
Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

DISTRIBUTED SYSTEMS  
Principles and Paradigms 

Second Edition 
ANDREW S. TANENBAUM 

MAARTEN VAN STEEN  
 

Chapter 1  
 Architecture

2

Lecture Outline

• Architecture Styles
• Layered Architecture

• Client/Server
• Multitier Architecture

• Peer to Peer
• Structured P2P
• Unstructured P2P
• Hybrid P2P
• Collaborative

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (1)

Important styles of architecture for
distributed systems

• Layered architectures
• Object-based architectures
• Data-centered architectures
• Event-based architectures

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (2)

Figure 2-1. The (a) layered architectural style and …

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (3)

Figure 2-1. (b) The object-based architectural style.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Architectural Styles (4)

Figure 2-2. (a) The event-based architectural style and …

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

 Architectural Styles (5)

Figure 2-2. (b) The shared data-space architectural style.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Centralized Architectures

Figure 2-3. General interaction between a client and a server.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Application Layering (1)

Recall previously mentioned layers of
architectural style

• The user-interface level
• The processing level
• The data level

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Application Layering (2)

Figure 2-4. The simplified organisation of an Internet search
engine into three different layers.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (1)

The simplest organisation is to have only two
types of machines:

• A client machine containing only the
programs implementing (part of) the user-
interface level

• A server machine containing the rest,
– the programs implementing the processing and

data level

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (2)

Figure 2-5. Alternative client-server organisations (a)–(e).

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Multitiered Architectures (3)

Figure 2-6. An example of a server acting as client.

14

Multi-tiered Vertical vs. Horizontal Architectures

• Vertical architecture is placing logically different components on
different machines. It is related to vertical fragmentation
concept used in distributed relational databases (tables are
split column wise).

• Horizontal architecture (shown in figure), is placing shares of
datasets on different machines (acting as clients or servers)
to balance the load.

15

Decentralised Architectures - P2P
Architectures 2.2 System Architectures

Decentralized Architectures

Observation
In the last couple of years we have been seeing a tremendous growth
in peer-to-peer systems.

Structured P2P: nodes are organized following a specific
distributed data structure
Unstructured P2P: nodes have randomly selected neighbors
Hybrid P2P: some nodes are appointed special functions in a
well-organized fashion

Note
In virtually all cases, we are dealing with overlay networks: data is
routed over connections setup between the nodes (cf. application-level
multicasting)

9 / 30

16

Structured P2P
Architectures 2.2 System Architectures

Structured P2P Systems

Basic idea
Organize the nodes in a structured overlay network such as a logical
ring, or a hypercube, and make specific nodes responsible for services
based only on their ID.

0000

1000

0100

1100

0001 1001

0101 1101

0010

1010

0110

1110

0011 1011

0111 1111

Note
The system provides an operation LOOKUP(key) that will efficiently
route the lookup request to the associated node.

10 / 30

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Peer-to-Peer Architectures (1)

Figure 2-7. The mapping of
data items onto nodes

in Chord.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Peer-to-Peer Architectures (2)

Figure 2-8. (a) The mapping
of data items onto nodes

in CAN.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Structured Peer-to-Peer Architectures (3)

Figure 2-8. (b) Splitting a
region when a node

joins.

20

Unstructured P2P
Architectures 2.2 System Architectures

Unstructured P2P Systems

Essence
Many unstructured P2P systems are organized as a random overlay: two
nodes are linked with probability p.

Observation
We can no longer look up information deterministically, but will have to resort
to searching:

Flooding: node u sends a lookup query to all of its neighbors. A neighbor
responds, or forwards (floods) the request. There are many variations:

Limited flooding (maximal number of forwarding)
Probabilistic flooding (flood only with a certain probability).

Random walk: Randomly select a neighbor v . If v has the answer, it
replies, otherwise v randomly selects one of its neighbors. Variation:
parallel random walk. Works well with replicated data.

11 / 30

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Unstructured Peer-to-Peer Architectures (1)

Figure 2-9. (a) The steps taken by the active thread.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Unstructured Peer-to-Peer Architectures (2)

Figure 2-9. (b) The steps take by the passive thread

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Topology Management of Overlay
Networks (1)

Figure 2-10. A two-layered approach for constructing and
maintaining specific overlay topologies using techniques from

unstructured peer-to-peer systems.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Topology Management of Overlay
Networks (2)

Figure 2-11. Generating a specific overlay network using a two-
layered unstructured peer-to-peer system [adapted with

permission from Jelasity and Babaoglu (2005)].

25

Superpeers
Architectures 2.2 System Architectures

Superpeers

Observation
Sometimes it helps to select a few nodes to do specific work: superpeer.

Weak peer

Super peer

Overlay network of super peers

Examples

Peers maintaining an index (for search)
Peers monitoring the state of the network
Peers being able to setup connections

12 / 30

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Edge-Server Systems

Figure 2-13. Viewing the Internet as consisting of a  
collection of edge servers.

Hybrid Architectures: Client-server combined with P2P: Edge-server
architectures, which are often used for Content Delivery Networks

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Collaborative Distributed Systems (1)

Figure 2-14. The principal working of BitTorrent [adapted with
permission from Pouwelse et al. (2004)].

Hybrid Architectures: C/S with P2P – BitTorrent

Basic idea

Once a node has identified where to download a file from, it joins a swarm of downloaders
who in parallel get file chunks from the source, but also distribute these chunks amongst each
other

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Collaborative Distributed Systems (2)

Origin
site copy

Push/pull
updates

Partial site
copy

Full site
copy

Push updates

Client

Redirector(s)

Origin
Server

Server(s)
Backup

Replica
Server(s)

Figure 1: Globule Model

the availability of the site. When the origin is unavailable, it is su�cient that one
of the backups be available for the site to work correctly.

In addition to backup servers, a site can be hosted by any number of replica
servers. Unlike backups, the goal of replicas is to maximize performance. Depending
on its request load and quality of service requirements, a site may have any number
of replica servers, preferably located across the network so that there is a replica
close to each potential client. A replica server for a site is typically operated by a
di↵erent user than its origin, so the replica’s administrator may impose restrictions
on the amount of resources (disk space, bandwidth, etc.) that the hosted site can
use on this machine. As a result, each replica server typically contains only a partial
copy of its hosted site. Similar to a caching proxy, when requested for a document
not present locally, a replica server fetches the document from its origin before
delivering it to the client.

Finally, a site must have one or more redirector servers, whose task is to redirect
client requests to the replica server that can serve them best. In Globule, redirectors
can use either HTTP-based or DNS-based redirection. Redirectors monitor the
availability of the origin, backup and replica servers so that they always redirect
client requests to an available server. Similar to backup servers, the site will be
functioning correctly as long as one of the redirectors is available.

It should be clear that the distinction between origin, replica, backup and redi-
rector servers refers only to the role that a given server takes with respect to any
given site. The same server may for example simultaneously act as the origin and
one of the redirectors for its owner’s site, as a backup for a few selected friend’s
sites, as a replica for other sites, and as a redirector for yet other sites.

Content Distribution

When replicating documents for performance, a CDN should strive to place replicas
close to where clients are. Such a placement generally leads to low access times.
Proximity between Internet nodes can be measured according to di↵erent metrics
such as the number of hops in the shortest route and round-trip delays. In Globule,
we take internode latency as our proximity measure, and use this metric to optimally

4

Components of Globule
collaborative content
distribution network:

• A component that can redirect
client requests to other servers.

• A component for analysing
access patterns.

• A component for  
managing the  
replication of  
Web pages.

29

Architectures 2.4 Self-management in Distributed Systems

Example: Globule

Globule
Collaborative CDN that analyzes traces to decide where replicas of
Web content should be placed. Decisions are driven by a general cost
model:

cost = (w1 ⇥m1)+(w2 ⇥m2)+ · · ·+(wn ⇥mn)

20 / 30

Architectures 2.4 Self-management in Distributed Systems

Example: Globule

Replica server

Core Internet

Enterprise network

ISP ISP

Client

Origin server

Client Client

Globule origin server collects traces and does what-if analysis by
checking what would have happened if page P would have been
placed at edge server S.
Many strategies are evaluated, and the best one is chosen.

21 / 30

Example: Differentiating Replication Strategies
in Globule (1)

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: Differentiating Replication
Strategies in Globule (2)

Figure 2-19. The dependency between prediction  
accuracy and trace length.

31

Architectures versus Middleware
Architectures 2.3 Architectures versus Middleware

Architectures versus Middleware

Problem
In many cases, distributed systems/applications are developed
according to a specific architectural style. The chosen style may not be
optimal in all cases) need to (dynamically) adapt the behavior of the
middleware.

Interceptors
Intercept the usual flow of control when invoking a remote object.

15 / 30

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Interceptors

Figure 2-15. Using interceptors to handle  
remote-object invocations.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

General Approaches to Adaptive Software

Architectures 2.3 Architectures versus Middleware

Adaptive Middleware

Separation of concerns: Try to separate extra functionalities and later
weave them together into a single implementation) only toy
examples so far.

Computational reflection: Let a program inspect itself at runtime and
adapt/change its settings dynamically if necessary) mostly at
language level and applicability unclear.

Component-based design: Organize a distributed application through
components that can be dynamically replaced when needed)
highly complex, also many intercomponent dependencies.

Fundamental question
Do we need adaptive software at all, or is the issue adaptive systems?

17 / 30

34

Self-managing Distributed Systems
Architectures 2.4 Self-management in Distributed Systems

Self-managing Distributed Systems

Observation
Distinction between system and software architectures blurs when
automatic adaptivity needs to be taken into account:

Self-configuration
Self-managing
Self-healing
Self-optimizing
Self-*

Warning
There is a lot of hype going on in this field of autonomic computing.

18 / 30

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

The Feedback Control Model

Figure 2-16. The logical organisation of a
feedback control system.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Example: Automatic Component Repair
Management in Jade

Steps required in a repair procedure:
• Terminate every binding between a component on

a nonfaulty node, and a component on the node
that just failed.

• Request the node manager to start and add a new
node to the domain.

• Configure the new node with exactly the same
components as those on the crashed node.

• Re-establish all the bindings that were previously
terminated.

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Figure 2-17. Data collection and information  
aggregation in Astrolabe.

Example: Systems Monitoring  
with Astrolabe

