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Pattern Recognition and Image 
Analysis
Dr. Manal Helal – Fall 2015
Lecture 5

Gaussian Mixture Models & Expectation 
Maximisation  Algorithm



❖❖
Objectives

■ GMM

■ EM
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❖❖

3■ In previous lectures we showed how to build classifiers when the 
underlying densities are known

■ In most situations, however, the true distributions are unknown and must 
be estimated from data

■ – Two approaches are common

1. Parameter Estimation (Covered)

■ Assume a particular form for the density (e.g. Gaussian), so only 
the parameters (e.g., mean and variance) need to be estimated

■ Maximum Likelihood

■ Bayesian Estimation

2. Non-parametric Density Estimation (the next two lectures)

■ Kernel Density Estimation (Lecture 6)

■ Nearest Neighbour Rule



❖❖
Gaussian Mixture

The Gaussian mixture architecture estimates probability density 
functions (PDF) for each class, and then performs classification based 
on Bayes’ rule:
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Where P(X | Ci) is the PDF of class j, evaluated at X, P( Cj ) 
is the prior probability for class j, and P(X) is the overall 

PDF, evaluated at X. 



❖❖
Gaussian Mixture

Unlike the unimodal Gaussian architecture, which assumes P(X | Cj) to 
be in the form of a Gaussian, the Gaussian mixture model estimates 
P(X | Cj) as a weighted average of multiple Gaussians.
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Where wk is the weight of the k-th Gaussian Gk and the 
weights sum to one. One such PDF model is produced for 

each class. 



❖❖
Gaussian Mixture

Each Gaussian component is defined as: 
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Where Mk is the mean of the Gaussian and Vk is the 
covariance matrix of the Gaussian.. 



❖❖
Gaussian Mixture

Free parameters of the Gaussian mixture model consist of the means 
and covariance matrices of the Gaussian components and the weights 
indicating the contribution of each Gaussian to the approximation of 
P(X | Cj). 
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❖❖
Example 1 

■ The price of a randomly chosen paperback book is normally 
distributed with mean $10.00 and standard deviation $1.00 

■ The price of a randomly chosen hardback is normally distributed with 
mean $17 and variance $1.50 

■ Is the price of any book selected at random from both groups, will be 
normally distributed?
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❖❖
Example 2

■ The height of a randomly chosen man is normally distributed with a 
mean around 5’9.5” and standard deviation around 2.5” 

■ The height of a randomly chosen woman is normally distributed with a 
mean around 5’4.5” and standard deviation around 2.5” 

■ Is the height of any person selected at random from both groups, will 
be normally distributed?
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❖❖
Composition of Gaussian Mixture
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Variables: µi, Vi, wk 

We use EM (estimate-maximize) 
algorithm to approximate this variables.



❖❖
Gaussian Mixture

These parameters are tuned using a complex 
iterative procedure called the estimate-maximise 
(EM) algorithm, that aims at maximising the 
likelihood of the training set generated by the 
estimated PDF.
The likelihood function L for each class j can be 
defined as: 
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❖❖
Expectation Maximisation Algorithm – 
Informal Steps

■ Initialise the parameters somehow. 

■ First, fix the parameters (in this case, the means μM and μF of the 
Gaussians) and solve for the posterior distribution for the hidden 
variables (in this case, qCi , the class labels). 

■ Second, fix the posterior distribution for the hidden variables (again, 
that’s qCi, the class labels), and optimise the parameters (the means μM 
and μF ) using the expected values of the hidden variables (in this case, 
the probabilities from qCi ). 

■ Repeat the two steps above until the values aren’t changing much (i.e., 
until convergence). 
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❖❖
Gaussian Mixture Training Flow Chart (1)
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Initialise the initial Gaussian means µi, i=1,…G using the K means 
clustering algorithm 

Initialise the covariance matrices, Vi, to the distance to the nearest 
cluster. 

Initialise the weights πi =1 / G so that all Gaussian are equally likely.

Present each pattern X of the training set and model each of the classes 
K as a weighted sum of Gaussians: 

Where G is the number of Gaussians, the πi’s are the weights, and 

Where Vi is the covariance matrix.
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❖❖
Gaussian Mixture Training Flow Chart (2)
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❖❖
Gaussian Mixture Training Flow Chart (3)
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Recompute τip using the new weights, means and covariances. Stop 
training if  

Or the number of epochs reach the specified value. Otherwise, continue 
the iterative updates.

thresholdtt pipipi ≤−+≡Δ )()1( τττ



❖❖
Gaussian Mixture Test Flow Chart
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Present each input pattern X and compute the confidence for each class j: 

Where                     is the prior probability of class Cj estimated by 
counting the number of training patterns. Classify pattern X as the class 
with the highest confidence. 
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❖❖
Preliminaries: Entropy

“I thought of calling it "information", but the word was overly used, so I 
decided to call it "uncertainty". [...] Von Neumann told me, "You should 
call it entropy, for two reasons. In the first place your uncertainty 
function has been used in statistical mechanics under that name, so it 
already has a name. In the second place, and more important, nobody 
knows what entropy really is, so in a debate you will always have the 
advantage.”

■Conversation between Claude Shannon and John von Neumann 
regarding what name to give to the attenuation in phone-line signals.
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❖❖
Shannon Entropy

■ Entropy is the average amount of information contained in each message received. 
Here, message stands for an event, sample or character drawn from a distribution 
or data stream. 

■ Entropy thus characterises our uncertainty about our source of information. The 
idea here is that the less likely an event is, the more information it provides when it 
occurs.  

■ Shannon Entropy  H(X) for random variable X with Probability distribution P(X) 
is defined as:

I is the information content of X. I(X) is itself a random variable, defined as the 
negative of the logarithm of the probability distribution. 
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❖❖

■ The Kullback–Leibler divergence (a.k.a information divergence, information gain, 
relative entropy, or KLIC) is a non-symmetric measure of the difference between 
two probability distributions P and Q. 

■ The KL divergence of Q from P, denoted DKL(P||Q), is a measure of the information 
lost when Q is used to approximate P.

■ DKL(P||Q) is not symmetric to DKL(Q||P)

■ For Discrete Probability:

i.e. it is the expectation of the logarithmic difference between the probabilities P and Q, where the 
expectation is taken using the probabilities P. The KL divergence is only defined if P and Q both sum to 
1 and if  implies  for all i 

■ For Continuous Probability:

where p and q denote the densities of P and Q.

Preliminaries: KL Divergence  
19



❖❖

■ Generally it relates the value of a convex function of an integral to the 
integral of the convex function.  i.e. the convex transformation of a 
mean is less than or equal to the mean after convex transformation; it 
is a simple corollary that the opposite is true of concave 
transformations.

■ In our case, we need this form:

■ For a geometric intuition and a proof and more detail, see Wikipedia 

Preliminaries: Jensen's Inequality 
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❖❖
Preliminaries: Marginal Distribution

■ The marginal distribution of a subset of a collection of random 
variables is the probability distribution of the variables contained in 
the subset. It gives the probabilities of various values of the variables 
in the subset without reference to the values of the other variables. 
This contrasts with a conditional distribution, which gives the 
probabilities contingent upon the values of the other variables.
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Joint and marginal distributions of a pair of discrete, 
random variables X,Y having nonzero mutual information 
I(X; Y). The values of the joint distribution are in the 4×4 
square, and the values of the marginal distributions are 
along the right and bottom margins.



❖❖

Preliminaries: Marginal Distribution – 
Cont’d

■ Given two random variables X and Y whose joint distribution is known, the marginal 
distribution of X is simply the probability distribution of X averaging over information 
about Y. It is the probability distribution of X when the value of Y is not known. This is 
typically calculated by summing or integrating the joint probability distribution over Y.

■ For Discrete Random Variables:

where Pr(X = x,Y = y) is the joint distribution of X and Y, while Pr(X = x|Y = y) is the conditional distribution 
of X given Y

■ For Continuous Random Variables:

where pX,Y(x,y) gives the joint distribution of X and Y, while pX|Y(x|y) gives the conditional distribution for X 
given Y. 
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❖❖
EM Formal Algorithm

■ The EM algorithm is actually maximising a lower bound on the log 
likelihood (in other words, each step is guaranteed to improve our 
answer until convergence).
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❖❖

EM Steps
1. Maximize the log-likelihood

a. Marginalizing over C and  
introducing qC (c)/qC (c) 

b. Rewriting as an expectation

c. Using Jensen’s inequality 

2. M-Step: 
a. Rearrange
b. Maximizing with respect to θ:

3. E-Step: 
a. Rearrange

b. Maximizing with respect to qC :
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❖❖

EM Step 1
1. Maximise the log-likelihood:

a. Log of sum problem!
b. Solution: if we have an expectation for one variable (C here), we can swap the 

order using Jensen’s inequality.
c. Introduce a new distribution qC:

a. Using Jensen’s inequality :
b. Using definition of conditional  

probability 

■ Now we have a lower bound on log pY (y; θ) that we can optimise pretty 
easily. Since we’ve introduced qC, we now want to maximise this quantity 
with respect to both θ and qC. 
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❖❖

EM Step 2 – The M Step.
2. The M stands for maximisation, since we’re maximising with respect to the 

parameters.
a. Find Best Parameters θ by rearranging using Jensen’s inequality : 

b. In general, qC doesn’t depend on θ, so we’ll only care about the first term:

■ Now we have a lower bound on log pY (y; θ) that we can optimise pretty 
easily. Since we’ve introduced qC, we now want to maximise this quantity 
with respect to both θ and qC. 
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❖❖

EM Step 3 – The E Step.
3. the E stands for expectation, since we’re computing qC so that we can 

use it for expectations.
a. Find Best qC by rearranging using definition of conditional  

probability:

a. The first term doesn’t depend on c, and the second term almost looks like a KL 
divergence:

b. When maximising this quantity, we want to make the KL divergence as small 
as possible. KL divergences are always greater than or equal to 0, and they’re 
exactly 0 when the two distributions are equal. So, the optimal qC is  
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❖❖
Repeat Until Convergence

By alternating between 

and 

we can maximise a lower bound on the log-likelihood. We’ve also seen 
from E-Step that the lower bound is tight (that is, it’s equal to the log-
likelihood) when we are computing qC . 

28



❖❖
The EM Algorithm Skeleton
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❖❖

Applying the algorithm for GMM (again)

■ Given an observed random variable Y (heights), some hidden variable C 
(gender) that Y depends on.  The distributions of C and Y have some 
parameters θ(the means μM and μF) that we don’t know. 

■ The objective is to estimate the parameters θ, given some initial value: 
suppose we set μM = 3ʹ′ and μF = 5ʹ′. Then the computed posteriors qCi would all favour F over 
M (since most people are closer to 5ʹ′ than 3ʹ′), and we would end up computing μF as roughly 
the average of all our heights, and μM as the average of a few short people. 

■ For the E-step, we have to compute the posterior distribution pC|Y (c|y):

■ For Ci = M: 
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❖❖

Applying the algorithm for GMM (again) 
– Cont’d
■ To do the M-Step:

■                                 is the probability that Ci is c, according to q. Now, we can 
differentiate with respect to μM : 
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❖❖

■ Using the last form:

■ The solution will be the weighted average as follows:

32Applying the algorithm for GMM (again) 
– Cont’d
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❖❖

33

• Filling in missing data in samples: When the data indeed has incomplete, 
missing or corrupted values as a result of a faulty observation process  

• Estimating parameters of finite mixtures: When assuming the existence of 
missing or hidden parameters can simplify the likelihood function, which 
would otherwise lead to an analytically intractable optimisation problem; 
this is the case we discussed in this lecture 

• Estimating the parameters of HMMs 

• Discovering the value of latent variables 

• Unsupervised learning of clusters, special case for K-Means

EM Applications



What EM won’t do
Pick structure of model 
 # components 
 graph structure 

Find global maximum 

Always have nice closed-form updates 
 optimize within E/M step 

Avoid computational problems 
 sampling methods for computing expectations 
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Example: 
Gaussian 
Mixture 
Example: 
Start
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After first 
iteration
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After 2nd 
iteration
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After 3rd 
iteration
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After 4th 
iteration
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After 5th 
iteration



❖ 41

After 6th 
iteration
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After 20th 
iteration



EM vs Optimisation methods?

•  No step size 

•  Works directly in parameter space model, thus 
parameter constraints are obeyed 

•  Fits naturally into graphically model frame work 

•  Supposedly faster 

In favour of  EM:



❖❖

44Matlab Exercises

mu1 = [1 2]; 
Sigma1 = [2 0; 0 0.5]; 
mu2 = [-3 -5]; 
Sigma2 = [1 0;0 1]; 
rng(1); % For reproducibility 
X = [mvnrnd(mu1,Sigma1,1000);mvnrnd(mu2,Sigma2,1000)]; 
GMModel = fitgmdist(X,2); 
figure 
y = [zeros(1000,1);ones(1000,1)]; 
h = gscatter(X(:,1),X(:,2),y); 
hold on 
ezcontour(@(x1,x2)pdf(GMModel,[x1 x2]),get(gca,
{'XLim','YLim'})) 
title('{\bf Scatter Plot and Fitted Gaussian Mixture 
Contours}') 
legend(h,'Model 0','Model1') 
hold off 

More: http://uk.mathworks.com/help/stats/fitgmdist.html#bt8x9hs-2



❖
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Categorical 
inputs only 

Real-valued 
inputs only 

Mixed Real / 
Cat okay 

Methods

       Inputs  
 

     P(E1|E2)

Joint DE, Bayes Net Structure Learning 

       Inputs  
 

      Predict  
    Category 

Joint BC  
Naïve BC

Gauss BC Dec Tree Dec Tree, Sigmoid Perceptron, Sigmoid 
N.Net, Gauss/Joint BC, Gauss Naïve BC, 
N.Neigh, Bayes Net Based BC, Cascade 
Correlation, GMM-BC

     Inputs  
 

   Probability

Joint DE
Naïve DE

Gauss DE Joint DE, Naïve DE, Gauss/Joint DE, Gauss 
Naïve DE, Bayes Net Structure Learning, 
GMMs

     Inputs  
 

Predict real no.

Linear Regression, Polynomial Regression, 
Perceptron, Neural Net, N.Neigh, Kernel, 
LWR, RBFs, Robust Regression, Cascade 
Correlation, Regression Trees, GMDH, 
Multilinear Interp, MARS

❖Classifier

❖
Density 
Estimator

❖Regressor

❖
Inference 
Engine



❖❖
Assignment 2

■ Repeat Exercise 1.6.1 not using a generated data as shown, but using 
data you decided for your project.
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