

Program Linking Example

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDCp , , ,

REF1 LISTA local, R, PC external external

REF2 LISTB+4 external local, R, PC external

REF3 ENDA LISTA l l A t l t lREF3 ENDA-LISTA local, A external external

REF4 ENDA-LISTA+LISTC local, A external local, R

REF5 ENDC-LISTC-10 external external local, A

REF6 ENDC-LISTC+LISTA-1 local, R external local, A

REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external

14

17

Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 4112
5 ENDC 4124

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040
3 ENDA 4054
4 LISTC 4112
5 ENDC 4124

19

3.2.3 Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes
–Pass 1 assigns addresses to all external

symbols.
–Pass 2 performs the actual loading,

relocation, and linking.
–The main data structure is ESTAB (hashing

table).

20

3.2.3 Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes
– ESTAB is used to store the name and address of

each external symbol in the set of control sections
being loaded.

– Two variables PROGADDR and CSADDR.
– PROGADDR is the beginning address in memory

where the linked program is to be loaded.
– CSADDR contains the starting address assigned to

the control section currently being scanned by the
loader.

21

3.2.3 Algorithm and Data Structure for a Linking Loader

» The linking loader algorithm, Fig 3.11(a) & (b).
– In Pass 1, concerned only Header and Defined records.
– CSADDR+CSLTH = the next CSADDR.
– A load map is generated.
– In Pass 2, as each Text record is read, the object code is

moved to the specified address (plus the current value of
CSADDR).

– When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.

– This value is then added to or subtracted from the
indicated location in memory.

22

23

24

3.3 Machine-Independent Loader Features  
3.3.1 Automatic Library Search

» Many linking loaders
– Can automatically incorporate routines form a

subprogram library into the program being loaded.
– A standard system library
– The subroutines called by the program being

loaded are automatically fetched from the library,
linked with the main program, and loaded.

25

3.3.1 Automatic Library Search

» Automatic library call
– At the end of Pass 1, the symbols in

ESTAB that remain undefined represent
unresolved external references.

– The loader searches the library

26

3.3.2 Loader Options
» Many loaders allow the user to specify options that modify the standard

processing.
– Special command
– Separate file
– INCLUDE program-name(library-name)
– DELETE csect-name
– CHANGE name1, name2

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
LIBRARY MYLIB
NOCALL STDEV, PLOT, CORREL

27

3.4 Loader Design Options  
3.4.1 Linkage Editors

» Fig 3.13 shows the difference between linking loader
and linkage editor.
– The source program is first assembled or compiled,

producing an OP.
» Linking loader

– A linking loader performs all linking and relocation
operations, including automatic library search if
specified, and loads the linked program directly
into memory for execution.

28

» The essential difference between a linkage
editor and a linking loader

29

3.4.1 Linkage Editors

» Linkage editor
– A linkage editor produces a linked version of the

program (load module or executable image), which
is written to a file or library for later execution.

– When the user is ready to run the linked program, a
simple relocating loader can be used to load the
program into memory.

– The only object code modification necessary is the
addition of an actual load address to relative values
within the program.

– The LE performs relocation of all control sections
relative to the start of the linked program.

30

3.4.1 Linkage Editors
–All items that need to be modified at load

time have values that are relative to the
start of the linked program.

– If a program is to be executed many times
without being reassembled, the use of a LE
substantially reduces the overhead
required.

–LE can perform many useful functions
besides simply preparing an OP for
execution.

31

32

3.4.2 Dynamic Linking

» Linking loaders perform these same
operations at load time.

» Linkage editors perform linking operations
before the program is loaded for execution.

33

3.4.2 Dynamic Linking
» Dynamic linking (dynamic loading, load on call)

– Postpones the linking function until execution time.
– A subroutine is loaded and linked to the rest of the

program when is first loaded.
– Dynamic linking is often used to allow several executing

program to share one copy of a subroutine or library.
• Run-time library (C language), dynamic link library
• A single copy of the routines in this library could be

loaded into the memory of the computer.

34

3.4.2 Dynamic Linking

» Dynamic linking provides the ability to load the
routines only when (and if) they are needed.
– For example, that a program contains subroutines

that correct or clearly diagnose error in the input
data during execution.

– If such error are rare, the correction and
diagnostic routines may not be used at all during
most execution of the program.

– However, if the program were completely linked
before execution, these subroutines need to be
loaded and linked every time.

35

3.4.2 Dynamic Linking

» Dynamic linking avoids the necessity of
loading the entire library for each execution.

» Fig. 3.14 illustrates a method in which
routines that are to be dynamically loaded
must be called via an operating system (OS)
service request.

36

37

38

3.4.2 Dynamic Linking
» The program makes a load-on-call service request to OS.

The parameter of this request is the symbolic name of the
routine to be loaded.

» OS examines its internal tables to determine whether or not
the routine is already loaded. If necessary, the routine is
loaded form the specified user or system libraries.

» Control id then passed form OS to the routine being called.
» When the called subroutine completes its processing, OS

then returns control to the program that issued the request.
» If a subroutine is still in memory, a second call to it may not

require another load operation.

39

3.4.3 Bootstrap Loaders

» An absolute loader program is permanently
resident in a read-only memory (ROM)
–Hardware signal occurs

» The program is executed directly in the ROM
» The program is copied from ROM to main

memory and executed there.

40

3.4.3 Bootstrap Loaders

» Bootstrap and bootstrap loader
– Reads a fixed-length record form some device into

memory at a fixed location.
– After the read operation is complete, control is

automatically transferred to the address in
memory.

– If the loading process requires more instructions
than can be read in a single record, this first record
causes the reading of others, and these in turn can
cause the reading of more records.

