
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 12 Exception Handling
and Text IO

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 2

Motivations
When a program runs into a runtime error, the
program terminates abnormally. How can you
handle the runtime error so that the program can
continue to run or terminate gracefully? This is the
subject we will introduce in this chapter.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 3

Objectives
 To get an overview of exceptions and exception handling (§12.2).
 To explore the advantages of using exception handling (§12.2).
 To distinguish exception types: Error (fatal) vs. Exception (nonfatal)

and checked vs. unchecked (§12.3).
 To declare exceptions in a method header (§12.4.1).
 To throw exceptions in a method (§12.4.2).
 To write a try-catch block to handle exceptions (§12.4.3).
 To explain how an exception is propagated (§12.4.3).
 To obtain information from an exception object (§12.4.4).
 To develop applications with exception handling (§12.4.5).
 To use the finally clause in a try-catch block (§12.5).
 To use exceptions only for unexpected errors (§12.6).
 To rethrow exceptions in a catch block (§12.7).
 To create chained exceptions (§12.8).
 To define custom exception classes (§12.9).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 4

Exception-Handling Overview

Quotient

QuotientWithIf

Show runtime error

Fix it using an if statement

With a method

QuotientWithMethod

System.out.print("Enter two integers: ");
int number1 = input.nextInt();
int number2 = input.nextInt();
System.out.println(number1 + " / " + number2 + " is " +
 (number1 / number2));

if (number2 != 0)
 System.out.println(number1 + " / " + number2 + " is " +
 (number1 / number2));
else
 System.out.println("Divisor cannot be zero ");

public static int quotient(int number1, int number2) {
 if (number2 == 0) {
 System.out.println("Divisor cannot be zero");
 System.exit(1);
 }

 return number1 / number2;
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 5

Exception Advantages

Now you see the advantages of using exception handling.
It enables a method to throw an exception to its caller.
Without this capability, a method must handle the
exception or terminate the program.

QuotientWithException Run

 public static int quotient(int number1, int number2) {
 if (number2 == 0)
 throw new ArithmeticException("Divisor cannot be zero");

 return number1 / number2;
 }
 public static void main(String[] args) {
…
 try {
 int result = quotient(number1, number2);
 System.out.println(number1 + " / " + number2 + " is " + result);
 }
 catch (ArithmeticException ex) {
 System.out.println("Exception: an integer " + "cannot be divided by zero ");
 }

 System.out.println("Execution continues …");
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 6

Handling InputMismatchException
InputMismatchExceptionDemo Run

By handling InputMismatchException, your program will
continuously read an input until it is correct.

 boolean continueInput = true;
do {

 try {
 System.out.print("Enter an integer: ");
 int number = input.nextInt();

 // Display the result
 System.out.println(
 "The number entered is " + number);

 continueInput = false;
 }
 catch (InputMismatchException ex) {
 System.out.println("Try again. (" +
 "Incorrect input: an integer is required)");
 input.nextLine(); // discard input
 }
 } while (continueInput);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 7

Exception Types

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 8

System Errors

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

System errors are thrown by
JVM and represented in the
Error class. The Error class
describes internal system errors.
Such errors rarely occur. If one
does, there is little you can do
beyond notifying the user and
trying to terminate the program
gracefully.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 9

Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Exception describes errors
caused by your program
and external circumstances.
These errors can be caught
and handled by your
program.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 10

Runtime Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

RuntimeException is caused by
programming errors, such as bad
casting, accessing an out-of-bounds
array, and numeric errors.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 11

Checked Exceptions vs.
Unchecked Exceptions

RuntimeException, Error and their subclasses are
known as unchecked exceptions. All other
exceptions are known as checked exceptions,
meaning that the compiler forces the programmer
to check and deal with the exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 12

Unchecked Exceptions
In most cases, unchecked exceptions reflect programming
logic errors that are not recoverable. For example, a
NullPointerException is thrown if you access an object
through a reference variable before an object is assigned to
it; an IndexOutOfBoundsException is thrown if you access
an element in an array outside the bounds of the array.
These are the logic errors that should be corrected in the
program. Unchecked exceptions can occur anywhere in the
program. To avoid cumbersome overuse of try-catch
blocks, Java does not mandate you to write code to catch
unchecked exceptions.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Unchecked Exceptions

LinkageError

Error

Throwable

ClassNotFoundException

VirtualMachineError

IOException

Exception

RuntimeException

Object

ArithmeticException

NullPointerException

IndexOutOfBoundsException

Many more classes

Many more classes

Many more classes

IllegalArgumentException

Unchecked exception.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Declaring, Throwing, and
Catching Exceptions

method1() {

 try {
 invoke method2;
 }
 catch (Exception ex) {
 Process exception;
 }
}

method2() throws Exception {

 if (an error occurs) {

 throw new Exception();
 }
}

catch exception throw exception

declare exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 15

Declaring Exceptions
Every method must state the types of checked
exceptions it might throw. This is known as
declaring exceptions.

public void myMethod()
 throws IOException

public void myMethod()
 throws IOException, OtherException

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

Throwing Exceptions
When the program detects an error, the program
can create an instance of an appropriate exception
type and throw it. This is known as throwing an
exception. Here is an example,

throw new TheException();

TheException ex = new TheException();  
throw ex;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

Throwing Exceptions Example

 /** Set a new radius */
 public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

Catching Exceptions

try {
 statements; // Statements that may throw exceptions
}
catch (Exception1 exVar1) {
 handler for exception1;
}
catch (Exception2 exVar2) {
 handler for exception2;
}
...
catch (ExceptionN exVar3) {
 handler for exceptionN;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Catching Exceptions

main method {
 ...
 try {
 ...
 invoke method1;
 statement1;
 }
 catch (Exception1 ex1) {
 Process ex1;
 }
 statement2;
}

method1 {
 ...
 try {
 ...
 invoke method2;
 statement3;
 }
 catch (Exception2 ex2) {
 Process ex2;
 }
 statement4;
}

method2 {
 ...
 try {
 ...
 invoke method3;
 statement5;
 }
 catch (Exception3 ex3) {
 Process ex3;
 }
 statement6;
}

An exception
is thrown in
method3

Call Stack

main method main method

method1

main method

method1

main method

method1

method2 method2

method3

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Catch or Declare Checked Exceptions
Suppose p2 is defined as follows:

void p2() throws IOException {
 if (a file does not exist) {
 throw new IOException("File does not exist");
 }

 ...
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Catch or Declare Checked Exceptions
Java forces you to deal with checked exceptions. If a method declares a
checked exception (i.e., an exception other than Error or RuntimeException),
you must invoke it in a try-catch block or declare to throw the exception in
the calling method. For example, suppose that method p1 invokes method p2
and p2 may throw a checked exception (e.g., IOException), you have to
write the code as shown in (a) or (b).

void p1() {
 try {
 p2();
 }
 catch (IOException ex) {
 ...
 }
}

(a)

(b)

void p1() throws IOException {

 p2();

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Example: Declaring, Throwing, and
Catching Exceptions

Objective: This example demonstrates
declaring, throwing, and catching exceptions
by modifying the setRadius method in the
Circle class defined in Chapter 8. The new
setRadius method throws an exception if
radius is negative.

TestCircleWithException CircleWithException

public void setRadius(double newRadius)
 throws IllegalArgumentException {
 if (newRadius >= 0)
 radius = newRadius;
 else
 throw new IllegalArgumentException(
 "Radius cannot be negative");
 }

try {
 CircleWithException c1 = new CircleWithException(5);
 CircleWithException c2 = new CircleWithException(-5);
 CircleWithException c3 = new CircleWithException(0);
}
catch (IllegalArgumentException ex) {
 System.out.println(ex);
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

Rethrowing Exceptions
try {
 statements;
}
catch(TheException ex) {
 perform operations before exits;
 throw ex;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 24

The finally Clause
try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 25

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose no
exceptions in the
statements

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is
always executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Trace a Program Execution
animation

try {
 statements;
}
catch(TheException ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Next statement in the
method is executed

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

Suppose an exception
of type Exception1 is
thrown in statement2

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 29

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The exception is
handled.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The final block is
always executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
finally {
 finalStatements;
}

Next statement;

The next statement in
the method is now
executed.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

statement2 throws an
exception of type
Exception2.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Handling exception

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Execute the final

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Trace a Program Execution
animation

try {
 statement1;
 statement2;
 statement3;
}
catch(Exception1 ex) {
 handling ex;
}
catch(Exception2 ex) {
 handling ex;
 throw ex;
}
finally {
 finalStatements;
}

Next statement;

Rethrow the
exception and control

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

Cautions When Using Exceptions
Exception handling separates error-handling

code from normal programming tasks, thus
making programs easier to read and to modify.
Be aware, however, that exception handling
usually requires more time and resources
because it requires instantiating a new exception
object, rolling back the call stack, and
propagating the errors to the calling methods.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

When to Throw Exceptions
An exception occurs in a method. If you want

the exception to be processed by its caller, you
should create an exception object and throw it. If
you can handle the exception in the method
where it occurs, there is no need to throw it.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 38

When to Use Exceptions
When should you use the try-catch block in the code? You
should use it to deal with unexpected error conditions. Do
not use it to deal with simple, expected situations. For
example, the following code

try {

 System.out.println(refVar.toString());

}

catch (NullPointerException ex) {

 System.out.println("refVar is null");

}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

When to Use Exceptions
is better to be replaced by

if (refVar != null)

 System.out.println(refVar.toString());

else

 System.out.println("refVar is null");

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

Defining Custom Exception Classes

 Use the exception classes in the API whenever possible.
 Define custom exception classes if the predefined

classes are not sufficient.
 Define custom exception classes by extending Exception

or a subclass of Exception.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

Custom Exception Class Example

InvalidRadiusException

In Listing 13.8, the setRadius method throws an exception if the
radius is negative. Suppose you wish to pass the radius to the handler,
you have to create a custom exception class.

TestCircleWithCustomException

public class InvalidRadiusException extends Exception {
 private double radius;

 /** Construct an exception */
 public InvalidRadiusException(double radius) {
 super("Invalid radius " + radius);
 this.radius = radius;
 }

 /** Return the radius */
 public double getRadius() {
 return radius;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

Assertions
An assertion is a Java statement that enables
you to assert an assumption about your
program. An assertion contains a Boolean
expression that should be true during program
execution. Assertions can be used to assure
program correctness and avoid logic errors.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

Declaring Assertions
An assertion is declared using the new Java keyword
assert in JDK 1.4 as follows:

assert assertion; or
assert assertion : detailMessage;

where assertion is a Boolean expression and
detailMessage is a primitive-type or an Object value.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

Executing Assertions
When an assertion statement is executed, Java evaluates the
assertion. If it is false, an AssertionError will be thrown. The
AssertionError class has a no-arg constructor and seven
overloaded single-argument constructors of type int, long, float,
double, boolean, char, and Object.

For the first assert statement with no detail message, the no-arg
constructor of AssertionError is used. For the second assert
statement with a detail message, an appropriate AssertionError
constructor is used to match the data type of the message. Since
AssertionError is a subclass of Error, when an assertion becomes
false, the program displays a message on the console and exits.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Executing Assertions Example
public class AssertionDemo {
 public static void main(String[] args) {
 int i; int sum = 0;
 for (i = 0; i < 10; i++) {
 sum += i;
 }
 assert i == 10;
 assert sum > 10 && sum < 5 * 10 : "sum is " + sum;
 }
}

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 46

Compiling Programs with Assertions
Since assert is a new Java keyword introduced in
JDK 1.4, you have to compile the program using a
JDK 1.4 compiler. Furthermore, you need to
include the switch –source 1.4 in the compiler
command as follows:

javac –source 1.4 AssertionDemo.java

NOTE: If you use JDK 1.5, there is no need to use
the –source 1.4 option in the command.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 47

Running Programs with Assertions

By default, the assertions are disabled at runtime. To
enable it, use the switch –enableassertions, or –ea for
short, as follows:

 java –ea AssertionDemo

Assertions can be selectively enabled or disabled at class
level or package level. The disable switch is –
disableassertions or –da for short. For example, the
following command enables assertions in package
package1 and disables assertions in class Class1.
java –ea:package1 –da:Class1 AssertionDemo

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 48

Using Exception Handling or Assertions

Assertion should not be used to replace exception
handling. Exception handling deals with unusual
circumstances during program execution. Assertions are
to assure the correctness of the program. Exception
handling addresses robustness and assertion addresses
correctness. Like exception handling, assertions are not
used for normal tests, but for internal consistency and
validity checks. Assertions are checked at runtime and
can be turned on or off at startup time.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 49

Using Exception Handling or Assertions, cont.

Do not use assertions for argument checking in public
methods. Valid arguments that may be passed to a public
method are considered to be part of the method’s
contract. The contract must always be obeyed whether
assertions are enabled or disabled. For example, the
following code in the Circle class should be rewritten
using exception handling.

public void setRadius(double newRadius) {
 assert newRadius >= 0;
 radius = newRadius;
}

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 50

Using Exception Handling or
Assertions, cont.

Use assertions to reaffirm assumptions. This gives you
more confidence to assure correctness of the program. A
common use of assertions is to replace assumptions with
assertions in the code.

Companion
Website

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 51

Using Exception Handling or
Assertions, cont.

Another good use of assertions is place assertions in a
switch statement without a default case. For example,

switch (month) {
 case 1: ... ; break;
 case 2: ... ; break;
 ...
 case 12: ... ; break;
 default: assert false : "Invalid month: " + month
}

Companion
Website

