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BAYES DECISION THEORY
In Action 2




Recap Example

Let blue, green, and red be three classes with prior probabilities given by

1 :

P( blue) = 1 (4.4)
1

P( green) = = (4.9)
1

P(red) = i (4.6)



Example (cont.)

These three classes correspond to sets of objects coloured blue, green and red
respectively. Let there be three types of objects—"“pencils”, “pens”, and “paper”’. Let

the class-conditional probabilities of these objects be

P( pencil | green) = %:

P( pen| green) = % P{ paper | green) = %
- )

P( pencil | blue) = 5: P{ pen| blue) = %z P( paper | blue) =%

[ I

|

P(pencil | red) = —: P(pen | red) = <; P(paper | red) =

() I

o I
-

(4.7)

(1.8)

(4.9)



Example (cont.)

Assign colours to objects.



Example (cont.) I’

Consider a collection of pencil, pen, and paper with equal probabilities. We can
decide the corresponding class labels, using Bayes classifier, as follows:

P(green pencil) =

P( pencil | green)P(green) (4.10)
P(pencil | green)P(green) - P(pencil | blue) P(blue) + P(pencil | red)P(red)"

which is given by

P(green | pencil) =




Example (cont.)

Similarly, it is possible to compute P(blue | pencil) as

11
. 33 =3
P(blue | pencil) = - T 11 _11_ 3
32 24 64
11
— — 1
{ 1y 6 4 = =
P(red | pencil) I 11 8

-.- N -.- —— -‘-



Example (cont.) I’

This would mean that we decide that pencil is a member of class “green” because
the posterior probability is 3, which is greater than the posterior probabilities of
the other classes (“red” and “blue”). The posterior probabilities for “blue” and

“red” classes are § and ¢ respectively. So, the corresponding probability of error,
P(error | pencil) = 3.

1
Plred | pencil) = = 1

8 P(green | pencil) = 3

P( blue | pencil) = %



Example (cont.)

Assign colour to P€1N objects.

P( pencil | green) = %: P( pen| green) = -i- P( paper | green) = %
' V4 J

P{ blue) = l
B
1
P( green) = = ! I I
” P( pencil | blue) = 5: P pen| blue) = 7 P paper | blue) = 3
P( I‘Cd) = -I - '

(=]

. . 1 1 |
P(pencil | red) = 5 P(pen red) = §;P(paper, red) = -



Example (cont.)

In a similar manner, for pen, the posterior probabilities are

P(red | pen) = (4.14)

el B

, - 1
P(green | pen) = oE P(blue | pen) = i

This enables us to decide that pen belongs to class “green” and P(error | pen) = =.



Example (cont.)

Assign colour to Paper objects.

P( pencil | green) = %: P( pen| green) = -i- P( paper | green) = %
' V4 J

P{ blue) = l
B
1
P( green) = = ! I I
” P( pencil | blue) = 5: P pen| blue) = 7 P paper | blue) = 3
P( I‘Cd) = -I - '

(=]

. . 1 1 |
P(pencil | red) = 5 P(pen red) = §;P(paper, red) = -



Example (cont.)

Finally, for paper, the posterior probabilities are

-I| <o

2 2 .
P(green | paper) = =: P(blue | paper) = —=: P(red | paper) = (4.13)
| |

Based on these probabilities, we decide to assign paper to ““red” which has the
maximum posterior probability.

So, Plerror | paper) = £



Example (cont.)

Average probability of error =
1 1

P(error | pencil) x 3t Plerror | pen) x 3 + Plerror | paper) x 3 (4.16)

As a consequence, its value is
o 11 11 14 29 '
Average probability of error = == + == + == = — (4.17)

23 33 37 126



Solving Posteriors
(Deterministic)

Logistic Regression
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Logistic Regression

Logistic Regression is a discriminative model, because it models
the posterior probabilities p(y|x) directly.
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Posteriors and the Logistic Function

For two classes y € {0,1} we get:

ply =0) - p(x|y =0)
p(x)

p(y =0|x) =

p(y =0)-p(x|y =0)

p(y = 0)p(x|y =0)+ p(y = 1)p(x|y =1)

1

p(y=1)p(x|y=1)
1+ So=0)p(xly=0)
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Posteriors and the Logistic Function (cont.)

1

p(y=1)p(x|y=1)
1+ S=0)p(xIy=0)

ply =0|x) =

(Trick: extend with exponential and logarithm)

1

log p(y=1)p(x|y=1)
1 4+ @® p(y=0)p(x]y=0)

1

p(y=0) p(x|y=0)
14+e log p(y="1) —log p(x[y=1)
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Posteriors and the Logistic Function (cont.)

We see that the posterior for class y = 0 can be written in terms of
a logistic function:

1
1+ e Fix)

ply =0[x) =

And thus the posterior for the other class y = 1:
ply =1|x) = 1—p(y =0|x)

e_F(X)
1+ e F®)

1
1+ efx)
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Posteriors and the Logistic Function (cont.)

Definition
The logistic function (also called sigmoid function) is defined by

’
14+ e~

a(x) =

where x € IR.
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Posteriors and the Logistic Function (cont.)

The derivative of the sigmoid function fulfills the nice property:

A (1 +1e—x), T +1e—x)2 e

1 e "
(A+eX) (1+e)

1 1
(1+e>) (1+¢)

9(x)g(—x)

= g(x)(1 —g(x))
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Posteriors and the Logistic Function (cont.)

Sigmoid Functions

a=1
a=2 ———
a=3

1 a=4

g(ax)

Fig.: Sigmoid function: g(ax) =1/(1+ e *)fora=1,2,3,4
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Decision Boundary

The decision boundary d(x) = 0 (zero level set) in feature space separates
the two classes.

Points x on the decision boundary satisfy:

p(y =0|x) = p(y=1|x)

and thus
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Decision Boundary (cont.)

Lemma
The decision boundary is given by F(x) = 0.

Proof:
Iogggiog = F(x)=0
ply =0[x) _ oF (%)
p(y = 1[x)
p(y =0[x) = e ™p(y =1|x)

Lecture Pattern Recognition | © 2005-2013 Hornegger, Hahn, Steidl
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Decision Boundary (cont.)

2.0

Conditionals and Posteriors

1.8
1.6
1.4
1.2 |

0.8 r
0.6 r
04 r
0.2 r

-
—

o w—

—

p(xly =0) —
plxly =1) —
ply =0[x) ==~
ply =1lx) =~

Fig.: Two Gaussians and its posteriors: oo=01= 0.25, 1o = —2, 11 = 1
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Decision Boundary (cont.)

Example

Let us assume both classes have normally distributed d-dimensional feature vectors:

1
\/det (2rX))

Then we can write the posterior of y = 0 in terms of a logistic function:

o(xly) = e 3(x—u) 5 (x—py)

1 1
1 4+ e—F(x) o 1+ e—(xTAx+aTx+a0)

ply =0|x) =

ply =01x) _,,, Py =0)p(xly =0)

F(x) = Iogp(y:1|x)_ p(y = p(xly =1)
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Decision Boundary (cont.)

Example (cont.)

—1
1 o~ 3(x—po) g (x—pp)

F(X) — |og M + |Og det (22 ] —
ply =1) 1 o= 3 (x—p)TE (x—py)
\/ det (27TZ1 )

This function has the constant component:

ply=0) 1 o det (27X4)
oy =1) " 2 °° det (2r%,)

c = log

We observe:
e Priors imply a constant offset of the decision boundary.

e |f priors and covariance matrices of both classes are identical, this offset is
c = 0.
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Decision Boundary (cont.)

Example (cont.)

—1
1 o~ 3(x—po) g (x—pp)

F(X) — |og M + |Og det (22 ] —
ply =1) 1 o= 3 (x—p)TE (x—py)
\/ det (27TZ1 )

This function has the constant component:

ply=0) 1 o det (27X4)
oy =1) " 2 °° det (2r%,)

c = log

We observe:
e Priors imply a constant offset of the decision boundary.

e |f priors and covariance matrices of both classes are identical, this offset is
c = 0.
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Decision Boundary (cont.)

Example (cont.)

Furthermore we have:

o~ 3 (x—n0) E5 (x—po)

lo —
J o= 3 (x—p)TE (x—py)

(O = )T (6 = 1) = (= 110) 257 (% = o))

N —

(X7 == )x - 2(u] =7 — g g )x+

| —

o E7 ey — H0T>:0_1H0>
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Decision Boundary (cont.)

Example (cont.)

Now we have:

A= (55
o = ¥y - pEy
p(ly=0) 1 det (27X )
— ()
a0 %950 =1) T2 "% et (2rx0)

I35 a7y _Nc)TZ()_1H0)
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Decision Boundary (cont.)

5 T
4

p(y =0) =05
3 ply=1)=05

Fig.: Two Gaussian sample sets and the decision boundary
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Decision Boundary (cont.)

5
4

p(y =0)=0.8
3 ply=1)=0.2

Fig.: Two Gaussian sample sets and the decision boundary
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Decision Boundary (cont.)
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Fig.: Two Gaussian sample sets and the decision boundary



Matlab Exercise




Spherically Shaped Data:

When the two coordinates of x are uncorrelated (o

12
are equal,

T T T T T T | | | T 1 T L |
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Run Example 1.3.3

Gaussian Distributions for s=["f ] and m=10,0]T

= 0) and their variances




Gaussian Distributions for s:["f ”"] and m=10,0]"

2
o2 03

Ellipsoidally Shaped Data:

When the two coordinates of x are uncorrelated (o 19

= 0) and their variances are unequal,

Run Example 1.3.3



Gaussian Distributions for S=["f "'3] and m=10,0]"

o912 05

Spherically Shaped Data clustered unparalleled to
the axes:

When the two coordinates of x are correlated (0, . # 0) , The degree of rotation

12
with respect to the axes depends on the value of o

12°
| || 4 1 T | | T T T T T T T T T T T T T
6’_ - 6" » 6'- -
4 - i 4
2 b . 2+ 4 2t 4
0" e :.)'- - C>— d
-2+ 2t | Y
"1- 4 A'- - 1" -
- { -6F |
6- : h 6 | | 1 1 1 I 1 1 1 1 1 1 1
6 4 2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
' 2 2} ) _ n . |
”l3 =05 =1,02=05 of =03,0y=2,02=05 67 =03,0;=2,012=-05

Run Example 1.3.3



MINIMUM DISTANCE CLASSIFIERS

= The Euclidean Distance Classifier is the optimal Bayesian Classifier
when:

= The optimal Bayesian classifier is significantly simplified under the
following assumptions:

= The classes are equiprobable.
= The data in all classes follow Gaussian distributions.
= The covariance matrix is the same for all classes.

= The covariance matrix is diagonal and all elements across the diagonal are
equal. Thatis, S =0 21, where I is the identity matrix.

x = m; || =V (x = m)T (x —m;) < ||x — mi|l, Vi#j



MINIMUM DISTANCE CLASSIFIERS

= The Mahalanobis Distance Classifier 1s the optimal Bayesian

Classifier when the covairance matrix is not diagonal with equal
elements:

= The optimal Bayesian classifier is significantly simplified under the
following assumptions:

= The classes are equiprobable.
= The data in all classes follow Gaussian distributions.

= The covariance matrix 1is the same for all classes.

Vi =m)TS=x —my) < \,."'(x —m)T S~V —my), Vj#i

Run Example 14.1



Maximum Likelihood Parameter
Estimation of Gaussian pdfs

= The maximum likelihood (ML) is a popular method for the estimation

of an unknown mean value and the associated covariance matrix of a
known pdf.

= Given N points, x; ER/, 1 =1,2,....N, which are known to be normally

distributed, the ML estimates of the unknown mean value and the
associated covariance matrix are given by:

| &
my = — E Xi

N’

=

and

N
| .
Smr = N E (x; — mpgr (X3 — mpyqg1. )T

i=l1

Run Example 1.4.2



Practical Labs

= On Moodle you will find two Bayesian Classification examples:
= Image Classification

= Text Classification
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Comprehensive Questions

e How can we model the posterior probabilities?

e Formulate the criterion for the decision boundary!

e Describe the shape of the decision boundary for a Gaussian with
different and same class covariances!

e What effect does a change of the priors have on the decision boundary?



