DISTRIBUTED SYSTEMS

Principles and Paradigms
Second Edition
ANDREW S. TANENBAUM
MAARTEN VAN STEEN

Chapter 1
Architecture

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Lecture Outline

» Architecture Styles
» Layered Architecture
e Client/Server
 Multitier Architecture
* Peer to Peer
» Structured P2P
e Unstructured P2P
* Hybrid P2P
» Collaborative

Architectural Styles (1)

Important styles of architecture for
distributed systems

» Layered architectures

* QObject-based architectures
» Data-centered architectures
 Event-based architectures

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (2)

Layer N
Layer N-1
Request | T Response
flow flow
v |
Layer 2
Layer 1
(@)

Figure 2-1. The (a) layered architectural style and ...

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (3)

/(m (onit)
/ A

‘ Object | Method call

Figure 2-1. (b) The object-based architectural style.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (4)

Component Component

Event delivery T T l
< Event bus >

T Publish

Component

(@)

Figure 2-2. (a) The event-based architectural style and ...

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (5)

Component Component

A
Data delivery Publish

Shared (persistent) data space

(b)

Figure 2-2. (b) The shared data-space architectural style.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Centralized Architectures

, Wait for result
GHENT e—— e

Request

Provide service Time —>

Figure 2-3. General interaction between a client and a server.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Application Layering (1)

Recall previously mentioned layers of
architectural style

« The user-interface level
* The processing level
 The data level

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Application Layering (2)

_ User-interface
User interface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query A Ranked list level
generator of page titles
Ranking
Database queries algorithm
Web page titles
with meta-information
Database Data level

with Web pages

Figure 2-4. The simplified organisation of an Internet search
engine into three different layers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (1)

The simplest organisation is to have only two
types of machines:
A client machine containing only the

programs implementing (part of) the user-
interface level

A server machine containing the rest,

— the programs implementing the processing and
data level

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (2)

‘ User interface

User interface

User interface

Client machine

User interface

User interface

Application

——
——
———

-
——

Application

Application

Application Application
Database Database
(@) (b)

Database

Server machine

(c)

Database

(d)

User interface

Application

Database

()

Figure 2-5. Alternative client-server organisations (a)—(e).

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (3)

User interface Wait for result
(presentation) ~— \ 4
Reque.st Return
operation result
Application ___________] Waltfordata __/
server
Request data Return data
Database N R
server
Time >

Figure 2-6. An example of a server acting as client.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multi-tiered Vertical vs. Horizontal Architectures

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests —_— —— @‘ i
handled in ! - == = Dlsks
round-robin S| &3 = = | >
fashion e E— ——

* Vertical architecture is placing logically different components on
different machines. It is related to vertical fragmentation
concept used in distributed relational databases (tables are
split column wise).

* Horizontal architecture (shown in figure), is placing shares of
datasets on different machines (acting as clients or seryers)
to balance the load.

Decentralised Architectures - P2P

In the last couple of years we have been seeing a tremendous growth
In peer-to-peer systems.

@ Structured P2P: nodes are organized following a specific
distributed data structure

@ Unstructured P2P: nodes have randomly selected neighbors

@ Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (cf. application-level
multicasting)

y

15

Structured P2P

Basic idea

Organize the nodes in a structured overlay network such as a logical
ring, or a hypercube, and make specific nodes responsible for services
based only on their ID.

v

The system provides an operation LOOKUP (key) that will efficiently
route the lookup request to the associated node.

16

Structured Peer-to-Peer Architectures (1)

Actual node

Prciadnt
’ .
N L)
0 ‘
M ’
. ¢
‘.-—‘
- -

145 {13,14,15} {0,1} [2}

.
/\" ~"‘\
- -
Vst -~

’ .
‘ \ / B
' [’ [
' ' " '
. , ’

. ¢ 88 ¢

~—an® e

{8,9,10,11,12} {2,3,4}

B Associated _
11} data keys 5}

Al ¢ A ’
-~ . -~ v
Saw /--o
LN 4'~“

Figure 27 The mapping of 710} (567} (6
data items onto nodes e N
in Chord. L9 g

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Peer-to-Peer Architectures (2)

Figure 2-8. (a) The mapping
of data items onto nodes
in CAN.

Keys associated with

node at (0.6,0.7)
0.1) \ L
\ (0.9,0.9)
[J
(0.2,0.8)
@
/ (0.6,0.7)
Actual node * (0_960_6)
(0.2,0.3)
o
(0.7,0.2)
L]
(0,0) (1.0
(@)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Peer-to-Peer Architectures (3)

(0'960'9)
(0.2,0.8)
@
(0.6,0.7)
&
(0.9,0.6)
@
(0.2,0.45)
(0'760'2)
Figure 2-8. (b) Splitting a BEQ)
region when a node
joins.
(b)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Unstructured P2P

Many unstructured P2P systems are organized as a random overlay: two
nodes are linked with probability p.

Observation

We can no longer look up information deterministically, but will have to resort
to searching:

@ Flooding: node u sends a lookup query to all of its neighbors. A neighbor
responds, or forwards (floods) the request. There are many variations:

e Limited flooding (maximal number of forwarding)
e Probabillistic flooding (flood only with a certain probability).

@ Random walk: Randomly select a neighbor v. If v has the answer, it
replies, otherwise v randomly selects one of jts neighbors. Variation:
parallel random walk. Works well with replicated data.

20

Unstructured Peer-to-Peer Architectures (1)

Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}

if PULL_MODE {
receive P’s buffer;
}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;

(@)

Figure 2-9. (a) The steps taken by the active thread.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Unstructured Peer-to-Peer Architectures (2)

Actions by passive thread:

receive buffer from any process Q;

if PULL_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first ¢c/2 entries to mybuffer;
send mybuffer to P;

}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;
(b)

Figure 2-9. (b) The steps take by the passive thread

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Topology Management of Overlay
Networks (1)

Protocol for :
Structured specific ”’/H ls_ mek(f}ffg ;?ﬁglongoyées
overlay overlay Q} P

A
Random peer

Random G /—r Links to randomly

overlay randomized chosen other nodes

view -Q:

Figure 2-10. A two-layered approach for constructing and
maintaining specific overlay topologies using techniqgues from
unstructured peer-to-peer systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Topology Management of Overlay
Networks

A g,

(SN
PISTALDAON

{ .ﬂ%N
el
"‘(‘:{’"\ / /"‘"

Time

Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with
permission from Jelasity and Babaoglu (2005)].

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Superpeers

Observation
Sometimes it helps to select a few nodes to do specific work: superpeer.

— Overlay network of super peers

@ Peers maintaining an index (for search)
@ Peers monitoring the state of the network
@ Peers being able to setup connections

25

Edge-Server Systems

Hybrid Architectures: Client-server combined with P2P: Edge-server
architectures, which are often used for Content Delivery Networks

Client Content provider

< > L1 1spP

] Isp

Core Internet

Edge server

< > < > Enterprise network

Figure 2-13. Viewing the Internet as consisting of a
collection of edge servers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Collaborative Distributed Systems (1)

Hybrid Architectures: C/S with P2P — BitTorrent

Client node
K out of N nodes
Lookup(F)
A BitTorrent torrent file List of. nodes
Web page Ref. to for F Ref. to storing F
file tracker
Web server server File server Tracker

Basic idea

Node 1

\ Node 2

Node N

Once a node has identified where to download a file from, it joins a swarm of downloaders
who in parallel get file chunks from the source, but also distribute these chunks amongst each

other

Figure 2-14. The principal working of BitTorrent [adapted with
permission from Pouwelse et al. (2004)].

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Collaborative Distributed Systems (2)

Components of Globule
collaborative content
distribution network:

* A component that can redirect o
client requests to other servers. Q Client

« A component for analysing
access patterns.

* A component for l —
managing the [— Server(s) '
repllcatlon Of Redirector(s) Partial site

copy
Web pages. \
Push/pull "~
updates Tl
Origin Push updates
Origin Server(s) '
site copy
Full site
copy

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: Differentiating Replication Strategies
in Globule (1)

Collaborative CDN that analyzes traces to decide where replicas of
Web content should be placed. Decisions are driven by a general cost
model:

cost = (Wq X my) + (Wo X M)+ -+ 4+ (Wp X mp)

Or|g|n server

IA\

~A Core Internet

Replica server '.

Enterprlse network

L1 Client 1 L1L] Client

@ Globule origin server collects traces and does what-if analysis by
checking what would have happened if page P would have been
placed at edge server S. 20

@ Many strategies are evaluated, and the best one is chosen.

Example: Differentiating Replication
Strategies in Globule (2)

T |

Error in prediction

Trace length used for selecting next policy —>

Figure 2-19. The dependency between prediction
accuracy and trace length.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectures versus Middleware

In many cases, distributed systems/applications are developed
according to a specific architectural style. The chosen style may not be
optimal in all cases = need to (dynamically) adapt the behavior of the
middleware.

Interceptors
Intercept the usual flow of control when invoking a remote object.

31

Interceptors

Intercepted call

\ — B.do_something(value)

Client application

Application stub

(

A

Request-level interceptor

T
1
1
1
1
1
1
1

— Nonintercepted call

I

invoke(B, &do_something, value)

T

o

Message-level interceptor

.

1

—_

(\L Object middleware
/

1 \

send([B, "do_something", value])

Local OS

\

, ToobjectB

Figure 2-15. Using interceptors to handle
remote-object invocations.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Approaches to Adaptive Software

Separation of concerns: Try to separate exira functionalities and later
weave them together into a single implementation = only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and
adapt/change its settings dynamically if necessary = mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through
components that can be dynamically replaced when needed =
highly complex, also many intercomponent dependencies.

Fundamental question
Do we need adaptive software at all, or is the issue adaptive systems? J

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Self-managing Distributed Systems

Distinction between system and software architectures blurs when
automatic adaptivity needs to be taken into account:

@ Self-configuration
@ Self-managing

@ Self-healing

@ Self-optimizing

@ Self-*

v

Warning
There is a lot of hype going on in this field of autonomic computing. J

34

The Feedback Control Model

Uncontrollable parameters (disturbance / noise)

Corrections

|

Initial configuration ’Q

+/./ +¥/_

Core of distributed system

L/

L /

Adjustment
measures

|

Reference input

|

|

Analysis

Adjustment triggers

<

Observed output

Metric
estimation

Measured output

Figure 2-16. The logical organisation of a

feedback control system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: Automatic Component Repair
Management in Jade

Steps required in a repair procedure:

* Terminate every binding between a component on

a nonfaulty node, and a component on the node
that just failed.

* Request the node manager to start and add a new
node to the domain.

» Configure the new node with exactly the same
components as those on the crashed node.

* Re-establish all the bindings that were previously
terminated.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: Systems Monitoring

avg_load

avg_mem

avg_procs

0.06

0.55

47

Machine A

Machine B

with Astrolabe

Machine C

IP-addr load | mem
192.168.1.2 | 0.03 | 0.80
192.168.1.3 | 0.05 | 0.50
192.168.1.4 | 0.10 | 0.35

Figure 2-17. Data collection and information
aggregation in Astrolabe.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

