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Pattern Recognition and Image 
Analysis
Dr. Manal Helal – Fall 2015
Lecture 9

Non-Linear Classifiers 1: 
Decision Trees



❖❖
Overview

■ Decision Trees (This Lecture)

■ The XOR (Lecture 10)

■ Nearest Neighbour (Lecture 10)

■ Neural Networks (Lecture 11)
■ Two Layer Perceptron
■ Three Layer Perceptron

■ SVM (Lecture 12)
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❖❖
Linear separability 

■ A dataset is linearly separable iff ∃ a separating hyperplane 
w, such that:
■ w0 + ∑i wi xi > 0; if x={x1,...,xn} is a positive example

■ w0 + ∑i wi xi < 0; if x={x1,...,xn} is a negative example 

■ Typical linear features: w0 + ∑i wi xi 

■ Example of non-linear features:
■ Degree 2 polynomials, w0 + ∑i wi xi + ∑ij wij xi xj 

■ Classifier hw(x) still linear in parameters w, Data is linearly separable in 
higher dimensional spaces 
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❖❖

non-linearly separable data 
■ Linear models are linear in the parameters which 

have to be estimated, but not necessarily in the 
independent variables. 

■ In the parabolic example, the parameters a, b, and c 
are linear. 

■ Multiple linear regression can be used to estimate the 
parameters of "curved" models.
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❖❖
Multiple Linear Regression

■ Given 

y = a0 + a1x1 + a2x2 + ... + anxn + ε

■ Or

■ Defining a hyper-plane in n dimensions, The parameter e defines the 
error, or the residual,  with a mean of zero.

■ MLR adjusts the parameters a1 … an, such that the sum of the squared 
errors is minimised to best fit the data.
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❖❖

non-linearly separable data – non-linear 
classifier 

■ Choose a classifier hw(x) that is non-linear in parameters w, e.g., 
■ Decision trees, neural networks, nearest neighbor,... 

■ More general than linear classifiers 

■ But, can often be harder to learn (non-convex/concave optimization 
required) 
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❖❖

Non-Linear in 1D

Starting from x = 998123456789, next x is 
computed using the non-linear mapping:
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The Henon map is the most studied two-
dimensional map with chaotic behaviour. 
f : R2 —> R2 which is
given by
f{x, y):=(y + l - ax2, bx)

Non-Linear in 2D



❖❖

Conic Sections

■ F (the focus), L (the directrix Line) not containing F 

■ A nonnegative real number e  (the eccentricity: a 
measure of how much the conic section deviates from 
being circular)

■ The corresponding conic section consists  
of the locus of all points whose distance to F equals e  
times their distance to L. 
■ For e = 0, we obtain a circle, 
■ For 0 < e < 1 we obtain an ellipse, 
■ for e = 1 a parabola, 
■ for e > 1 a hyperbola.
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Ellipse: Closed curve.
Circle: closed and perpendicular to the 
symmetry axis
Parabola: parallel to exactly one generating 
line of the cone
Hyperbola: intersects both halves, producing 
two separate unbounded curves. 

Cutting Planes:



❖❖
Learning and Decision Trees to learning

■ What is learning?
■ more than just memorising facts
■ learning the underlying structure of the problem or data 

■ A fundamental aspect of learning is generalisation:
■  given a few examples, can you generalise to others? 

■ Learning is ubiquitous: 
■ medical diagnosis: identify new disorders from observations 
■ loan applications: predict risk of default 
■ prediction: (climate, stocks, etc.) predict future from current and past data 
■ speech/object recognition: from examples, generalise to others  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❖❖
Representation

■ How do we model or represent the world? 

■ All learning requires some form of representation. 

■ Learning: 
■ adjust model parameters to match data 
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❖❖
The complexity of learning

■ Fundamental trade-off in learning: 
■ complexity of model vs. amount of data required to learn parameters 

■ The more complex the model, the more it can describe, but the more 
data it requires to constrain the parameters. 

■ Consider a hypothesis space of N models:
■ How many bits would it take to identify which of the N models is ‘correct’?
■ log2(N) in the worst case 

■ Want simple models to explain examples and generalise to others
■ Ockham’s (some say Occam) razor 
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❖
Non-Metric Classifiers

■ Lets start the non-linear classification by moving beyond 
the notion of continuous probability distributions and 
metrics toward discrete problems that are addressed by 
rule-based or syntactic pattern recognition methods. 

■ This is useful when there is no clear notion of similarity 
(metric) for discrete data that can not be ordered, such as 
describing a fruit by the four properties of colour, texture, 
taste and smell. 

■ An x1 feature vector would be {red, shiny, sweet, small}, 
and x2 = {yellow, shiny, sour, medium}. One can not 
measure how far x1 from x2.
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Decision Trees
■ Sequence of Questions with yes/no answers (value ∊ set of values)

■ Directed Tree, first root node at top, followed by directional links or 
branches to other nodes as roots of their own subtrees. Links must be 
mutual distinct and exhaustive

■ Terminal or leaf nodes bears a category label

■ Interpretability is the main advantage  
of this classifier

■ Note that the same question,  
Size?, appears in different  
places in the tree, and that  
different questions can  
have different  
numbers of branches. 
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Figure 8.1: Classification in a basic decision tree proceeds from top to bottom. The
questions asked at each node concern a particular property of the pattern, and the
downward links correspond to the possible values. Successive nodes are visited until a
terminal or leaf node is reached, where the category label is read. Note that the same
question, Size?, appears in different places in the tree, and that different questions
can have different numbers of branches. Moreover, different leaf nodes, shown in pink,
can be labeled by the same category (e.g., Apple).

rapid classification, employing a sequence of typically simple queries. Finally, we note
that trees provide a natural way to incorporate prior knowledge from human experts.
In practice, though, such expert knowledge if of greatest use when the classification
problem is fairly simple and the training set is small.

8.3 CART

Now we turn to the matter of using training data to create or “grow” a decision tree.
We assume that we have a set D of labeled training data and we have decided on a
set of properties that can be used to discriminate patterns, but do not know how to
organize the tests into a tree. Clearly, any decision tree will progressively split the
set of training examples into smaller and smaller subsets. It would be ideal if all the
samples in each subset had the same category label. In that case, we would say that
each subset was pure, and could terminate that portion of the tree. Usually, however,
there is a mixture of labels in each subset, and thus for each branch we will have
to decide either to stop splitting and accept an imperfect decision, or instead select
another property and grow the tree further.

This suggests an obvious recursive tree-growing process: given the data repre-
sented at a node, either declare that node to be a leaf (and state what category to
assign to it), or find another property to use to split the data into subsets. How-
ever, this is only one example of a more generic tree-growing methodology know as
CART (Classification and Regression Trees). CART provides a general framework
that can be instatiated in various ways to produce different decision trees. In the
CART approach, six general kinds of questions arise:

1. Should the properties be restricted to binary-valued or allowed to be multi-



❖❖

Decision trees: classifying from a set of attributes  

■ Each level splits the data according to different attributes
■ goal: achieve perfect classification with minimal number of decisions 
■ not always possible due to noise or inconsistencies in the data  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❖❖
Decision Trees for Classification

■ Input: Set of attribute-value pairs (same) 

■ Output: Set of classes (not a binary valued outcome of 'N' and 'P') 

■ Effectively dividing input space into decision regions 

■ Cuts in regions are parallel to input axes 
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❖❖
Observations 

■ Any boolean function can be represented by a decision tree.

■ Not good for all functions, e.g.: 
■ parity function: return 1 iff an even number of inputs are 1
■ majority function: return 1 if more than half inputs are 1  

■ best when a small number of attributes provide a lot of information

■ Note: finding optimal tree for arbitrary data is NP-hard. 
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❖❖

Decision trees with continuous values
■ Now tree corresponds to order and placement of boundaries

■ General case: 
■ arbitrary number of attributes: binary, multi-valued, or continuous
■ output: binary, multi-valued (decision or axis-aligned classification trees), or 

continuous (regression trees)  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❖❖

Examples
■loan applications
■medical diagnosis
■movie preferences (Netflix contest)
■spam filters
■security screening
■many real-word systems, and AI success 
■In each case, we want
■accurate classification, i.e. minimise error
■efficient decision making, i.e. fewest # of decisions/tests 

■decision sequence could be further complicated 
■want to minimise false negatives in medical diagnosis or 
minimise cost of test sequence 
■don’t want to miss important email
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❖❖
Decision Trees

■ Simple example of inductive learning 
1. learn decision tree from training examples 
2. predict classes for novel testing examples 

■ Generalisation is how well we do on the testing examples. 

■ Only works if we can learn the underlying structure of the data. 
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❖❖
Choosing the attributes

■ How do we find a decision tree that agrees with the training data? 

■ Could just choose a tree that has one path to a leaf for each example
■ but this just memories the observations (assuming data are consistent)
■ we want it to generalise to new examples 

■ Ideally, best attribute would partition the data into positive and 
negative examples

■ Strategy (greedy): 
■ choose attributes that give the best partition first: split the set of training 

examples into smaller and smaller subsets. 

■ Want correct classification with fewest number of tests 
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❖❖
CART (Classification and Regression 
Trees) Questions:

1. Should the properties be restricted to binary-valued or allowed to 
be multi-valued? That is, how many decision outcomes or splits 
will there be at a node? 

2. Which property should be tested at a node? 

3. When should a node be declared a leaf? 

4. If the tree becomes “too large,” how can it be made smaller and 
simpler, i.e., pruned? 

5.  If a leaf node is impure, how should the category label be 
assigned? 

6. How should missing data be handled?
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❖❖

Basic algorithm for learning decision trees  

1. starting with whole training data 

2. select attribute or value along dimension that 
gives “best” split 

3. create child nodes based on split 

4. recurse on each child using child data until one 
of the following stopping criterion is reached 

■ all examples have same class
■ amount of data is too small
■ tree too large 

■ Central problem: How do we choose the “best” 
attribute? 
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❖❖
Measuring uncertainty

■ Good split if we are more certain about classification after 
split 
■ Deterministic is good (all true or all false) 
■ Uniform distribution is bad 
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Measuring uncertainty

■ Good split if we are more certain about
classification after split

Deterministic good (all true or all false)
Uniform distribution bad

P(Y=C) = 1/4P(Y=B) = 1/4 P(Y=D) = 1/4P(Y=A) = 1/4

P(Y=C) = 1/8P(Y=B) = 1/4 P(Y=D) = 1/8P(Y=A) = 1/2
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❖❖
Measuring information 

■ A convenient measure to use is based on information 
theory.
■ How much “information” does an attribute give us about the 

class? 
■ attributes that perfectly partition should given maximal 

information
■ unrelated attributes should give no information 

■ Information of symbol w: 
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❖❖

■ For a random variable X with probability P(x), the Entropy is the average (or 
expected) amount of information obtained by observing x: 

■ Note: H(X) depends only on the probability, not the value. 

■ H(X) quantifies the uncertainty in the data in terms of bits, the lower the better 

■ H(X) gives a lower bound on cost (in bits) of coding (or describing) X 

Information and Entropy: Node Impurity 25



❖❖

Entropy of a binary random variable

■ Entropy is maximum at p=0.5

■ Entropy is zero at p= 0  or p=1

26



❖❖

Credit Risk Revisited
■ How many bits does it take to specify the attribute of ‘defaulted?’ 
■ P(defaulted = Y) = 3/10
■ P(defaulted = N) = 7/10 

■ How much can we reduce the entropy  
(or uncertainty) of ‘defaulted’ by knowing  
the other attributes? 

■ Ideally, we could reduce it to zero, in  
which case we classify perfectly. 
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❖❖
Conditional Entropy

■ H(Y|X) is the remaining entropy of Y given X 

or 

■ The expected (or average) entropy of P(y|x) 

■ H(Y|X=x) is the specific conditional entropy, i.e. the entropy of Y 
knowing the value of a specific attribute x. 
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❖❖

Back to the credit risk example 29



❖❖
Mutual Information

■ We now have the entropy - the minimal number of bits required to 
specify the target attribute: 

■ The conditional entropy - the remaining entropy of Y knowing X 

■ So we can now define the reduction of the entropy after learning Y. 

■ This is known as the mutual information between Y and X 
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❖❖
Properties of Mutual Information

■ Mutual information is symmetric 

■ In terms of probability distributions, it is written as 

■ It is zero, if Y provides no information about X: 

■ If Y = X then 
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❖❖
Information Gain

■ Advantage of attribute – decrease in uncertainty 
■ Entropy of Y before you split
■ Entropy after split 
■ Weight by probability of following each branch, i.e., normalised number of 

records 

■ Information gain is difference  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❖❖

Information Gain 33



❖❖

Example (from Andrew Moore): Predicting miles per 
gallon http://www.autonlab.org/tutorials/dtree.html 
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❖❖

First step: calculate 
information gains
■ Compute for information gain for each attribute

■  In this case cylinders provide the most gain, 
because it nearly partitions the data. 
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❖❖
First decision: partition on cylinders  

■ Note the lopsided mpg class distribution. 
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❖❖

Recurse on child nodes to expand tree 37



❖❖

Expanding the tree: data is partitioned for 
each child
■ Exactly the same, but with a smaller, conditioned datasets. 
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❖❖

Second level of decisions 39
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Detailed Algorithm

■Begin with the root node, Let, Xt = X 
■For each new node t 
■For each feature xk: k = 1, 2, … l
■For each value αkn, n = 1, 2, … Nkn

■Generate XtY and XtN according to the answer in the question:  
is xk(i) ≤ αkn, i = 1, 2, … Nt.
■Compute the node impurity decrease (information gain)

■End
■Choose value αkn0, leading to the maximum decrease (most information gain) w.r.t. xk.

■End
■Choose xkn and associated αk0n0 leading to the overall maximum decrease of impurity 
■If stop-splitting rule is met declare node t as a leaf and designate it with a class label  

■If not, generate two descendant nodes tY and tN with associated subsets XtY and XtN. depending 
on the answer to the question: is xk0 ≤ αk0n0

■End
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❖❖
Decision Trees for Classification

■ To classify a new example – traverse tree and report leaf label 

■ Many trees can represent the same concept 

■ But, not all trees will have the same size! 
■ e.g., φ = A ⋀ B ⋁ ¬A⋀C ((A and B) or (not A and C)) 
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❖❖
Decision Trees for Regression

■ Move from Discrete outcomes -> Continuous valued functions 

■ How do you measure the goodness of your classifier?  
■ Loss = Number of misclassified inputs/data points 

■ How do you measure the goodness of your regression hypothesis? 
■ Loss = Square Loss 
■ Loss = Absolute Loss 

■ There are greedy heuristic based algorithms that build regression trees 
iteratively 
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❖❖
Decision Trees in Practice 

■ Deal with Overfitting : Pruning away low information gain, or 
statistically insignificant attributes 

■ k-fold cross-validation: To deal with overfitting 

■ Advantages:
■ Human readability: White box classifier 

■ Disadvantages: 
■ Parallel splits in input space - as opposed to Diagonal splits (xi< xj) make 

some problems harder to learn 
■ Splits are very sensitive to training data 
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Matlab Exercise 45

load fisheriris;
t = classregtree(meas,species,...
                 'names',{'SL' 'SW' 'PL' 'PW'})
view(t)

t =  

Decision tree for classification 
1  if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa 
2  class = setosa 
3  if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor 
4  if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor 
5  class = virginica 
6  if PW<1.65 then node 8 elseif PW>=1.65  
   then node 9 else versicolor 
7  class = virginica 
8  class = versicolor 
9  class = virginica 


