
Introducing
VB data types,

variables, constants,
VB controls and

arithmetic

1

Visual Basic Data Types

Data type Prefix Size Values

Byte byt 1 byte positive integer value from 0 to 255

Short shr 2 byte integer from –32,768 to +32,767

Integer int 4 byte integer from +/- 2,147,483,647

Long lng 8 byte integer from +/- 9,223,372,036,854,775,807

Single sng 4 byte single-precision, floating-point number

Double dbl 8 byte double-precision, floating-point number

Decimal dec 16 byte number with up to 28 significant digits

Char chr 2 byte Any single character

Boolean bln 2 byte True or False

String str (4 byte) Text - Any number/combination of characters

Date dtm 8 byte 8 character date: #dd/mm/yyyy#

Object obj (4 byte) An address that refers to an object

Variables

 A storage location in memory (RAM)

 Holds data/information while the program is running

 These storage locations can be referred to by their
names

Every variable has three properties:
 Name - reference to the location - cannot be

changed

 Value - the information that is stored - can be
changed during program execution, hence the name
“variable”

 Data Type - the type of information that can be
stored - can be transfered

Variable Names

 Naming Rules Conventions

 First character must be a letter or underscore
 Must contain only letters, numbers, and underscores

(no spaces, periods, etc.)
 Can have up to 255 characters
 Cannot be a VB language keyword

 Naming Conventions

 Should be meaningful
 Follow 3 char prefix style - 1st 3 letters in lowercase to

indicate the data type
 After that, capitalize the first letter of each word
 Example: intTestScore

Declaring a Variable

 A variable declaration is a statement that
creates a variable in memory

 Syntax: Dim VariableName As DataType

◦ Dim (short for Declaration in Memory) - keyword

◦ VariableName – The name used to refer to variable

◦ As - keyword

◦ DataType - one of the many possible keywords to
indicate the type of value the variable will contain

 Example: Dim intLength as Integer

Declaring and Initializing a Variable

 A starting or initialization value may be
specified with the Dim statement

 Good practice to set an initial value unless
assigning a value prior to using the variable

 Syntax:

 Dim VariableName As DataType = Value

 Just append " = value” to the Dim statement
= 5  assigning a beginning value to the variable

 Example: Dim intLength as Integer = 5

Variable Declaration Rules

 Variables MUST be declared prior
to the code where they are used

 Declaring an initial value of the
variable in the declaration
statement is optional

Default Values for Data Types

Data type Default (Initial)
value

All numeric types Zero (0)

Boolean False

Char “0”

String or Object Empty

Date 12:00 a.m. on January 1, 0001

Constants in VB

Syntax: Const CONST_NAME As DataType = Value

Looks like a normal declaration except:

1. Const used instead of Dim

2. An initialization value is required

3. By convention, entire name capitalized with
underscore characters to separate words

Assignment Statement

 Syntax: variablename = expression

 Assigns the value of the expression to the
variable. (The variable must be on the left
and the expression on the right.)

 Example:
◦ intNumber1 = 4
◦ intNumber2 = 3 * (2 + 2)
◦ intNumber3 = intNumber1
◦ IntNumber1 = intNumber1 + 6

Explicit Type Conversions

 VB provides a set of functions that perform
data type conversions

 These functions will accept a literal, variable
name, or arithmetic expression

 The following narrowing conversions require
an explicit type conversion
◦ Double to Single

◦ Single to Integer

◦ Long to Integer

 Boolean, Date, Object, String, and numeric
types represent different sorts of values and
require conversion functions as well

The Val Function

 The Val function is a more forgiving
means of performing string to numeric
conversions

 Uses the form Val(string)

 If the initial characters form a numeric
value, the Val function will return that

 Otherwise, it will return a value of zero

The Val Function

 Val Function Value Returned

◦ Val("34.90“) 34.9

◦ Val("86abc“) 86

◦ Val("$24.95“) 0

◦ Val("3,789“) 3

◦ Val("“) 0

◦ Val("x29“) 0

◦ Val("47%“) 47

◦ Val("Geraldine“) 0

The ToString Method

 Returns a string representation of the
value in the variable calling the method

 Every VB data type has a ToString
method

 Uses the form VariableName.ToString
 For example

 Dim number as Integer = 123

 lblNumber.text = number.ToString

◦ Assigns the string “123” to the text property of
the lblNumber control

Performing Calculations with Variables

 Arithmetic Operators

^ Exponent

* Multiplication

/ Floating Point Division

\ Integer Division

MOD Modulus (remainder from division)

+ Addition

– Subtraction

& String Concatenation (putting them together)

Integer Division Operator

 The backslash (\) is used as an integer
division operator

 The result is always an integer, created by
discarding any remainder from the
division

 Example
◦ intResult = 7 \ 2 ‘result is 3

◦ shrHundreds = 157 \ 100 ‘result is 1

◦ shrTens = (157 - 157 \ 100 * 100) \ 10

 ‘result is ?

Special Mod Operator

 This operator can be used in place of the
backslash operator to give the remainder
of a division operation
intRemainder = 17 MOD 3 ‘result is 2
dblRemainder = 17.5 MOD 3 ‘result is 2.5

 Any attempt to use of the \ or MOD

operator to perform integer division by
zero causes a DivideByZeroException
runtime error

Concatenating Strings

 Concatenate: connect strings together

 Concatenation operator: the ampersand (&)

 Include a space before and after the & operator

 Numbers after & operator are converted to strings

 How to concatenate character strings

◦ strFName = "Bob"
◦ strLName = "Smith"

◦ strName = strFName & " “  “Bob ”
◦ strName = strName & strLName  “Bob Smith”

◦ intX = 1 intY = 2
◦ intResult = intX + intY
◦ strOutput = intX & “ + “ & intY & “ = “ & intResult  “1 + 2 = 3”

Self Assignment Operators

 Often need to change the value in a variable and
assign the result back to that variable

 For example: var = var – 5

 Subtracts 5 from the value stored in var

 Operator Usage Equivalent to Effect

 += x += 2 x = x + 2 Add to

 -= x -= 5 x = x – 5 Subtract from

 *= x *= 10 x = x * 10 Multiply by

 /= x /= y x = x / y Divide by

 \= x \= y x = x \ y Int Divide by

 &= x &= “.” x = x & “.” Concatenate

Arithmetic Operator Precedence

 Operator precedence tells us the order in
which operations are performed

 From highest to lowest precedence:
◦ Exponentiation (^)
◦ Multiplicative (* and /)
◦ Integer Division (\)
◦ Modulus (MOD)
◦ Additive (+ and -)

 Parentheses override the order of
precedence

 Where precedence is the same, operations
occur from left to right

All Operators Precedence

 Parenthesis

 Exponential

 Multiplication / Division

 Integer Division

 MOD

 Addition / Subtraction

 String Concatenation

 Relational Operators (< , > , >= , <= , <>)

 Logical Operators (AND, OR, NOT)

Precedence Examples

6 * 2 ^ 3 + 4 / 2 = 50

7 * 4 / 2 – 6 = 8

5 * (4 + 3) – 15 Mod 2 = 34

intX = 10

intY = 5

intResultA = intX + intY * 5 'iResultA is 35

iResultB = (intX + intY) * 5 'iResultB is 75

dResultA = intX - intY * 5 'dResultA is -15

dResultB = (intX - intY) * 5 'dResultB is 25

