
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 08: Fault Tolerance

Version: December 11, 2012



Dependability

• A component provides services to clients. To provide 
services, the component may require the services from 
other components → a component may depend on some 
other component.

• A component C depends on C* if the correctness of C's 
behavior depends on the correctness of C*'s behavior. 

• Note: in the context of distributed systems, components 
are generally processes or channels.

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired

8.1 Introduction: Basic concepts

2



Reliability versus Availability

• Reliability R(t): probability that a component has been up 

and running continuously in the time interval [0,t).

• Some traditional metrics:

– Mean Time To Failure (MTTF): Average time until a component 

fails.

– Mean Time To Repair (MTTR): Average time it takes to repair a 

failed component.

– Mean Time Between Failures (MTBF): MTTF + MTTR

3

8.1 Introduction: Basic concepts



Reliability versus Availability

• Availability A(t): Average fraction of time that a 

component has been up and running in the interval [0,t)

– (Long term) availability A: A(∞)

• Note:

– A = MTTF/MTBF = MTTF/(MTTF + MTTR)

8.1 Introduction: Basic concepts

4

Observation

Reliability and availability make sense only if we have an 
accurate notion of what a failure actually is



Terminology

8.1 Introduction: Basic concepts

5

Term Description Example

Failure May occur when a 
component is not living up to 
its specifications

A crashed program

Error Part of a component that 
may lead to a failure

A programming bug

Fault The cause of an error A sloppy programmer



Terminology

8.1 Introduction: Basic concepts6

Term Description Example

Fault 
prevention

Prevent the occurrence 
of a fault

Don't hire sloppy 
programmers

Fault 
tolerance

Build a component such 
that it can mask the 
occurrence of a fault

Build each component by 
two independent 
programmers

Fault removal Reduce the presence, 
number, or seriousness 
of a fault

Get rid of sloppy 
programmers

Fault 
forecasting

Estimate current 
presence, future 
incidence, and 
consequences of faults

Estimate how a recruiter is 
doing when it comes to 
hiring sloppy programmers



Failure models

8.1 Introduction: Failure models

7

 Crash failures: Halt, but correct behavior until halting

 General omission failures: failure in sending or receiving messages

− Receiving omissions: sent messages are not received 

− Send omissions: messages are not sent that should have

 Timing failures: correct output, but provided outside a specified time 

interval. 

− Performance failures: the component is too slow

 Response failures: incorrect output, but cannot be accounted to another 

component

− Value failures: wrong output values

− State transition failures: deviation from correct flow of control (Note: this failure 

may initially not even be observable)

 Arbitrary failures: any (combination of) failure may occur, perhaps even 

unnoticed



Dependability versus security

 Omission failure: A component fails to take an action 

that it should have taken

 Commission failure: A component takes an action that it 

should not have taken

8.1 Introduction: Failure models

8

Observations

Deliberate failures, be they omission or commission
failures, stretch out to the field of security

There may actually be a thin line between
dependability and security 



Halting failures

• Scenario: C no longer perceives any activity from C* ― a 

halting failure? Distinguishing between a crash or 

omission/timing failure may be impossible:

– Asynchronous system: no assumptions about process execution 

speeds or message delivery times → cannot reliably detect 

crash failures.

– Synchronous system: process execution speeds and message 

delivery times are bounded → we can reliably detect omission 

and timing failures.

– In practice we have partially synchronous systems: most of the 

time, we can assume the system to be synchronous, yet there is 

no bound on the time that a system is asynchronous → can 

normally reliably detect crash failures.

8.1 Introduction: Failure models

9



Halting failures

• Assumptions we can make:

– Fail-stop: Crash failures, but reliably detectable

– Fail-noisy: Crash failures, eventually reliably detectable

– Fail-silent: Omission or crash failures: clients cannot tell what 

went wrong.

– Fail-safe: Arbitrary, yet benign failures (can't do any harm).

– Fail-arbitrary: Arbitrary, with malicious failures

8.1 Introduction: Failure models

10



Process reslience

 Basic idea: protect yourself against faulty processes 

through process replication:

8.2 Process resilience

11



Groups and failure masking

 k-Fault-tolerant group: When a group can mask any k 

concurrent member failures (k is called degree of fault 

tolerance).

 How large must a k-fault-tolerant group be:

− With halting failures (crash/omission/timing failures): we 

need k+1 members: no member will produce an 

incorrect result, so the result of one member is good 

enough.

− With arbitrary failures: we need 2k+1 members: the 

correct result can be obtained only through a majority 

vote.

8.2 Process resilience

12



Groups and failure masking

 Important:

− All members are identical

− All members process commands in the same order

 Result: 

− Only then do we know that all processes are programmed to do 

exactly the same thing.

8.2 Process resilience

13

Observation

The processes need to have consensus on which
command to execute next



Flooding-based consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all process will execute the 

same if no failures occur

• Problem:

– Suppose a process crashes before completing its multicast

8.2 Process resilience

14



Flooding-based consensus

8.2 Process resilience15



Failure detection

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process q for a reaction

– q reacts → q is alive

– q does not react within t time units → q is suspected to have crashed

• Note: in a synchronous system: 

– a suspected crash is a known crash

– Referred to as a perfect failure detector

8.2 Process resilience: detection

49

Issue

How can we reliably detect that a process has 
actually crashed?



Failure detection

• Practice: the eventually perfect failure detector

• Has two important properties:

– Strong completeness: every crashed process is eventually suspected to have 

crashed by every correct process.

– Eventual strong accuracy: eventually, no correct process is suspected by any 

other correct process to have crashed.

• Implementation:

– If p did not receive heartbeat from q within time t → p suspects q.

– If q later sends a message (received by p):

– p stops suspecting q

– p increases timeout value t

– Note: if q does crash, p will keep suspecting q.

8.2 Process resilience: detection

50



Fault Tolerance 8.3 Reliable Communication

Reliable communication

So far
Concentrated on process resilience (by means of process groups).
What about reliable communication channels?

Error detection
Framing of packets to allow for bit error detection
Use of frame numbering to detect packet loss

Error correction
Add so much redundancy that corrupted packets can be
automatically corrected
Request retransmission of lost, or last N packets

2 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: What can go wrong?
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

RPC communication: Solutions
1: Relatively simple – just report back to client
2: Just resend message

3 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server crashes

3: Server crashes are harder as you don’t what it had already done:

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

4 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

Problem
We need to decide on what we expect from the server

At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what.
At-most-once-semantics: The server guarantees it will carry out
an operation at most once.

5 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server response is lost

4: Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has
carried out the operation
Solution: None, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to
be carried out before.

6 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Client crashes

5: Problem: The server is doing work and holding resources for
nothing (called doing an orphan computation).

Orphan is killed (or rolled back) by client when it reboots
Broadcast new epoch number when recovering ) servers kill
orphans
Require computations to complete in a T time units. Old ones are
simply removed.

Question
What’s the rolling back for?

7 / 35



Fault Tolerance 8.6 Recovery

Recovery

Introduction
Checkpointing
Message Logging

19 / 35



Fault Tolerance 8.6 Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation
Backward error recovery: Bring the system back into a previous
error-free state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes
need to cooperate in identifying a consistent state from where to recover

20 / 35



Fault Tolerance 8.6 Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been
sent in the state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection 
of checkpoints

Message sent
from P2 to P1

21 / 35



Fault Tolerance 8.6 Recovery

Consistent recovery state

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection 
of checkpoints

Message sent
from P2 to P1

Observation
If and only if the system provides reliable communication, should sent
messages also be received in a consistent state.

22 / 35



Fault Tolerance 8.6 Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may
lie at system startup time ) cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm

23 / 35



Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m�1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)! INT[j](n)
The dependency INT[i](m)! INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

24 / 35



Fault Tolerance 8.6 Recovery

Independent checkpointing

Observation
If process Pi rolls back to CP[i](m�1), Pj must roll back to
CP[j](n�1).

Question
How can Pj find out where to roll back to?

25 / 35



Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Question
What advantages are there to coordinated checkpointing?

26 / 35



Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

27 / 35



Fault Tolerance 8.6 Recovery

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your
(communication) behavior from the most recent checkpoint ) store
messages in a log.

Assumption
We assume a piecewise deterministic execution model:

The execution of each process can be considered as a sequence
of state intervals
Each state interval starts with a nondeterministic event (e.g.,
message receipt)
Execution in a state interval is deterministic

28 / 35


