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Architectural Styles (1)

Important styles of architecture for
distributed systems

» Layered architectures

* QObject-based architectures
» Data-centered architectures
 Event-based architectures
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Architectural Styles (2)
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Figure 2-1. The (a) layered architectural style and ...
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Architectural Styles (3)
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Figure 2-1. (b) The object-based architectural style.
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Architectural Styles (4)
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Figure 2-2. (a) The event-based architectural style and ...
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Architectural Styles (5)
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Figure 2-2. (b) The shared data-space architectural style.
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Centralized Architectures
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Figure 2-3. General interaction between a client and a server.
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Application Layering (1)

Recall previously mentioned layers of
architectural style

« The user-interface level
* The processing level
 The data level
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Application Layering (2)

_ User-interface
User interface level
HTML page
Keyword expression containing list
HTML
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Ranking
Database queries algorithm
Web page titles
with meta-information
Database Data level

with Web pages

Figure 2-4. The simplified organisation of an Internet search
engine into three different layers.
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Multitiered Architectures (1)

The simplest organisation is to have only two
types of machines:
A client machine containing only the

programs implementing (part of) the user-
interface level

A server machine containing the rest,

— the programs implementing the processing and
data level
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Multitiered Architectures (2)
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Figure 2-5. Alternative client-server organisations (a)—(e).
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Multitiered Architectures (3)
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Figure 2-6. An example of a server acting as client.
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Multi-tiered Vertical vs. Horizontal Architectures

Front end

handling

incoming Replicated Web servers each

requests containing the same Web pages
Requests —_— —— @‘ i
handled in ! - == = Dlsks
round-robin S| &3 = = | >
fashion e E— ——

* Vertical architecture is placing logically different components on
different machines. It is related to vertical fragmentation
concept used in distributed relational databases (tables are
split column wise).

* Horizontal architecture (shown in figure), is placing shares of
datasets on different machines (acting as clients or seryers)
to balance the load.



Decentralised Architectures - P2P

In the last couple of years we have been seeing a tremendous growth
In peer-to-peer systems.

@ Structured P2P: nodes are organized following a specific
distributed data structure

@ Unstructured P2P: nodes have randomly selected neighbors

@ Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note

In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (cf. application-level
multicasting)

y
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Structured P2P

Basic idea

Organize the nodes in a structured overlay network such as a logical
ring, or a hypercube, and make specific nodes responsible for services
based only on their ID.

v

The system provides an operation LOOKUP (key) that will efficiently
route the lookup request to the associated node.
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Structured Peer-to-Peer Architectures (1)
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Structured Peer-to-Peer Architectures (2)

Figure 2-8. (a) The mapping
of data items onto nodes
in CAN.
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Structured Peer-to-Peer Architectures (3)
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Unstructured P2P

Many unstructured P2P systems are organized as a random overlay: two
nodes are linked with probability p.

Observation

We can no longer look up information deterministically, but will have to resort
to searching:

@ Flooding: node u sends a lookup query to all of its neighbors. A neighbor
responds, or forwards (floods) the request. There are many variations:

e Limited flooding (maximal number of forwarding)
e Probabillistic flooding (flood only with a certain probability).

@ Random walk: Randomly select a neighbor v. If v has the answer, it
replies, otherwise v randomly selects one of jts neighbors. Variation:
parallel random walk. Works well with replicated data.

20




Unstructured Peer-to-Peer Architectures (1)

Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}

if PULL_MODE {
receive P’s buffer;
}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;

(@)

Figure 2-9. (a) The steps taken by the active thread.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



Unstructured Peer-to-Peer Architectures (2)

Actions by passive thread:

receive buffer from any process Q;

if PULL_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first ¢c/2 entries to mybuffer;
send mybuffer to P;

}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partial view;
(b)

Figure 2-9. (b) The steps take by the passive thread
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Topology Management of Overlay
Networks (1)

Protocol for :
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overlay randomized chosen other nodes

view -Q:

Figure 2-10. A two-layered approach for constructing and
maintaining specific overlay topologies using techniqgues from
unstructured peer-to-peer systems.
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Topology Management of Overlay
Networks
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Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with
permission from Jelasity and Babaoglu (2005)].
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Superpeers

Observation
Sometimes it helps to select a few nodes to do specific work: superpeer.

— Overlay network of super peers

@ Peers maintaining an index (for search)
@ Peers monitoring the state of the network
@ Peers being able to setup connections
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Edge-Server Systems

Hybrid Architectures: Client-server combined with P2P: Edge-server
architectures, which are often used for Content Delivery Networks

Client Content provider

< > L1 1spP

] Isp

Core Internet

Edge server

< > < > Enterprise network

Figure 2-13. Viewing the Internet as consisting of a
collection of edge servers.
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Collaborative Distributed Systems (1)

Hybrid Architectures: C/S with P2P — BitTorrent

Client node
K out of N nodes
Lookup(F)
A BitTorrent torrent file List of. nodes
Web page Ref. to for F Ref. to storing F
file tracker
Web server server File server Tracker

Basic idea

Node 1

\ Node 2

Node N

Once a node has identified where to download a file from, it joins a swarm of downloaders
who in parallel get file chunks from the source, but also distribute these chunks amongst each

other

Figure 2-14. The principal working of BitTorrent [adapted with
permission from Pouwelse et al. (2004)].

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (¢) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5



Collaborative Distributed Systems (2)

Components of Globule
collaborative content
distribution network:

* A component that can redirect o
client requests to other servers. Q Client

« A component for analysing
access patterns.

* A component for l —
managing the [— Server(s) '
repllcatlon Of Redirector(s) Partial site

copy
Web pages. \
Push/pull "~
updates Tl
Origin Push updates
Origin Server(s) '
site copy
Full site
copy
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Example: Differentiating Replication Strategies
in Globule (1)

Collaborative CDN that analyzes traces to decide where replicas of
Web content should be placed. Decisions are driven by a general cost
model:

cost = (Wq X my) + (Wo X M)+ -+ 4+ (Wp X mp)

Or|g|n server

IA\

~A Core Internet

Replica server '.

Enterprlse network

L1 Client 1 L1L] Client

@ Globule origin server collects traces and does what-if analysis by
checking what would have happened if page P would have been
placed at edge server S. 20

@ Many strategies are evaluated, and the best one is chosen.



Example: Differentiating Replication
Strategies in Globule (2)

T |

Error in prediction

Trace length used for selecting next policy —>

Figure 2-19. The dependency between prediction
accuracy and trace length.
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Architectures versus Middleware

In many cases, distributed systems/applications are developed
according to a specific architectural style. The chosen style may not be
optimal in all cases = need to (dynamically) adapt the behavior of the
middleware.

Interceptors
Intercept the usual flow of control when invoking a remote object.
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Interceptors

Intercepted call
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Client application

Application stub

(

A

Request-level interceptor

T
1
1
1
1
1
1
1

— Nonintercepted call
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Figure 2-15. Using interceptors to handle
remote-object invocations.
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General Approaches to Adaptive Software

Separation of concerns: Try to separate exira functionalities and later
weave them together into a single implementation = only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and
adapt/change its settings dynamically if necessary = mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through
components that can be dynamically replaced when needed =
highly complex, also many intercomponent dependencies.

Fundamental question
Do we need adaptive software at all, or is the issue adaptive systems? J
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Self-managing Distributed Systems

Distinction between system and software architectures blurs when
automatic adaptivity needs to be taken into account:

@ Self-configuration
@ Self-managing

@ Self-healing

@ Self-optimizing

@ Self-*

v

Warning
There is a lot of hype going on in this field of autonomic computing. J
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The Feedback Control Model

Uncontrollable parameters (disturbance / noise)

Corrections
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Figure 2-16. The logical organisation of a

feedback control system.
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Example: Automatic Component Repair
Management in Jade

Steps required in a repair procedure:

* Terminate every binding between a component on

a nonfaulty node, and a component on the node
that just failed.

* Request the node manager to start and add a new
node to the domain.

»  Configure the new node with exactly the same
components as those on the crashed node.

* Re-establish all the bindings that were previously
terminated.
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Example: Systems Monitoring

avg_load

avg_mem

avg_procs

0.06

0.55

47

Machine A

Machine B

with Astrolabe

Machine C

IP-addr load | mem
192.168.1.2 | 0.03 | 0.80
192.168.1.3 | 0.05 | 0.50
192.168.1.4 | 0.10 | 0.35

Figure 2-17. Data collection and information
aggregation in Astrolabe.
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