
❖

❖

❖

❖

❖

Pattern Recognition and Image 
Analysis
Dr. Manal Helal – Fall 2014
Lecture 3



❖❖

BAYES DECISION THEORY
In Action 2

2



❖❖
Recap Example



❖❖
Example (cont.)



❖❖
Example (cont.)

Assign colours to objects.



❖❖
Example (cont.)



❖❖
Example (cont.)



❖❖
Example (cont.)



❖❖
Example (cont.)

Assign colour to pen objects.



❖❖
Example (cont.)



❖❖
Example (cont.)

Assign colour to paper objects.



❖❖
Example (cont.)



❖❖
Example (cont.)



❖❖

Solving Posteriors 
(Deterministic)
Logistic Regression

14



Logistic Regression

Logistic Regression is a discriminative model, because it models
the posterior probabilities p(y |x) directly.
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Posteriors and the Logistic Function

For two classes y 2 {0, 1} we get:

p(y = 0|x) =
p(y = 0) · p(x |y = 0)

p(x)

=
p(y = 0) · p(x |y = 0)

p(y = 0)p(x |y = 0) + p(y = 1)p(x |y = 1)

=
1

1 + p(y=1)p(x|y=1)
p(y=0)p(x|y=0)
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Posteriors and the Logistic Function (cont.)

p(y = 0|x) =
1

1 + p(y=1)p(x|y=1)
p(y=0)p(x|y=0)

(Trick: extend with exponential and logarithm)

=
1

1 + e

log p(y=1)p(x|y=1)
p(y=0)p(x|y=0)

=
1

1 + e

� log p(y=0)
p(y=1)�log p(x|y=0)

p(x|y=1)
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Posteriors and the Logistic Function (cont.)

We see that the posterior for class y = 0 can be written in terms of
a logistic function:

p(y = 0|x) =
1

1 + e

�F(x)

And thus the posterior for the other class y = 1:

p(y = 1|x) = 1 � p(y = 0|x)

=
e

�F(x)

1 + e

�F(x)

=
1

1 + e

F(x)
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Posteriors and the Logistic Function (cont.)

Definition
The logistic function (also called sigmoid function) is defined by

g(x) =
1

1 + e

�x

where x 2 R.
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Posteriors and the Logistic Function (cont.)

The derivative of the sigmoid function fulfills the nice property:

g

0(x) =

✓
1

1 + e

�x

◆0
=

1
(1 + e

�x)2 · e

�x

=
1

(1 + e

�x)
· e

�x

(1 + e

�x)

=
1

(1 + e

�x)
· 1
(1 + e

x)

= g(x)g(�x)

= g(x)(1 � g(x)) .
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Posteriors and the Logistic Function (cont.)

Sigmoid Functions
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Fig.: Sigmoid function: g(ax) = 1/(1 + e

�ax) for a = 1, 2, 3, 4
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Decision Boundary

The decision boundary �(x) = 0 (zero level set) in feature space separates
the two classes.

Points x on the decision boundary satisfy:

p(y = 0|x) = p(y = 1|x)

and thus

log
p(y = 0|x)
p(y = 1|x) = log 1 = 0 .
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Decision Boundary (cont.)

Lemma
The decision boundary is given by F (x) = 0.

Proof:

log
p(y = 0|x)
p(y = 1|x) = F (x) = 0

p(y = 0|x)
p(y = 1|x) = e

F(x)

p(y = 0|x) = e

F(x)
p(y = 1|x)
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Decision Boundary (cont.)

p

Conditionals and Posteriors

x

-3 -2 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0
-5 -1-4 0

p(x|y = 1)

p(x|y = 0)

p(y = 0|x)
p(y = 1|x)

Fig.: Two Gaussians and its posteriors: �0=�1= 0.25, µ0 = �2, µ1 = 1
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Decision Boundary (cont.)

Example
Let us assume both classes have normally distributed d-dimensional feature vectors:

p(x|y) =
1

p
det (2⇡⌃

y

)
e

� 1
2 (x�µ

y

)T ⌃�1
y

(x�µ
y

)

Then we can write the posterior of y = 0 in terms of a logistic function:

p(y = 0|x) =
1

1 + e

�F(x)
=

1

1 + e

�(x

T

Ax+↵T

x+↵0)

F(x) = log
p(y = 0|x)
p(y = 1|x)

= log
p(y = 0)p(x|y = 0)
p(y = 1)p(x|y = 1)
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Decision Boundary (cont.)

Example (cont.)

F(x) = log
p(y = 0)
p(y = 1)

+ log

1p
det (2⇡⌃0)

e

� 1
2 (x�µ0)

T ⌃�1
0 (x�µ0)

1p
det (2⇡⌃1)

e

� 1
2 (x�µ1)

T ⌃�1
1 (x�µ1)

This function has the constant component:

c = log
p(y = 0)
p(y = 1)

+
1
2

log
det (2⇡⌃1)

det (2⇡⌃0)

We observe:

• Priors imply a constant offset of the decision boundary.

• If priors and covariance matrices of both classes are identical, this offset is
c = 0.
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Decision Boundary (cont.)

Example (cont.)

F(x) = log
p(y = 0)
p(y = 1)

+ log

1p
det (2⇡⌃0)

e

� 1
2 (x�µ0)

T ⌃�1
0 (x�µ0)

1p
det (2⇡⌃1)

e

� 1
2 (x�µ1)

T ⌃�1
1 (x�µ1)

This function has the constant component:

c = log
p(y = 0)
p(y = 1)

+
1
2

log
det (2⇡⌃1)

det (2⇡⌃0)

We observe:

• Priors imply a constant offset of the decision boundary.

• If priors and covariance matrices of both classes are identical, this offset is
c = 0.
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Decision Boundary (cont.)

Example (cont.)
Furthermore we have:

log
e

� 1
2 (x�µ0)

T ⌃�1
0 (x�µ0)

e

� 1
2 (x�µ1)

T ⌃�1
1 (x�µ1)

=

=
1
2

⇣
(x � µ1)

T⌃�1
1 (x � µ1)� (x � µ0)

T⌃�1
0 (x � µ0)

⌘

=
1
2

⇣
x

T (⌃�1
1 �⌃�1

0 )x � 2(µT

1 ⌃
�1
1 � µT

0 ⌃
�1
0 )x+

+µT

1 ⌃
�1
1 µ1 � µT

0 ⌃
�1
0 µ0

⌘

Lecture Pattern Recognition | „ 2005-2013 Hornegger, Hahn, Steidl 3-15



Decision Boundary (cont.)

Example (cont.)
Now we have:

A =
1
2
(⌃�1

1 �⌃�1
0 )

↵T = µT

0 ⌃
�1
0 � µT

1 ⌃
�1
1

↵0 = log
p(y = 0)
p(y = 1)

+
1
2

✓
log

det (2⇡⌃1)
det (2⇡⌃0)

+ µT

1 ⌃
�1
1 µ1 � µT

0 ⌃
�1
0 µ0

◆
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Decision Boundary (cont.)

-4 -3 -1 0 1 2 43

3

1

0

5

4

-2 5-5

p(y = 1) = 0.5

p(y = 0) = 0.5

2

-1

-2

-3

-4

-5

0

1

Fig.: Two Gaussian sample sets and the decision boundary
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Decision Boundary (cont.)
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Fig.: Two Gaussian sample sets and the decision boundary
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Decision Boundary (cont.)

p(y = 1) = 0.5

p(y = 0) = 0.580
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Fig.: Two Gaussian sample sets and the decision boundary
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❖❖

Matlab Exercise

33



Gaussian Distributions for        and 34

Spherically Shaped Data: 
When the two coordinates of x are uncorrelated (σ12 = 0) and their variances 

are equal,

Run Example  1.3.3



Gaussian Distributions for        and 35

Ellipsoidally Shaped Data: 
When the two coordinates of x are uncorrelated (σ12 = 0) and their variances are unequal,

Run Example  1.3.3



Gaussian Distributions for        and 36

Spherically Shaped Data clustered unparalleled to 
the axes: 
When the two coordinates of x are correlated (σ12 ≠ 0) , The degree of rotation 

with respect to the axes depends on the value of σ12 ,

Run Example  1.3.3



❖❖
MINIMUM DISTANCE CLASSIFIERS

■ The Euclidean Distance Classifier is the optimal Bayesian Classifier 
when:
■ The optimal Bayesian classifier is significantly simplified under the 

following assumptions:
■ The classes are equiprobable.
■ The data in all classes follow Gaussian distributions.
■ The covariance matrix is the same for all classes.
■ The covariance matrix is diagonal and all elements across the diagonal are 

equal. That is, S = σ 2 I , where I is the identity matrix.
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❖❖
MINIMUM DISTANCE CLASSIFIERS

■ The Mahalanobis Distance Classifier is the optimal Bayesian 
Classifier when the covairance matrix is not diagonal with equal 
elements:
■ The optimal Bayesian classifier is significantly simplified under the 

following assumptions:
■ The classes are equiprobable.
■ The data in all classes follow Gaussian distributions.
■ The covariance matrix is the same for all classes.
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Run Example  1.4.1



❖❖
Maximum Likelihood Parameter 
Estimation of Gaussian pdfs

■ The maximum likelihood (ML) is a popular method for the estimation 
of an unknown mean value and the associated covariance matrix of a 
known pdf.

■ Given N points, xi ∈ Rl, i = 1,2,...,N, which are known to be normally 
distributed, the ML estimates of the unknown mean value and the 
associated covariance matrix are given by: 

and
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Run Example  1.4.2



❖❖
Practical Labs

■ On Moodle you will find two Bayesian Classification examples:
■ Image Classification
■ Text Classification
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Comprehensive Questions

• How can we model the posterior probabilities?

• Formulate the criterion for the decision boundary!

• Describe the shape of the decision boundary for a Gaussian with
different and same class covariances!

• What effect does a change of the priors have on the decision boundary?
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