

Introducing the
Do While…Loop

and
Do Until…Loop

Repetition Statements

1

2

7.4 Control Structures (Cont.)

From the previous discussions, we conclude
that Visual Basic has 11 control statements

1 sequence structure,
3 types of selection statements and
7 types of repetition statements.

 All Visual Basic apps are formed by
combining as many of each type of control
statement as is necessary.

3

7.4 Control Statements (Cont.)

7.4.3 Repetition Structures

Visual Basic provides seven types of repetition
statements for performing a statement or
group of statements repeatedly:

1. Do While...Loop
2. Do Until...Loop
3. Do...Loop While
4. Do...Loop Until
5. While...End While
6. For...Next
7. For Each...Next

Comments in VB.net Code

 To explain the purpose of a program, or
a statement, a comment statement is
added

◦ For yourself and others

 Any statement beginning with an
apostrophe (‘) or REM is a comment

 Comments can be added to end of
statements using only apostrophe

5

Using the Pmt Function

 Calculates periodic payment on loan or
investment

 Syntax: Pmt(Rate, NPer, PV)

◦ Rate: interest rate per period

◦ NPer: total number of payment periods (the
term)

◦ PV: present value of the loan or investment

The ListBox control

■ The ListBox is always ued with the repeatition statements

■ It allows users to view and/or select from multiple items in a
list (Fig. 9.1).

6

The Car Payment Calculator Application

■ Enter data to test the app then Click the Calculate Button.

■ The app displays the monthly payment amounts in the ListBox
(Fig. 9.3) in a tabular format.

7

Do While...Loop Repetition Statement

 A repetition statement repeats actions, depending
on the value of a condition.

 If you go to the grocery store with a list of items to purchase,
you go through the list until you’ve put each item in your
shopping cart

 This process is described by the following pseudocode
statements:

 Do while there are more items on my shopping list
 Put next item in cart

 Cross it off my list

 Do While...Loop Repetition
Statement (Cont.)

 Using a Do While...Loop statement, this code
finds the first power of 3 greater than 50.

 Dim product As Integer = 3

 Do While product <= 50
 product *= 3
 Loop

 The condition in the Do While...Loop
statement, product <= 50, is referred to as the
loop-continuation condition.

 When the loop-continuation condition becomes false, the Do
While...Loop statement terminates.

9

Do While...Loop Repetition Statement
(Cont.)

 The diagram in Fig. 9.4 illustrates the flow of control in the
preceding Do While...Loop repetition statement.

10

9.2 Do While...Loop Repetition
Statement (Cont.)

 The transition arrow emerging from the action state points back

to the merge, creating a loop.

 The diamond-shaped merge symbol joins two flows of activity

into one.

11

12

Do Until...Loop Repetition Statement

 The following statements describe the repetitive actions that
occur during the same shopping trip:

 Do until there are no more items on my shopping list
 Put next item in cart
 Cross it off my list

 Statements in the body of a Do Until...Loop are executed

repeatedly for as long as the loop-termination
condition remains False.

This is known as a loop-termination condition.

13

Do Until...Loop Repetition Statement
(Cont.)

 Using a Do Until...Loop, the same code to find the first power
of 3 larger than 50 will be:

 Dim product As Integer = 3

 Do Until product > 50
 product *= 3
 Loop

14

15

Do Until...Loop Repetition Statement
(Cont.)

 The UML activity diagram in Fig. 9.5 illustrates the flow of
control for the Do Until...Loop repetition statement.

16

17

Constructing the Car
Payment Calculator App

18

Constructing the Car Payment
Calculator App

 When the user clicks the Calculate Button
 Initialize loan length to two years

 Clear the ListBox of any previous calculation results

 Add a header to the ListBox

 Get car price from a TextBox

 Get down payment from a TextBox

 Get annual interest rate from a TextBox

 Calculate loan amount (car price – down payment)

 Calculate monthly interest rate (annual interest rate / 12)

19

Constructing the Car Payment
Calculator App (Cont.)

 Do while loan length is less than or equal to five years

 Convert the loan length in years to number of months

 Calculate monthly payment based on loan amount,
 monthly interest rate and loan length in months

 Insert result into ListBox

 Increment loan length in years by one year

20

Adding a ListBox to the Car Payment
Calculator App

• Add a ListBox control from the Toolbox.

• Change the ListBox’s Name property to paymentsListBox. Set
the Location property to
24, 166 and the Size property to 230, 94 (Fig. 9.7).

21

22

23

Using Code to Change a ListBox’s
Contents

 Double click the Calculate Button to generate the empty event
handler (Fig. 9.8).

 To remove all content from the ListBox, call method Clear of

the ListBox’s Items property.

 This property enables you to add content to and remove content
from the ListBox.

 The Items property returns an object that contains a list of
items displayed in the ListBox.

24

25

Using Code to Change a ListBox’s
Contents (Cont.)

 The ListBox displays the number of monthly payments and the
amount per payment.

 To clarify the information that’s being displayed, we add a line
of text—called a header—to ListBox using Method Add (lines
10–11 of Fig. 9.9)

26

Using Code to Change a ListBox’s
Contents (Cont.)

 The ampersand (&) is the string-concatenation operator— it
concantenates (combines) two operands into one string value by appending the
right operand’s text to the end of the left operand’s text.

 In lines 10–11, the header is created by joining the values "Months" and
"Monthly Payments" with two ControlChars.Tab constants—each inserts a tab
character in the string to separate the columns (Fig. 9.3).

27

Declaring Variables and Retrieving User Input

 The calculation requires the length in months, but the loop-
continuation condition uses the number of years (Fig. 9.10).

28

Declaring Variables and Retrieving User Input
(Cont.)

 Line 26 (Fig. 9.11) divides the interest rate by 100—if the
user enters 5, the interest rate is 0.05.

29

Declaring Variables and Retrieving User Input
(Cont.)

 The app computes the amount of the loan by subtracting the
down payment from the price.

 These calculations need to occur only once, so they are placed
before the Do While...Loop statement (Fig. 9.12).

30

Calculating the Monthly Payment Amounts with a
Do While...Loop Repetition Statement

 After you type line 33 and press Enter, the IDE will close the
repetition statement by automatically adding the keyword Loop
in line 35 (Fig. 9.13).

31

Calculating the Monthly Payment Amounts with a
Do While...Loop Repetition Statement (Cont.)

 This loop is an example of counter-controlled
repetition.

 This uses a counter (years) to control the number of
times that a set of statements executes.

 Counter-controlled repetition also is called definite
repetition, because the number of repetitions is known
before the repetition statement begins.

32

Calculating the Monthly Payment Amounts with a
Do While...Loop Repetition Statement (Cont.)

 The number of months changes with each iteration of this loop,
and the calculation result changes based on the length of the
payment period (Fig. 9.14).

33

Calculating the Monthly Payment Amounts with a
Do While...Loop Repetition Statement (Cont.)

 The built-in Visual Basic function Pmt returns a Double value
that specifies the monthly payment amount on a loan for a
constant interest rate (monthlyInterest) and a given time
period (months) (Fig. 9.15).

 Function Pmt’s third argument—the amount borrowed in this
example—is a negative value if it represents cash to be paid
(as in this app) and a positive value if it represents cash to be
received.

34

35

Calculating the Monthly Payment
Amounts with a Do While...Loop
Repetition Statement (Cont.)

 The number of monthly payments and the monthly payment
amounts are displayed beneath the header in the ListBox.

 String.Format is used to display monthlyPayment in currency
format (Fig. 9.16).

36

Calculating the Monthly Payment
Amounts with a Do While...Loop
Repetition Statement (Cont.)

 The counter variable years is incremented in each iteration until
it equals 6 (Fig. 9.17).

 Then the loop-continuation condition (years <= 5) evaluates to
False and the repetition ends.

37

 Figure 9.18 presents the source code for the app.

Outline

38

39

40

