
Distributed Systems

Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science

Room R4.20, steen@cs.vu.nl

Chapter 07: Consistency & Replication

Version: November 26, 2012

Consistency & Replication

Consistency & replication

Introduction (what’s it all about)

Data-centric consistency

Client-centric consistency

Replica management

Consistency protocols

2 / 41

Consistency & Replication 7.1 Introduction

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting

operations are done in the the same order everywhere

Conflicting operations

From the world of transactions:

Read–write conflict: a read operation and a write operation act

concurrently

Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly

operation, downgrading scalability Solution: weaken consistency

requirements so that hopefully global synchronization can be avoided

3 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the

data store specifies precisely what the results of read and write operations

are in the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy

4 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Continuous Consistency

Observation
We can actually talk a about a degree of consistency:

replicas may differ in their numerical value

replicas may differ in their relative staleness

there may be differences with respect to (number and order) of

performed update operations

Conit
Consistency unit) specifies the data unit over which consistency is to

be measured.

5 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Example: Conit

< 5, B> x := x + 2 [x = 2]

[y = 2]

[y = 3]

[x = 6]

< 8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result

x = 6; y = 3
Conit

Replica A

Vector clock A = (15, 5)
Order deviation = 3
Numerical deviation = (1, 5)

< 5, B> x := x + 2 [x = 2]

[y = 5]<10, B> y := y + 5

Operation Result

x = 2; y = 5
Conit

Replica B

Vector clock B = (0, 11)
Order deviation = 2
Numerical deviation = (3, 6)

Conit (contains the variables x and y)

Each replica has a vector clock: ([known] time @ A, [known] time @ B)

B sends A operation [h5,Bi: x := x +2]; A has made this operation

permanent (cannot be rolled back)

6 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Example: Conit

< 5, B> x := x + 2 [x = 2]

[y = 2]

[y = 3]

[x = 6]

< 8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result

x = 6; y = 3
Conit

Replica A

Vector clock A = (15, 5)
Order deviation = 3
Numerical deviation = (1, 5)

< 5, B> x := x + 2 [x = 2]

[y = 5]<10, B> y := y + 5

Operation Result

x = 2; y = 5
Conit

Replica B

Vector clock B = (0, 11)
Order deviation = 2
Numerical deviation = (3, 6)

Conit (contains the variables x and y)

A has three pending operations) order deviation = 3

A has missed one operation from B, yielding a max diff of 5 units) (1,5)

7 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Sequential consistency

Definition
The result of any execution is the same as if the operations of all

processes were executed in some sequential order, and the operations

of each individual process appear in this sequence in the order

specified by its program.

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

(a)

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(b)

8 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Causal consistency

Definition
Writes that are potentially causally related must be seen by all

processes in the same order. Concurrent writes may be seen in a

different order by different processes.

P1:

P1:

W(x)a

W(x)a

R(x)aP2:

P2:

P3:

P3:

P4:

P4:

W(x)b

W(x)b

R(x)a

R(x)a

R(x)a

R(x)a

R(x)b

R(x)b

R(x)b

R(x)b

(a)

(b)
9 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Grouping operations

Definition
Accesses to synchronization variables are sequentially consistent.

No access to a synchronization variable is allowed to be

performed until all previous writes have completed everywhere.

No data access is allowed to be performed until all previous

accesses to synchronization variables have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are

immediately known to other processes. You just want the effect of the

series itself to be known.

10 / 41

Consistency & Replication 7.2 Data-Centric Consistency Models

Grouping operations

Acq(Lx) W(x)a Acq(Ly) W(y)b Rel(Lx) Rel(Ly)

Acq(Lx) R(x)a R(y) NIL

Acq(Ly) R(y)b

P1:
P2:

P3:

Observation
Weak consistency implies that we need to lock and unlock data

(implicitly or not).

Question
What would be a convenient way of making this consistency more or

less transparent to programmers?

11 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Client-centric consistency models

Overview
System model

Monotonic reads

Monotonic writes

Read-your-writes

Write-follows-reads

Goal
Show how we can perhaps avoid systemwide consistency, by

concentrating on what specific clients want, instead of what should be

maintained by servers.

12 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency for mobile users

Example
Consider a distributed database to which you have access through

your notebook. Assume your notebook acts as a front end to the

database.

At location A you access the database doing reads and updates.

At location B you continue your work, but unless you access the

same server as the one at location A, you may detect

inconsistencies:

your updates at A may not have yet been propagated to B

you may be reading newer entries than the ones available at A

your updates at B may eventually conflict with those at A

13 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency for mobile users

Note
The only thing you really want is that the entries you updated and/or

read at A, are in B the way you left them in A. In that case, the

database will appear to be consistent to you.

14 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Basic architecture

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database

15 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic reads

Definition
If a process reads the value of a data item x , any successive read

operation on x by that process will always return that same or a more

recent value.

WS()x 1 R()x1

WS(;)x 1 x 2 R()x2

L1:

L2:

WS()x 1

WS()x 2

R()x1

R()x2

L1:

L2:

16 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Client-centric consistency: notation

Notation
WS(x

i

[t]) is the set of write operations (at L

i

) that lead to version

x

i

of x (at time t)

WS(x
i

[t
1

];x
j

[t
2

]) indicates that it is known that WS(x
i

[t
1

]) is part of

WS(x
j

[t
2

]).
Note: Parameter t is omitted from figures.

17 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic reads

Example
Automatically reading your personal calendar updates from different

servers. Monotonic Reads guarantees that the user sees all updates,

no matter from which server the automatic reading takes place.

Example
Reading (not modifying) incoming mail while you are on the move.

Each time you connect to a different e-mail server, that server fetches

(at least) all the updates from the server you previously visited.

18 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic writes

Definition
A write operation by a process on a data item x is completed before

any successive write operation on x by the same process.

L1:

L2: x2

W()x1

W()

x2

W()x1

W()

L1:

L2:

WS()x 1

19 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic writes

Example
Updating a program at server S

2

, and ensuring that all components on

which compilation and linking depends, are also placed at S

2

.

Example
Maintaining versions of replicated files in the correct order everywhere

(propagate the previous version to the server where the newest

version is installed).

20 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Read your writes

Definition
The effect of a write operation by a process on data item x , will always

be seen by a successive read operation on x by the same process.

L1:

L2:

W()x1

W()x1L1:

L2:

WS(;)x 1 x 2 R()x2

R()x2WS()x 2

Example
Updating your Web page

and guaranteeing that your

Web browser shows the

newest version instead of its

cached copy.

21 / 41

Consistency & Replication 7.3 Client-Centric Consistency Models

Writes follow reads

Definition
A write operation by a process on a data item x following a previous

read operation on x by the same process, is guaranteed to take place

on the same or a more recent value of x that was read.

WS()x 1 R()x1

WS(;)x 1 x 2

L1:

L2:

WS()x 1

WS()x 2

R()x1L1:

L2:

W()x2

W()x3

Example
See reactions to posted

articles only if you have the

original posting (a read

“pulls in” the corresponding

write operation).

22 / 41

