
Introducing the Do…Loop While 
and  

Do…Loop Until Repetition 
Statements 

1 



2 



Test-Driving the Class Average App 
(Cont.) 

■ After you click the Add 
Grade Button, the 

cursor appears in the 

Enter grade: TextBox 

(Fig. 10.2). 

– When a control is selected, 

it is said to have the focus 

of the app. 

– Transferring the focus tells 

the user what information 

the app expects next. 

3 



Test-Driving the Class Average App 
(Cont.) 

■ Enter nine other grades between 0 and 100. 

■ Note that the Add Grade Button is disabled once 

you have entered 10 grades (Fig. 10.3). 

4 



Test-Driving the Class Average App 
(Cont.) 

■ Click the Average Button to calculate the 

average of the 10 quizzes (Fig. 10.4). 

5 



Test-Driving the Class Average App 
(Cont.) 

■ You can calculate the class average for another set of 10 
grades without restarting the app. 

– Enter a grade in the TextBox, and click the Add Grade 
Button.  

– Note that the Grade list: ListBox and the Class 
average: field are cleared when you start entering another set 
of grades (Fig. 10.5).  

6 



10.2 Do...Loop While Repetition 

Statement  
 Do...Loop While repetition statement is 

similar to the Do...While Loop statement, 

except that the loop-termination condition is 
tested after the loop body is performed. 

7 



10.2 Do...Loop While Repetition 

Statement (Cont.)  

 The following app segment displays the 
numbers 1 through 3 in a ListBox:  

 Dim counter As Integer = 1 
 
Do 
      displayListBox.Items.Add(counter) 
      counter += 1 
Loop While counter <= 3 

8 



10.2 Do...Loop While Repetition 

Statement (Cont.)  

■ Figure 10.6 illustrates the UML activity diagram for the 
general Do...Loop While statement. 

9 



10 



10.3 Do...Loop Until Repetition 

Statement  

 The Do...Loop Until statement is similar to the 
Do...Until Loop statement, except that in the 
Do…Loop Until statement the loop-termination 

condition is tested after the loop body executes, so 
the body executes at least once. 

 Imagine that you place an item in the suitcase, 
then determine whether the suitcase is full. As long 
as the condition “the suitcase is full” is False, you 
continue to put items into the suitcase.   

11 



10.3 Do...Loop Until Repetition 

Statement (Cont.) 

 This app segment displays the numbers 1 
through 3 in a ListBox: 

 Dim counter As Integer = 1 
 
Do 
      displayListBox.Items.Add(counter) 
      counter += 1 
Loop Until counter > 3 

12 



10.3 Do...Loop Until Repetition 

Statement (Cont.)  

■ This UML diagram (Fog. 10.7) indicates exactly 
the same guard conditions as detailed in 
Fig. 10.6.  

13 



10.4 Creating the Class Average App 

When the user clicks the Add Grade Button 

 If an average has already been calculated for a set of 
grades 

   Clear the output Label and the ListBox 

 Retrieve grade entered by user in the Enter grade:TextBox 

 Display the grade in the ListBox 

 Clear the Enter grade: TextBox 

 Transfer focus to the Enter grade: TextBox 

 

 If the user has entered 10 grades 

   Disable the Add Grade Button 

   Transfer focus to the Average Button  

14 



10.4 Creating the Class Average App 
(Cont.) 

When the user clicks the Average Button 
 Set total to zero 
 Set grade counter to zero 
 Do 
   Read the next grade in the ListBox 
   Add the grade to the total 
   Add one to the grade counter 
 Loop While the grade counter is less than 10 
 
 Calculate the class average by dividing the total by 10 
 Display the class average 
 Enable the Add Grade Button 
 Transfer focus to the Enter grade: TextBox 

15 



Entering Grades in the Class 
Average App  

■ Open the  app (Fig. 10.9).  

16 



Entering Grades in the Class Average 
App (Cont.)  

 Enter a grade in the Enter Grade box then Click the 
Button labeled Add Grade to create its event 
handler addButton_Click (Fig. 10.10).  

 The program tests whether averageResultLabel 
displays any text by comparing the Text property’s 

value to the empty string. 

17 



18 



Entering Grades in the Class Average App 
(Cont.)  

■ Line 13 (Fig. 10.11) Adds the grade entered in 

gradeTextBox to gradesListBox’s Items property. 

The grade is displayed in the ListBox. 

■ GradeTextBox.Clear deletes the grade from the 

TextBox so that the next grade can be entered.   

19 



Transferring the Focus to a Control 
and Disabling a Button 

■ Calling gradeTextBox’s Focus method places the 

cursor in the TextBox for the next grade input 

(Fig. 10.12).  

■ This process is called transferring the focus.  

20 



Transferring the Focus to a Control and 
Disabling a Button (Cont.) 

■ Your app should accept exactly 10 grades. 

– Items’s Count property returns the number of items 

displayed in the Grade list: ListBox.  

– If 10 grades have been entered, addButton’s Enabled 

property is set to False (Fig. 10.13).  

– After 10 grades have been entered, transfer the focus 

to the Average Button.  

 

21 



22 



Calculating the Class Average 

 Use the Integer total (Figure 10.14 ) to 

calculate the sum of the 10 grades. 

 The result of the averaging calculation must be 
a floating-point value; therefore, you declare a 
Double variable to store the class average. 

23 



Calculating the Class Average 
(Cont.) 

 The Do...Loop Until statement in Figure 10.15 
sums the grades that it reads from the ListBox.  

 The statement should iterate until the value of 
gradeCounter is greater than or equal to 10.  

 The items in a ListBox are accessed by their 
position number, starting from position number 0 
(i.e., Items(0) is the first element). 

24 



Calculating the Class Average 
(Cont.) 

 The F format specifier (Fig. 10.16) displays 
average in floating-point format. 

 After the average is displayed, the app resets, 
and another list of grades can be entered. 

25 



26 

Figure 10.17 displays the source code for the app. 



27 


