
OOP in Java : © W. Milner 2005 : Slide ‹#›

CC316: Object Oriented
Programming

Lecture 2: Introduction to OOP

Dr. Manal Helal, Fall 2015
http://moodle.manalhelal.com

OOP in Java : © W. Milner 2005 : Slide ‹#›

Previous Lecture

• Introduction to Java Language and the different Editions

• Problem Solving Revision

OOP in Java : © W. Milner 2005 : Slide ‹#›

Lecture Learning Objectives
• In this lesson, you will learn to:

• State the reasons for the complexity involved in the development of
software

• Define the following terms
• Objects
• Classes
• Messages
• Methods

• Explain benefits of the object-oriented approach
• State the significance of the activities involved in object-oriented

analysis and design
• Create classes in Java

OOP in Java : © W. Milner 2005 : Slide ‹#›

Software Systems Complexity

• Internal Complexity
• Arises from the composition of a system itself

• External Complexity
• Arises from the fact that users themselves have only a vague

idea of how their system works and have difficulty in
expressing their requirements

OOP in Java : © W. Milner 2005 : Slide ‹#›

Complexity Sources

• Difficulty in managing the software development process

• Lack of standards for developing software

• Difficulty in predicting software behaviour.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Simplifying Complexity

• Is done by breaking the system into its component
parts and arranging them in a hierarchy

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise

• Jane has called a technician to repair her television. How
would the technician deal with the complexity of the
television?

OOP in Java : © W. Milner 2005 : Slide ‹#›

Conflicting Objectives

• There are two assertions:
• OOP is a revolutionary idea, totally unlike anything that has

come before in programming languages
• OOP is an evolutionary step, following naturally on the heels

of earlier programming abstractions

• Both are true.

OOP in Java : © W. Milner 2005 : Slide ‹#›

OOP Popularity

• OOP has been the dominant programming paradigm for
more than twenty years. Why is it so popular?
• Proven record of success.
• Scales well from small problems to large
• Resonant similarity to techniques for thinking about

problems in other domains.

• Nevertheless, programming is still a task that requires skill
and learning.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Turing Machine

OOP in Java : © W. Milner 2005 : Slide ‹#›

Church's Conjecture

• In computation we have the following assertion:
• Church's Conjecture: Any computation for which there exists an

effective procedure can be realised by a Turing machine language.

• Anything can be done in any language, but it may simply be
easier or more efficient to use one language or another.

• Would YOU want to write an event-driven GUI interface in
Turing machine? Probably not.

• Bottom line: Languages lead you, but do not prevent you from
going anywhere you want

OOP in Java : © W. Milner 2005 : Slide ‹#›

Imperative Programming

• Programming paradigms:
• Imperative programming is the

“traditional” model of computation.
• State
• Variables
• Assignment
• Loops

• A processing unit is separate from
memory, and “acts” upon memory.

• Sometimes called the “pigeon-hole”
model of computation.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Recursive Design

• Alan Kay thought about this
conventional design of the computer,
and asked why we constructed the
whole out of pieces that were useless by
themselves.

• Why not build a whole out of pieces
that were similar at all levels of detail?
(Think of fractals).

• Idea: A program can be build out of
little computing agents.

• The structure of the part mirrors the
structure of the larger unit.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Kay's Description of OOP

• Object-oriented programming is based on the principle of recursive
design.
1. Everything is an object
2. Objects perform computation by making requests of each other through

the passing of messages
3. Every object has it's own memory, which consists of other objects.
4. Every object is an instance of a class. A class groups similar objects.
5. The class is the repository for behaviour associated with an object
6. Classes are organised into singly-rooted tree structure, called an

inheritance hierarchy.

• We can illustrate these principles by considering how I go about
solving a problem in real life.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Illustration: Sending Flowers to a Friend

• To illustrate the concepts of OOP in an easily understood framework,
consider the problem of sending flowers to a friend who lives in a
different city. Chris is sending flowers to Robin.

• Chris can't deliver them directly. So Chris uses the services of the local
Florist.

• Chris tells the Florist (named Fred) the address for Robin, how much to
spend, and the type of flowers to send.

• Fred contacts a florist in Robins city, who arranges the flowers, then
contacts a driver, who delivers the flowers.

• If we start to think about it, there may even be other people involved in
this transaction. There is the flower grower, perhaps somebody in charge
of arrangements, and so on.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Agents and Communities
• Our first observation is that results are achieved through the

interaction of agents, which we will call objects.

• Furthermore, any non-trivial activity requires the interaction of an
entire community of objects working together.

• Each object has a part to play, a service they provide to the other
members of the community.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Object

• Object: Is an instance of a class that exhibits some well-defined
behaviour

• So we have Kay's first principle.
1. Everything is an object.

• Actions in OOP are performed by agents, called instances or
objects.

• There are many agents working together in my scenario. We have
Chris, Robin, the florist, the florist in Robins city, the driver, the
flower arranger, and the grower. Each agent has a part to play, and
the result is produced when all work together in the solution of a
problem.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Characteristics of Objects

• State
• Is indicated by a set of attributes and the values of these

attributes

• Behaviour
• Is indicated by how an object acts and reacts

• Identity
• Distinguishes the object from all other objects

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise

• Identify the possible attributes to define the state of the
following objects:
• Tea cup
• Stereo tape-recorder

OOP in Java : © W. Milner 2005 : Slide ‹#›

Classes

Radio Button Check Box Textbox

UI Control

• Define the attributes and behaviours of an object

Example:

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Messages

• Messages:
• Are transmitted by one object to another
• Are transmitted as requests for an action to be taken
• Are accompanied by additional information needed to carry out the request

• Kay’s principle number 2:
2. Objects perform computation by making requests of each other through the

passing of messages

• Actions in OOP are produced in response to requests for actions, called
messages. An instance may accept a message, and in return will perform an
action and return a value.

• To begin the process of sending the flowers, Chris gives a message to Fred.
Fred in turn gives a message to the florist in Robins city, who gives another
message to the driver, and so on.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Information Hiding

• Notice that I, as a user of a service being provided by an object,
need only know the name of the messages that the object will
accept.

• I need not have any idea how the actions performed in response
to my request will be carried out.

• Having accepted a message, an object is responsible for carrying
it out.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Receivers

• Messages differ from traditional function calls in two very
important respects:

• In a message there is a designated receiver that accepts the
message

• The interpretation of the message may be different,
depending upon the receiver

OOP in Java : © W. Milner 2005 : Slide ‹#›

Different Receivers, Same Message, Different
Actions

var
 Fred : Florist;
 Elizabeth : Friend;
 Ken : Dentist;

begin
 Fred.sendFlowersTo(myFriend); { will work }
 Elizabeth.sendFlowersTo(myFriend); { will also
work }
 Ken.sendFlowersTo(myFriend); { will probably not
work }
end;

• The same message will result in different actions, depending upon who it is given to.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Behaviour and Interpretation

• Although different objects may accept the same message, the
actions (behaviour) the object will perform will likely be different.

• The determination of what behaviour to perform may be made at
run-time, a form of late binding.

• The fact that the same name can mean two entirely different
operations is one form of polymorphism, a topic we will discuss at
length in subsequent chapters.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Recursive Design

• Kay’s Third Principal:
3. Every object has it's own memory, which consists of other

objects.

• Each object is like a miniature computer itself - a
specialised processor performing a specific task.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Non-interference

• It is important that objects be allowed to perform their task
however they see fit, without unnecessary interactions or
interference with other objects.

• “Instead of a bit-grinding processor raping and plundering
data structures, we have a universe of well-behaved objects
that courteously ask each other to carry out their various
desires” -- Dan Ingalls.

• “Ask not what you can do to your data structures, but ask
what your data structures can do for you”

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Classes

• Kay’s Fourth and Fifth Principals:
4. Every object is an instance of a class. A class groups similar

objects.
5. The class is the repository for behaviour associated with an object.

• The behaviour I expect from Fred is determined from a general
idea I have of the behaviour of Florists.

• We say Fred is an instance of the class Florist.

• Behaviour is associated with classes, not with individual
instances. All objects that are instances of a class use the same
method in response to similar messages.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Hierarchies of Categories

• But there is more that I know about Fred
then just that he is a Florist. I know he is a
Shop-Keeper, and a Human, and a
Mammal, and an Animal, and a Material
Objects, and so on.

• At each level of abstraction I have certain
information recorded. That information is
applicable to all lower (more specialised)
levels.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Class Hierarchies

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Inheritance

• Kay’s Sixth Principal:
6. Classes are organised into a singly-rooted tree structure,

called an inheritance hierarchy

• Information (data and/or behaviour) I associate with one
level of abstraction in a class hierarchy is automatically
applicable to lower levels of the hierarchy.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Methods

• Are a set of actions taken by the receiver object in
response to the request

OOP in Java : © W. Milner 2005 : Slide ‹#›

Elements of OOP - Overriding

• Subclasses can alter or override information inherited from
parent classes:
• All mammals give birth to live young
• A platypus is an egg-laying mammal

• Inheritance combined with overriding are where most of
the power of OO originates.

A platypus is a curious animal - it is
considered to be a Mammal but it
nevertheless reproduces by laying
eggs.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Computing as Simulation

• The OOP view of computation is similar to creating a
universe of interacting computing objects

• Similar to the way in which a committee or club might be
organised

• Also very similar to a style of simulation called discrete
event-driven simulation

• Easily under estimated advantage of this view -- power of
metaphor.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Metaphor and Problem Solving

• Because the OOP view is similar to the way in which people go
about solving problems in real life (finding another agent to do the
real work!), intuition, ideas, and understanding from everyday
experience can be brought to bear on computing.

• On the other hand, common sense was seldom useful when
computers were viewed in the process-state model, since few
people solve their everyday problems using pigeon-holes.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise

• Dr. James and Mr. Hyde went to the railway station to
book two tickets in the Flying express for 3rd December
by AC 1st class. Identify the following:

a. The possible receiver of the message in this situation

b. The possible method that the receiver can use

OOP in Java : © W. Milner 2005 : Slide ‹#›

Benefits of the Object-Oriented Approach

• Realistic modelling
• Easy to use

• Reusability
• Saves time and cost

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise

• State whether the following situations demonstrate
reusability:

a. Recycling paper

b. Pump reusability (same pump is used in a well and in a
fuel station)

OOP in Java : © W. Milner 2005 : Slide ‹#›

Benefits of Object-Oriented Approach
(Cont’d).

• Resilience to change

• Easy to maintain

• Parts of the system can be refined without any major
change in other parts

OOP in Java : © W. Milner 2005 : Slide ‹#›

Object-Oriented Analysis (OOA)

• Analysis:
• Is a phase where users and developers get together and arrive

at a common understanding of the system
• Requires the developer to concentrate on obtaining maximum

possible information about the problem domain
• Results in one of the end products as specification of the

function of the system

OOP in Java : © W. Milner 2005 : Slide ‹#›

Object-Oriented Design (OOD)

• Design:
• Generates the blueprint of the system that has to be

implemented
• Involves identifying classes using:

• Abbott’s technique

OOP in Java : © W. Milner 2005 : Slide ‹#›

Object-Oriented Design (OOD) (Contd.)

• Abbott’s technique follows the listed steps:
• Write English description of the problem
• Underline nouns (nouns represent candidate classes)

OOP in Java : © W. Milner 2005 : Slide ‹#›

Object-Oriented Programming (OOP)

• Is a way of writing programs

• Some applications built using OOP techniques are:
• Computer-Aided Design (CAD)
• Computer-Aided Manufacturing (CAM)
• Artificial Intelligence (AI) and Expert Systems
• Object-Oriented Databases

OOP in Java : © W. Milner 2005 : Slide ‹#›

Generations of Computer Languages
• First generation:

• Is a machine-level programming language, no compiler or assembler; entered using the front panel switches of the
computer.

• Second generation:
• Can be read and written by a programmer; and must be converted to a machine readable form to run on a computer

(assembler).
• C kernel function and human fine tuning to the machine.

• Third generation (High Level Languages) – 1950s:
• Brought logical structure to software, programmer friendly, human readable natural language and block structure,

improved support for aggregate data types, and expressing concepts in a way that favours the programmer, not the
computer.

• Late 1950s, Fortran, ALGOL, Ada, and COBOL, and most Popular: C, C++, C#, Java, BASIC and Pascal.
• Fourth Generation - 1970s-1990:

• Packages of systems development software including very high level programming languages and development
environments providing higher abstraction and statement power.

• Components: 'Analyst Workbench' designed with a central data dictionary system, a library of loosely coupled design
patterns, a CRUD generator, report generator, end-user query language, DBMS, visual design tool and integration API

• Rapid Application Development (RAD) tools are more oriented toward problem solving and systems engineering.
• Examples: Power Builder, Mathematica, Matlab, R, SAS, SPSS,

• Fifth Generation – 1980s:
• Based on solving problems using constraints given to the program, rather than using an algorithm written by a

programmer, mainly in AI research
• Examples: Prolog, OPS5, and Mercury.

OOP in Java : © W. Milner 2005 : Slide ‹#›

Evolution of C++ as an OOP Language

• In the early 1980s, Bjarne Stroustrup developed the
C++ language

• C++ was originally known as 'C with classes’

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise: Problem Statement

• As a member of a team that is developing the billing
system software for Diaz Telecommunications Inc., you
have been assigned the task of creating a software module
that accepts and displays customer details. Declare the
Customer class and the member functions. The member
function to accept customer details should display the
message “Accepting Customer Details”. Similarly, the
member function to display customer details on the screen
should display the message “Displaying Customer
Details.”

OOP in Java : © W. Milner 2005 : Slide ‹#›

Solution
import java.io.*;
class customer {
 static String name; static String address;
 public static void readValues() {
 try {
 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
 System.out.println("Please Enter Customer Name:");
 name = in.readLine();
 System.out.println("Please Enter Customer Address:");
 address = in.readLine();
 }
 catch (java.io.IOException ioe) {
 System.out.println("IO Error: " + ioe.getMessage());
 System.exit(1);
 }
 }
 public static void displayValues() {
 System.out.println("Customer Name: "+ name);
 System.out.println("Customer Name:" + address);
 }
 public static void main (String[] args) {
 readValues ();
 displayValues ();
 }
}

OOP in Java : © W. Milner 2005 : Slide ‹#›

Exercise

• As a member of a team that is developing an automated
booking system for the Railways, you have been assigned
the task of creating a module that accepts the details of a
passenger and checks whether the ticket has been
confirmed or is in the waiting list. The module then prints
the list of confirmed passengers. Declare a class Ticket,
which consists of three member functions, booking(),
status(), and print().

OOP in Java : © W. Milner 2005 : Slide ‹#›

UML - Class diagram

• Used for describing structure and behaviour in the use cases

• Provide a conceptual model of the system in terms of entities
and their relationships

• Used for requirement capture, end-user interaction

• Detailed class diagrams are used for developers

OOP in Java : © W. Milner 2005 : Slide ‹#›

UML - Class Representation

• Each class is represented by a rectangle subdivided into three
compartments
• Name
• Attributes
• Operations

• Modifiers are used to indicate visibility of attributes and operations.
• ‘+’ is used to denote Public visibility (everyone)
• ‘#’ is used to denote Protected visibility (friends and derived)
• ‘-’ is used to denote Private visibility (no one)

• By default, attributes are hidden and operations are visible.

OOP in Java : © W. Milner 2005 : Slide ‹#›

 
 

 Account_Name
- Customer_Name
- Balance
+addFunds()
+withDraw()
+transfer()

Name

Attributes

Operations

UML An example of Class Diagram  

OOP in Java : © W. Milner 2005 : Slide ‹#›

Assignment – ass2

• Design a UML Class diagram to model inheritance relationships between a vehicle
class, a bicycle class, a motor vehicle class, a car class, and a motor bike class with
the following specifications:
• All Vehicles have some common attributes of speed, colour, and common behaviour to

turnLeft and turnRight.
• Bicycle and MotorVehicle are both kinds of Vehicle.
• Bicycle has an additional behavious to ring bell.
• MotorVehicles have size of engines and license plates attributes.
• MotorBike and Car are considered types of MotorVehicles.
• MotorBike has an additional behaviour to generate rev Engine.
• Car has an additional attribute of number of doors and behaviour to switch on air

condition.
• Include the behaviour that allows us to examine all attributes in all classes.

• Due next week.

