
❖

❖

❖

❖

❖

Pattern Recognition and Image
Analysis
Dr. Manal Helal – Fall 2015
Lecture 6

Non-Parameteric Classifiers

❖❖
Overview

■ Density Estimation

■ Parzen Windows

■ Kn Nearest Neighbours

2

❖❖

Non-Parametric Probability Distributions

■ The common parametric forms rarely fit the densities actually
encountered in practice, because they are unimodal (having a single
local maximum), while practical problems are multi-modal
densities.

■ Furthermore, representing a high dimensional density as the product
of one-dimensional densities is not accurate for practical problems.

■ Nonparametric procedures assume arbitrary empirical distributions
with unknown densities to provide estimates of probability density
functions (pdf) or cumulative distribution functions (cdf) based on
sample data.

■ You can use these approaches when the data cannot be described
accurately by the supported parametric distributions.

3

❖❖

Non-Parametric Methods Types

1. To estimate the density functions p(x|ωj)
■ If these estimates are satisfactory, they can be substituted for the true densities

when designing the classifier (generative model).

2. To estimate the a posteriori probabilities P(ωj|x).
■ This is closely related to nonparametric design procedures such as the nearest-

neighbour rule, which bypass probability estimation and go directly to decision
functions (discriminative model). Probabilistic neural networks will be
covered later on.

3. To transform the feature space in the hope that it may be possible
to employ parametric methods in the transformed space.

■ For Example the Fisher linear discriminant, which provides an important link
between the parametric techniques and the adaptive non-parametric
techniques.

4

❖❖

Histograms vs. Density Estimation
■ Histograms:
■ To draw a histogram of a given 6 data points: x1 = −2.1, x2 = −1.3,  

x3 = −0.4, x4 = 1.9, x5 = 5.1, x6 = 6.2. The x-axis is divided in bins of  
size 2, the y axis is incremented by 1/12 each time an x value falls in the x-axis interval.  
 

■ The histogram estimate is not a very good way to estimate densities, especially so when
there are many features. Particularly, it leads to discontinuous density estimates

■ For the kernel density estimate, we place a normal kernel with variance 2.25
(indicated by the  
red dashed lines)  
on each of the data  
points xi. The kernels  
are summed to make  
the kernel density  
estimate (solid blue  
curve).

5

❖❖
Background - combinations

■ Consider the problem of selecting k labeled balls without replacement
from an urn containing n balls.

■ In how many different ways may we select those k balls? i.e.
combinations (subsets) containing k elements.

■ The answer is

■ n! = n · (n − 1) · · · 2 · 1, (convention 0! = 1)

6

❖❖

■ The probability P that a vector x will fall in a region R is given by:

■ For n i.i.d samples of x, the probability that k of these n fall in R is given by the
binomial law:

■ The expected value for k is:

■ ML estimation of P = φ is reached for

■ Therefore, the ratio k/n is a good estimate for the probability P and hence for the density
function p.

Density Estimation 7

Max
θ
(Pk |θ) θ̂ =

k
n
≅ P

❖❖

■ If we now assume that p(x) is continuous and that the region R is so
small that p does not vary appreciably within it, we can write

 
where x is a point within R and V is the volume enclosed by R.

■ Combining the previous equations, we can estimate p(X) as:

8

❖❖

■ If we fix V and increase the samples, the ratio k/n will converge (in probability) as  
desired, but we have only obtained an estimate of the space-averaged value of p(x),

■ As V approaches 0, we are obtaining p(x) not an estimate of it. So, fixing n, and let V
approaches zero, will create regions with no samples (p(x) ≃ 0) is useless, and regions with
one or more samples coincide at x, the estimate diverges to infinity, which is useless as well.

■ Practically, we have to accept a certain amount of variance in the ratio k/n and a certain
amount of averaging of the density p(x).

■ To estimate the density at x for unlimited samples, we form a sequence of regions R1,R2,...,
containing x — the first region to be used with one sample, the second with two, and so on.
Let Vn be the volume of Rn, kn be the number of samples falling in Rn, and pn(x) be the nth
estimate for p(x):

9

❖❖

■ Three conditions for limn➔∞ pn(x) is to converge to p(x)

10

assures us that the space averaged P/V will converge to p(x),
provided that the regions shrink uniformly and that p(·) is
continuous at x.

only makes sense if p(x) ≠ 0, assures us that the frequency ratio
will converge (in probability) to the probability P .

necessary if pn(x) is to converge at all. Although a huge number
of samples will eventually fall within the small region Rn, they
will form a negligibly small fraction of the total number of
samples.

❖❖

How to Obtain the sequence of Regions?
■ Parzen Windows:
■ Shrink an initial region by specifying the volume Vn as some function of n, such

as Vn = 1/√n.

■ Check if the random variables kn and kn/n behaves properly, such that pn(x)
converges to p(x).

■ kn-Nearest- Neighbor Estimation
■ Specify kn as some function of n, such as kn = √n.

■ The volume Vn is grown until it encloses kn neighbors of x

11

❖❖

12

Parzen Windows
■ Also called kernel density estimation (KDE) and  

Parzen–Rosenblatt window.

■ Assume that the region Rn is a d-dimensional hypercube.

■ If hn is the length of the side of the hypercube, its volume is given by

■ We can obtain an analytic expression for kn - the number of samples falling
into the hypercube - by defining the following window function:

■ That is φ has the value one inside and the value zeros outside the unit hypercube
centered at origin. ϕ((x-xi)/hn) is equal to unity if xi falls within the hypercube of
volume Vn centered at x and equal to zero otherwise. It is the kernel function k(.)
that is typically unimodal

■ h > 0 is a smoothing parameter called the bandwidth (window or kernel width).

❖❖

13

■ The number of samples in this hypercube is:  

 

By substituting kn, we obtain the following
Parzen-window density estimate:
 

Pn(x) estimates p(x) as an average of functions of
x and the samples (xi) (i = 1,… ,n). These
functions ϕ can be general!

The estimate pn(x) is an average of (window)
functions. Usually the window function has its
maximum at the origin and its values become
smaller when we move further away from the
origin. Then each training sample is
contributing to the estimate in accordance with
its distance from x.

 

kn = φ
x− xi
hn

#

$
%

&

'
(

i=1

i=n

∑

❖❖

❖❖

15

❖❖

Gaussian Kernel Parzen Window
Estimation:

16

The Parzen-window
PDF estimate (dotted
curve), for a Gaussian
PDF (solid curve) with
zero mean and unit
variance, with a
Gaussian kernel of  

and a
sample size of (a) 1,
(b) 10, (c) 100, and
(d) 1000. The circles
indicate the
observations in the
sample.

❖❖
Window functions
■ We want pn(x) to be legitimate density, i.e. 1) pn(x) ≥ 0 for all x, and 2)
∫ pn(x)dx = 1.

■ If we maintain the relation hd
n = Vn, this is guaranteed if the window

function is a legitimate density:

■ A popular choice for the window function is the Gaussian:

■ Note that Vn and hn do not have a geometric interpretation anymore,
they are related to the window function whose support usually spans
the entire feature space.

17

❖❖
Window width

■ How should we select the window width hn? 
If hn is too large, the density estimate pn(x) will be very smooth and
‘out-of-focus’.

■ If hn is too small, the estimate pn(x) will be just superposition of n sharp
pulses centered at training samples, i.e. an erratic noisy estimate of the
true density.

■ In practice, we have to seek some acceptable compromise since the
number of training samples is always limited and we may not be able to
affect the number of available training samples.

■ In practice, one selects h1 and then asserts that hn = h1/ √n. The selection
of h1 can be problematic.

18

❖❖

19

■ Classification example  

In classifiers based on Parzen-window estimation:  

■ We estimate the densities for each category and classify a test
point by the label corresponding to the maximum posterior  

■ The decision region for a Parzen-window classifier depends upon
the choice of window function as illustrated in the following
figure.

❖❖

20

❖❖

K-Nearest Neighbor Estimation

• Goal: a solution for the problem of the unknown “best” window  
function.

• Approach: Estimate density using real data points.

• Let the cell volume be a function of the training data.

• Center a cell about x and let it grow until it captures kn samples: kn = f(n)

• kn are called the kn nearest-neighbors of x.

• Two possibilities can occur:

▪ Density is high near x; therefore the cell will be small which provides good resolution.

▪ Density is low; therefore the cell will grow large and stop until higher density regions are reached.

• We can obtain a family of estimates by setting kn=k1/√n and choosing different values for k1.

❖❖

Estimation of A Posteriori Probabilities  

• Goal: estimate P(ωi|x) from a set of n labeled samples.

• Let’s place a cell of volume V around x and capture k samples.

• ki samples amongst k turned out to be labeled ωi then: pn(x, ωi) = (ki/n)/V.

• A reasonable estimate for P(ωi|x) is: .

• ki/k is the fraction of the samples within the cell that are labeled ωi .

• For minimum error rate, the most frequently represented category within the
cell is selected.

• If k is large and the cell sufficiently small, the performance will approach the
best possible.

k
k

p

pp i
cj

j
jn

in
in =

∑

=
=

=1
),(

),()|(
ω

ω
ω

x

xx

❖❖

• Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes.

• Let x’ ∈ Dn be the closest prototype to a test point x.

• The nearest-neighbor rule for classifying x is to assign it the label associated with x’

• The nearest-neighbor rule leads to an error rate greater than the minimum possible: the
Bayes rate (see the textbook for the derivation).

• If the number of prototypes is large (unlimited), the error rate of the nearest-neighbor
classifier is never worse than twice the Bayes rate.

• If n → ∞, it is always possible to find x’ sufficiently close so that:  
P(ωi | x’) ≅ P(ωi | x)

This produces a Voronoi tesselation of the
space, and the individual decision regions are
called Voronoi cells.

For large data sets, this approach can be very
effective but not computationally efficient.

❖❖

The K-Nearest-Neighbor Rule
■ The k-nearest neighbor rule is a  

straightforward modification of the  
nearest neighbor rule that builds  
on the concept of majority voting.

■ Query starts at the data point, x, and grows a spherical
region until it encloses k training samples.

■ The point is labeled by a majority vote of the class
assignments for the k samples.

■ For very large data sets, the performance approaches
the Bayes error rate.

The computational complexity of this approach can be high. Each distance calculation is O(d),
and thus the search is O(dn2).

A parallel implementation exists that is O(1) in time and O(n) in space.

Tree-structured searches can gain further efficiency, and the training set can be “pruned” to
eliminate “useless” prototypes (complexity: O(d3n(d/2)ln(n))).

❖❖

•Nonnegativity:

•Reflexivity:

•Symmetry:

•Triangle Inequality:

•Euclidean Distance:

•The Minkowski metric is a generalisation of a Euclidean distance:

and is often referred to as the L
k
 norm.

•The L
1

norm is often called the city block distance because it gives
the shortest path between a and b, each segment of which is
parallel to a coordinate axis.

Properties of Metrics  
0),(≥baD

baba == iffD 0),(

)(),(ab,ba DD =

c)a,cbba (),(),(DDD ≥+

()
2/1

1

2),(!
"

#
$
%

&
∑ −=
=

d

k
kk baD ba

kd

k

k
kkk baL

/1

1
),(!

"

#
$
%

&
∑ −=
=

ba

❖❖

26Matlab Exercises

To Visualise Parzen Windows:

gw = gausswin(64);
pw = parzenwin(64);
wvtool(gw,pw)

To estimate density:

load carsmall;
[f,xi] = ksdensity(MPG);
figure;
plot(xi,f,'LineWidth',2);
title('Miles per Gallon');
xlabel(‘MPG');

❖❖
Summary

• Motivated non-parameteric density estimation.

• Introduced Parzen windows

• Introduced k-nearest neighbour approaches.

• Discussed properties of a good distance metric.

❖❖
Exercise

■ Do Example 1.7.1:3, and 1.8.1:2, not using a randomly generated data
as shown, but on your project’s dataset.

28

