CC410: System Programming

Dr. Manal Helal — Fall 2014 — Lecture 10 —Linkers

fppt.com

B

Learning Objectives

Understand Linker Functions

Differentiate between Machine Dependant and
Independent Functions

Source »[Assemblelﬂ»ObjeCt{ Linker }
Program

Code

|
Executable
Crde

[Loader 9

- 3.2.2 Program Linking .

» In Section 2.3.5 showed a program made up of three controls
sections.

- Assembled together or assembled independently?

» Goal
Resolve the problems with EXTREF and EXTDEF from
different control sections

» Linking
— 1. User, 2. Assembler, 3. Linking loader
» Example
— Program in Fig.3.8 and object code in Fig.3.9
— Use modification records for both relocation and linking
e address constant
« external reference ;

——.___—M

- Lecture Outline .

» Direct Linking Loader

» The process (manually)

» The Algorithm and the Data Structures
» Design options

- linkage editors

- dynamic linking

- bootstrap loaders

- 3.2.2 Program Linking .

» Consider the three programs in Fig. 3.8 and 3.9.
- Each of which consists of a single control section.

- A list of items, LISTA—ENDA, LISTB—ENDB, LISTC—
ENDC.

- Note that each program contains exactly the same
set of references to these external symbols.

- Instruction operands (REF1, REF2, REF3).

- The values of data words (REF4 through REFS).

- Not involved in the relocation and linking are
omitted.

5

——______M

0000

0020
0023
0027

0040

0054
0054
0057
005A
005D
0060

END REF1 6 !!

Source statement

Object code

PROGA START O

EXTDEF GISTA(ENDA)

EXTREF LISTB,ENDB, LISTC, ENDC
REF1 LDA LISTA 03201D
REF2 +LDT LISTB+4 77100004
REF3 LDX #ENDA-LISTA 050014
LISTA EQU x
ENDA EQU *
REF4 WORD ENDA-LISTA+LISTC 000014
REF5 WORD ENDC-LISTC-10 FFFFF6
REF6 WORD ENDC-LISTC+LISTA-1 00003F
REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000014
REF8 WORD LISTB-LISTA FFFFCO

Loc Source statement Object code

0000 PROGB START 0
EXTDEF LISTB, ENDB
EXTREF LISTA,ENDA,LISTC,ENDC

0036 REF1 +LDA LISTA 03100000
003A REF?2 LDT LISTB+4 772027
003D REF3 +L.DX #ENDA-LISTA 05100000
0060 LISTB EQU *

0070 ENDB EQU *

0070 REF4 WORD ENDA-LISTA+LISTC 000000
0073 REF5 WORD ENDC-LISTC-10 FFFFF6
0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFE
0079 REF’/ WORD ENDA-LISTA~ (ENDB-LISTB) FFFFFO
007C REF8 WORD LISTB-LISTA 000060

END

7

- Figure 3.8 Sample programs illustrating linking and relocation. m

l Loc Source statement Object code I

0000 PROGC START 0
EXTDEF LISTC, ENDC
EXTREF LISTA,ENDA,LISTB, ENDB

0018 REF1 +LDA LISTA 03100000

001C REF2 +LDT LISTB+4 77100004
0020 REF3 +L.DX #ENDA-LISTA 05100000
0030 LISTC EQU *

0042 ENDC EQU *

0042 REF4 WORD ENDA-LISTA+LISTC 000030
0045 REFb5 WORD ENDC-LISTC-10 000008
0048 REF6 WORD ENDC-LISTC+LISTA-1 000011
004B REF"/ WORD ENDA-LISTA- (ENDB-LISTB) 000000
004E REFS8 WORD LISTB-LISTA 000000

—MM

IIIIIII||l||||IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII||||||||||||IIIIII

HPROGA 000000000063
BLISTA DO004CENDA 000054
RLISTB ENDB LISTC ENDC

@pOOOZQp%93201Q]710000@950014

T0000540F000016FFFFF600003F000014FFFFCO
M00002405+LISTB

0005A06FENDC
0005AD6-LISTC
00005A06+PROGA
............ G603 EhE ENDE
HW%QQQQEPQthEEEﬁ
0006006+LISTE
0006006 -PROGA

............. 0026\

Figure 3.9 Object programs corresponding to Fig. 3.8.

II........lIllllI----l_________1-----IIIIIIIIIIIIE!!!!

HPROGB 00000000007F |

DLISTB 000060ENDB 000070
RLISTA ENDA | LISTC ENDC

T0000360B0310000077202705100000

290007qpE@OOOOQEFFFF@FFFFFEFFFFFQQOO060

..... MO000370+LISTA

MO0003EQS+ENDA
...... MPOOO3EQS-LISTA |
000700 6+ENDA
ooo7gpq;LxsrA
...... M00007006FLISTC .

00007306+ENDC
b

........ 90007 306-LISTC.
MO0007606+ENDC
00007606-LISTC
..... %0007406,\%18“
MO0007906+ENDA
..... MD0007906-LISTA

M00007CO6+PROGB
MD0007CO6~LISTA
E "t 10

|llIIIlllll---........l__________._......---lllllllllﬂﬂg!!

— HPROGC 000000000051 -

DLISTC 000030ENDC 000042
%@ISTA ENDA LISTB}@NDB

T0000180C031000007710000405100000

T0000420F,000030000008000011000000000000
490001905+L15TA

0002105+ENDA
............ 0002] 9..5 ~LISTA
MOOOO& +ENDA
n90004206 LISTA

M00004206+PROGC

MOO004BOGFENDA
MO0004B06-LISTA
M00004B06~ENDB
q@0004806+LISTB

Figure 3.9 (contd) 11

l...llllIIllll-----..l__________._...----llllllllllE!!!l

- 3.2.2 Program Linking .

» REF1 In the PROGA is simply a reference to a label
» REF1 LDA LISTA 03201D

- REF1 In PROGB and PROGC is a reference to an
external symbols.

- Need to use extended format, Modification

record.

-REF1 LDA LISTA 03100000
» REF2 in PROGA.

-REF2 LDT LISTB+4 /7100004

» REF3 in PROGB
-REF3 LDX #ENDA-LISTA 05100000

12

——_____M

- 3.2.2 Program Linking .

» REF4 through REFS,
- WORD ENDA-LISTA+LISTC 000014+000000
» Figure 3.10(a) and 3.10(b)

- Shows these three programs as they might appear in
memory after loading and linking.

- PROGA 004000, PROGB 004063, PROGC 0040E2.
- REF4 through REF8 in the same value.

- For the references that are instruction operands, the calculated
values after loading do not always appear to be equal.

- because the operand is a Target address to an operation
that is PC relative in most cases.

- Example REF1 is a label in PROGA and operand LISTA is @
4040 (relative to PC) loaded in A.
13

——_____M

Memory

address Contents
0000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
[] ® ® ® L
[] ® ® @ ®
[] ® [® ®
3FFO XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
4000 ceess s as cesesens css e e S eesnse
4010 ces e .o ceevenes seeecses coess e
4020 03201D7 1040C705 00l4.... cecsseselge—PROGA
4030 ces s s e esessene cesesans caeesase
4040 ceens e e cosesese cecssses seenes e
4050 c e o s e e 00412600 00080040 51000004
4060 OOOOSﬂ.. sesecsese esessaes . cesaronse
4070 cess s sne cessesne ceseenee cse e
4080 ceseeane cseer e cecsenne cesecsas
4090 coernne cesss s e ..031040 40772027
40A0 [05100014 +uvuvvurer vvessees asees.. [+ PROGB
40BO cevosane ce s s e e e ceeecence cossesee
40C0O cocssoee cessean e seccenss cesocsne
40DO cesses00 41260000 08004051 00000400
40EO 0083.... cacscenss tsescoea sesesens
40F0 sseesnsa ceasccnss cess0310 40407710
4100 [40C70510 0014..v. teeeeeee oeeee.../4—PROGC
4110 cessses . cess e cesseans cescsso s
4120 cesseess 00412600 00080040 51000004
4130 00008§xx XXXXXXXX XXXXXXXX XXXXXXXX
4140 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
® ® ® ® o
[] [[] L J L]
® [[] L] o

14
Figure 3.10(a) Programs from Fig. 3.8 after linking and loading. m

—

Control Symbol
section name Address Length
PROGA 4000 0063
LISTA 4040
ENDA 4054
PROGB 4063 007F
LISTB 40C3
ENDB 40D3
PROGC 40E2 0051
LISTC 4112
ENDC 4124

——____M

- Program Linking Example .

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDC
REF1 LISTA local, R, PC external external
REF2 LISTB+4 external local, R, PC external
REF3 ENDA-LISTA local, A external external
REF4 ENDA-LISTA+LISTC local, A external local, R
REF5 ENDC-LISTC-10 external external local, A
REF6 ENDC-LISTC+LISTA-1 local, R external local, A
REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external

——____—M

—

Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 4112
5 ENDC 4124

Ref No. Symbol Address Ref No. Symbol | Address
1 PROGB 4063 1 PROGC 40E2
2 LISTA 4040 2 LISTA 4040
3 ENDA 4054 3 ENDA 4054
4 LISTC 4112 4 LISTB 40C3
5 ENDC 4124 5 ENDB 40D3

17

——__———M

- Object programs Memory contents -

HPROGA eee

PROGA

. (REF4)

nn§295;oFoooo1ﬂ cece

lmw

PROGC

|
|
.'

.../.}

/oShn-

/
/
/
|’ Load addresses
\ PROGA
\\ PROGB
N EROGS

004000
004063

+

+

0040E2

0000

L
[]
L]

(REF4)

4050 °°°0°°°'°|004126

4112
(Actual address

of LISTC)

Figure 3.10(b) Relocation and linking operations performed on REF4

from PROGA.

—

3.2.3 Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes

- Pass 1 assigns addresses to all external
symbols.

- Pass 2 performs the actual loading,
relocation, and linking.

- The main data structure is ESTAB (hashing
table).

19

——____—M

—

3.2.3 Algorithm and Data Structure for a Linking Loader

» A linking loader usually makes two passes

- ESTAB is used to store the name and address of
each external symbol in the set of control sections
being loaded.

- Two variables PROGADDR and CSADDR.

- PROGADDR is the beginning address in memory
where the linked program is to be loaded.

- CSADDR contains the starting address assigned to
the control section currently being scanned by the
loader.

20

——____—M

—

3.2.3 Algorithm and Data Structure for a Linking Loader

» The linking loader algorithm, Fig 3.11(a) & (b).
- In Pass 1, concerned only Header and Defined records.
- CSADDR+CSLTH = the next CSADDR.
- A load map is generated.

- In Pass 2, as each Text record is read, the object code is
moved to the specified address (plus the current value of
CSADDR).

- When a Modification record is encountered, the symbol
whose value is to be used for modification is looked up in
ESTAB.

- This value is then added to or subtracted from the
indicated location in memoty.

21

——____—M

Pass 1:

begin
get PROGADDR from operating system
set CSADDR to PROGADDR {for first control section}
while not end of input do
begin
read next input record {Header record for control section}
set CSLTH to control section length
search ESTAB for control section name
if found then
set error flag {duplicate external symbol}
else
enter control section name into ESTAB with value CSADDR
while record type # 'E’ do
begin
read next input record
if record type = ‘D’ then
for cach symbol in the record do
begin
search ESTAR for symbol name
if found then
set error flag (duplicate external symbol)
else
enter symbol into ESTAB with value
(CSADDR + indicated address)
end {for}
end {while # 'E’}
add CSLTH to CSADDR {starting address for next control section}
end {while not EOF}
end {Pass 1} 29

- Figure 3.11(a) Algorithm for Pass 1 of a linking loader. m

Pass 2:

begin
set CSADDR to PROGADDR
set EXECADDR to PROGADDR
while not end of input do
begin
read next input record {Header record}
set CSLTH to control section length
while record type # 'E’ do
begin
read next input record
if record type = 'T’ then
begin
{if object code is in character form, convert
into internal representation}
move object code from record to location
(CSADDR + specified address)
end {if 'T"}
else if record type = 'M’ then
begin
search ESTAR for modifying symbol name
if found then
add or subtract symbol value at location
(CSADDR + specified address)
else
set error flag {(undefined external symbol)
end {if 'M'}
end {while # 'E’}
if an address is specified {in End record} then

set EXECADDR to (CSADDR + specified address)
add CSLTH to CSADDR

end {while not EOF}

jump to location given by EXECADDR {to start execution of loaded program}
end {Pass 2}

Figure 3.11(b) Algorithm for Pass 2 of a linking loader.

—

3.3 Machine-Independent Loader Features
3.3.1 Automatic Library Search

» Many linking loaders

- Can automatically incorporate routines form a
subprogram library into the program being loaded.

- A standard system library

- The subroutines called by the program being
loaded are automatically fetched from the library,
linked with the main program, and loaded.

24

——____—M

—

3.3.1 Automatic Library Search

» Automatic library call

- At the end of Pass 1, the symbols in
ESTAB that remain undefined represent
unresolved external references.

- The loader searches the library

—

3.3.2 Loader Options

» Many loaders allow the user to specify options that modify the standard
processing.

- Special command
- Separate file
- INCLUDE program-name(library-name)

- DELETE csect-name

- CHANGE namel, name2
INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
LIBRARY MYLIB
NOCALL STDEV, PLOT, CORREL

26

——____—M

—

3.4 Loader Design Options
3.4.1 Linkage Editors

» Fig 3.13 shows the difference between linking loader
and linkage editor.

- The source program is first assembled or compiled,
producing an OP.

» Linking loader

- A linking loader performs all linking and relocation
operations, including automatic library search if
specified, and loads the linked program directly
into memory for execution.

27

——______M

—

» The essential difference between a linkage
editor and a linking loader

Library

Object
program(s)

b

Linking
loader

Y

Memory

(a)

Object
program(s)

ovary - tinase

>
Linked
program

Relocating
loader

|

Memory

(b)

Figure 3.13 Processing of an object program using (

and (b) linkage editor.

a) linking loader m

- 3.4.1 Linkage Editors .

» Linkage editor

- A linkage editor produces a linked version of the
program (load module or executable image), which
is written to a file or library for later execution.

- When the user is ready to run the linked program, a
simple relocating loader can be used to load the
program into memory.

- The only object code modification necessary is the
addition of an actual load address to relative values
within the program.

- The LE performs relocation of all control sections
relative to the start of the linked program. ’

——_____M

—

3.4.1 Linkage Editors

- All items that need to be modified at load
time have values that are relative to the
start of the linked program.

- If a program is to be executed many times
without being reassembled, the use of a LE
substantially reduces the overhead
required.

- LE can perform many useful functions
besides simply preparing an OP for
execution.

——__.___M

—

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT {DELETE from existing PLANNER}
INCLUDE PROJECT (NEWLIB) {INCLUDE new version}

REPLACE PLANNER (PROGLIRB)

INCLUDE READR (FTNLIB)
INCLUDE WRITER(FTNLIB)

INCLUDE BLOCK (FTNLIB)
INCLUDE DEBLOCK (FTNLIB)

INCLUDE ENCODE (FTNLIB)
INCLUDE DECODE (FTNLIB)

SAVE FTNIO (SUBLIB)

ot com

- 3.4.2 Dynamic Linking .

» Linking loaders perform these same
operations at load time.

» Linkage editors perform linking operations
before the program is loaded for execution.

- 3.4.2 Dynamic Linking .

» Dynamic linking (dynamic loading, load on call)
- Postpones the linking function until execution time.

- A subroutine is loaded and linked to the rest of the
program when is first loaded.

- Dynamic linking is often used to allow several executing
program to share one copy of a subroutine or library.

 Run-time library (C language), dynamic link library

* A single copy of the routines in this library could be
loaded into the memory of the computer.

- 3.4.2 Dynamic Linking .

» Dynamic linking provides the ability to load the
routines only when (and if) they are needed.

- For example, that a program contains subroutines
that correct or clearly diagnose error in the input
data during execution.

- If such error are rare, the correction and

diagnostic routines may not be used at all during
most execution of the program.

- However, if the program were completely linked
before execution, these subroutines need to be
loaded and linked every time.

34

——__._-m

- 3.4.2 Dynamic Linking .

» Dynamic linking avoids the necessity of
loading the entire library for each execution.

» Fig. 3.14 illustrates a method in which
routines that are to be dynamically loaded
must be called via an operating system (0S)
service request.

IC

loader
(part of the

operating
system)

B Dynam

ERRHANDL

User
program

Load-and-calt
ERRHANDL

Dynamic

loader

User
program

ERRHANDL

Dynamic
loader

User
program

ERRHANDL

Load-and-call
ERRHANDL

loader

User

Figure 3.14 Loading and calling of a subroutine using dynamic linking.

- 3.4.2 Dynamic Linking .

» The program makes a load-on-call service request to OS.
The parameter of this request is the symbolic name of the
routine to be loaded.

» O0S examines its internal tables to determine whether or not
the routine is already loaded. If necessary, the routine is
loaded form the specified user or system libraries.

» Control id then passed form OS to the routine being called.

» When the called subroutine completes its processing, 0OS
then returns control to the program that issued the request.

» If a subroutine is still in memory, a second call to it may not
require another load operation.

38

— N

- 3.4.3 Bootstrap Loaders .

» An absolute loader program is permanently
resident in a read-only memory (ROM)

- Hardware signal occurs
» The program is executed directly in the ROM

» The program is copied from ROM to main
memory and executed there.

- 3.4.3 Bootstrap Loaders .

» Bootstrap and bootstrap loader

- Reads a fixed-length record form some device into
memory at a fixed location.

- After the read operation is complete, control is
automatically transferred to the address in
memory.

- If the loading process requires more instructions
than can be read in a single record, this first record
causes the reading of others, and these in turn can
cause the reading of more records.

40

E— N

