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CHAPTER 1: INTRODUCTION

Definition, Goals, DS Types
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DS Goals

• Resource Sharing 
• Transparency 
• Openness 
• Scalability 
• Hardware Concepts 

• Multiprocessors 
• Homogenous Multicomputers 

• Heterogeneous Multicomputers
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Hardware Concept

• Multiprocessors 
• Homogenous Multicomputers 
• Heterogeneous Multicomputers
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Definition of a Distributed System (1)

A distributed system is: 

A collection of independent computers 
that appears to its users as a single 

coherent system.
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Definition of a Distributed System (2)

Figure 1-1. A distributed system organised as middleware. The 
middleware layer extends over multiple machines, and offers 

each  application the same interface.
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Transparency in a Distributed System

Figure 1-2. Different forms of transparency in a 
distributed system (ISO, 1995).



Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Scalability Problems

Figure 1-3. Examples of scalability limitations.
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Scalability Problems

Characteristics of decentralised algorithms: 
• No machine has complete information about the 

system state. 
• Machines make decisions based only on local 

information. 
• Failure of one machine does not ruin the algorithm. 
• There is no implicit assumption that a global clock 

exists.
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Pitfalls when Developing  
Distributed Systems

False assumptions made by first time developer: 
• The network is reliable. 
• The network is secure. 
• The network is homogeneous. 
• The topology does not change. 
• Latency is zero. 
• Bandwidth is infinite. 
• Transport cost is zero. 
• There is one administrator.



TYPES OF DS

Distributed Computing System

Distributed Information System

Distributed Pervasive System
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Cluster Computing Systems

Figure 1-6. An example of a cluster computing system.
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Grid Computing Systems

Figure 1-7. A layered architecture for grid computing systems.
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Transaction Processing Systems (1)

Figure 1-8. Example primitives for transactions.
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Transaction Processing Systems (2)

Characteristic properties of transactions: 
• Atomic: To the outside world, the transaction 

happens indivisibly. 
• Consistent: The transaction does not violate 

system invariants. 
• Isolated: Concurrent transactions do not 

interfere with each other. 
• Durable: Once a transaction commits, the 

changes are permanent.
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Transaction Processing Systems (3)

Figure 1-9. A nested transaction.
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Transaction Processing Systems (4)

Figure 1-10. The role of a TP monitor in distributed systems.
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Enterprise Application Integration

Figure 1-11. Middleware as a communication facilitator in 
enterprise application integration.
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Distributed Pervasive Systems

Requirements for pervasive systems 

• Embrace contextual changes. 
• Encourage ad hoc composition. 
• Recognize sharing as the default.



CHAPTER 2: ARCHITECTURE
Architecture Styles
Centralised : Client Server, Multitier
Decentralised: Peer to Peer, Structured Peer to Peer
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Architectural Styles (1)

Important styles of architecture for 
distributed systems 

• Layered architectures 
• Object-based architectures 
• Data-centered architectures 
• Event-based architectures
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Architectural Styles (2)

Figure 2-1. The (a) layered architectural style and …
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Architectural Styles (3)

Figure 2-1. (b) The object-based architectural style.
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Architectural Styles (4)

Figure 2-2. (a) The event-based architectural style and …
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 Architectural Styles (5)  

Figure 2-2. (b) The shared data-space architectural style.
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Application Layering (2)

Figure 2-4. The simplified organization of an Internet search engine 
into three different layers.
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Multitiered Architectures (1)

The simplest organization is to have only two types 
of machines: 

• A client machine containing only the programs 
implementing (part of) the user-interface level 

• A server machine containing the rest,  
– the programs implementing the processing and 

data level
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Multitiered Architectures (2)

Figure 2-5. Alternative client-server organizations (a)–(e).
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Multitiered Architectures (3)

Figure 2-6. An example of a server acting as client.
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Structured Peer-to-Peer Architectures (1)

Figure 2-7. The mapping of 
data items onto nodes 

in Chord.
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Structured Peer-to-Peer Architectures (2)

Figure 2-8. (a) The mapping 
of data items onto nodes 

in CAN. 
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Structured Peer-to-Peer Architectures (3)

Figure 2-8. (b) Splitting a 
region when a node 

joins.
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Superpeers

Figure 2-12. A hierarchical organization of nodes into a  
superpeer network.
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General Approaches to Adaptive Software

Three basic approaches to adaptive software: 
• Separation of concerns 
• Computational reflection 
• Component-based design



CHAPTER 3: PROCESSES
Processes, Threads, Processors
Virtualisation 
Client/Server



Processes 3.1 Threads

Introduction to Threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies stopping
the current execution and saving all the data needed to continue the
execution at a later stage.

Process: A software processor in whose context one or more threads may be
executed. Executing a thread, means executing a series of instructions
in the context of that thread.
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Processor 1
1 2 …. n1

Processor 2
1 2 …. n2

.

.

.
Processor n3



Processes 3.1 Threads

Context Switching

Contexts
Processor context: The minimal collection of values stored in the
registers of a processor used for the execution of a series of
instructions (e.g., stack pointer, addressing registers, program
counter).
Thread context: The minimal collection of values stored in
registers and memory, used for the execution of a series of
instructions (i.e., processor context, state).
Process context: The minimal collection of values stored in
registers and memory, used for the execution of a thread (i.e.,
thread context, but now also at least MMU register values).
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Processes 3.1 Threads

Context Switching

Observations
1 Threads share the same address space. Thread context switching

can be done entirely independent of the operating system.
2 Process switching is generally more expensive as it involves

getting the OS in the loop, i.e., trapping to the kernel.
3 Creating and destroying threads is much cheaper than doing so

for processes.
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Processes 3.2 Virtualizaton

Virtualization

Observation
Virtualization is becoming increasingly important:

Hardware changes faster than software
Ease of portability and code migration
Isolation of failing or attacked components

Hardware/software system A

Interface A

Program

 

Interface A

Program

 

Implementation of  
mimicking A on B

Hardware/software system B

Interface B
 

(a) (b)
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Processes 3.2 Virtualizaton

Architecture of VMs

Observation
Virtualization can take place at very different levels, strongly depending
on the interfaces as offered by various systems components:

Privileged 
instructions

System calls

Library functions

General 
instructions

Hardware

Operating system

Library

Application
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Processes 3.2 Virtualizaton

Process VMs versus VM Monitors

Runtime system
Runtime system

Hardware

Operating system

Hardware

Operating system
Operating system

Operating system

Applications

Virtual machine monitor

(a) (b)

Runtime system

Application

Process VM: A program is compiled to intermediate (portable)
code, which is then executed by a runtime system (Example: Java
VM).
VM Monitor: A separate software layer mimics the instruction set
of hardware ) a complete operating system and its applications
can be supported (Example: VMware, VirtualBox).
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Processes 3.3 Clients

Client-Side Software

Generally tailored for distribution transparency

access transparency: client-side stubs for RPCs
location/migration transparency: let client-side software keep track of
actual location
replication transparency: multiple invocations handled by client stub:

 
Client machine

Replicated request

Server 1 Server 2 Server 3

Client side handles 
request replication

Client 
appl.

Server 
appl

Server 
appl

Server 
appl

failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).
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Processes 3.4 Servers

Servers: General organization

Basic model
A server is a process that waits for incoming service requests at a
specific transport address. In practice, there is a one-to-one mapping
between a port and a service.

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet

24 any private mail system
smtp 25 Simple Mail Transfer
login 49 Login Host Protocol
sunrpc 111 SUN RPC (portmapper)
courier 530 Xerox RPC
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Processes 3.4 Servers

Servers: General organization

Type of servers
Superservers: Servers that listen to several ports, i.e., provide several

independent services. In practice, when a service request comes
in, they start a subprocess to handle the request (UNIX inetd)

Iterative vs. concurrent servers: Iterative servers can handle only one
client at a time, in contrast to concurrent servers
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Processes 3.4 Servers

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

Don’t record whether a file has been opened (simply close it again after
access)
Don’t promise to invalidate a client’s cache
Don’t keep track of your clients

Consequences

Clients and servers are completely independent
State inconsistencies due to client or server crashes are reduced
Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)
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Processes 3.4 Servers

Servers and state

Stateful servers
Keeps track of the status of its clients:

Record that a file has been opened, so that prefetching can be
done
Knows which data a client has cached, and allows clients to keep
local copies of shared data

Observation
The performance of stateful servers can be extremely high, provided
clients are allowed to keep local copies. As it turns out, reliability is not
a major problem.

20 / 34



Processes 3.4 Servers

Server clusters: three different tiers

Logical switch 
(possibly multiple)

Application/compute servers Distributed 
file/database 

system

Client requests

Dispatched 
request

First tier Second tier Third tier

Crucial element
The first tier is generally responsible for passing requests to an
appropriate server.
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Processes 3.4 Servers

Request Handling

Observation
Having the first tier handle all communication from/to the cluster may
lead to a bottleneck.

Solution
Various, but one popular one is TCP-handoff

Switch Client

  Server

  Server

Request Request
(handed off)

Response
Logically a
single TCP
connection
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Processes 3.4 Servers

Distributed servers with stable IPv6 address(es)

APP

TCP

MIPv6

IP

Believes�it�is
connected�to�X

Believes�location
of�X�is�CA1

Client�1

APP

TCP

MIPv6

IP

Believes�it�is
connected�to�X

Believes�location
of�X�is�CA2

Client�2

Server�1

Server�2

Internet

Knows�that�Cient�1
believes�it�is�X

Knows�that�Cient�2
believes�it�is�X

Distributed�server�XBelieves�server
has�address�HA

Believes�server
has�address�HA

Access�point
with�address�CA1

Access�point
with�address�CA2
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Processes 3.4 Servers

Distributed servers: addressing details

Essence
Clients having MobileIPv6 can transparently set up a connection to any
peer:

Client C sets up connection to IPv6 home address HA
HA is maintained by a (network-level) home agent, which hands
off the connection to a registered care-of address CA.
C can then apply route optimization by directly forwarding packets
to address CA (i.e., without the handoff through the home agent).

Collaborative CDNs
Origin server maintains a home address, but hands off connections to
address of collaborating peer ) Origin server and peer appear as one
server.
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CHAPTER 4: COMMUNICATION
Communication Types, RPC, MPI, Message Oriented, Stream 
Communication



Communication 4.1 Layered Protocols

Layered Protocols

Low-level layers
Transport layer
Application layer
Middleware layer
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Communication 4.1 Layered Protocols

Basic networking model

Physical

Data link

Network

Transport

Session

Application

Presentation

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

7

6

Drawbacks
Focus on message-passing only
Often unneeded or unwanted functionality
Violates access transparency
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Communication 4.1 Layered Protocols

Low-level layers

Recap
Physical layer: contains the specification and implementation of
bits, and their transmission between sender and receiver
Data link layer: prescribes the transmission of a series of bits into
a frame to allow for error and flow control
Network layer: describes how packets in a network of computers
are to be routed.

Observation
For many distributed systems, the lowest-level interface is that of the
network layer.
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Communication 4.1 Layered Protocols

Transport Layer

Important
The transport layer provides the actual communication facilities for
most distributed systems.

Standard Internet protocols
TCP: connection-oriented, reliable, stream-oriented
communication
UDP: unreliable (best-effort) datagram communication

Note
IP multicasting is often considered a standard available service (which
may be dangerous to assume).

5 / 55



Communication 4.1 Layered Protocols

Middleware Layer

Observation
Middleware is invented to provide common services and protocols that
can be used by many different applications

A rich set of communication protocols
(Un)marshaling of data, necessary for integrated systems
Naming protocols, to allow easy sharing of resources
Security protocols for secure communication
Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols...
such as?
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Communication 4.1 Layered Protocols

Types of communication

Client

Server

 

Synchronize after 
processing by server

Synchronize at  
request delivery

Synchronize at 
request submission

Request

Reply

Storage 
facility

Transmission 
interrupt

Time

Distinguish

Transient versus persistent communication
Asynchrounous versus synchronous communication

7 / 55



Communication 4.1 Layered Protocols

Types of communication

Client

Server

 

Synchronize after 
processing by server

Synchronize at  
request delivery

Synchronize at 
request submission

Request

Reply

Storage 
facility

Transmission 
interrupt

Time

Transient versus persistent

Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.
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Communication 4.1 Layered Protocols

Types of communication

Client

Server

 

Synchronize after 
processing by server

Synchronize at  
request delivery

Synchronize at 
request submission

Request

Reply

Storage 
facility

Transmission 
interrupt

Time

Places for synchronization

At request submission
At request delivery
After request processing
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Communication 4.1 Layered Protocols

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

Client and server have to be active at time of commun.
Client issues request and blocks until it receives reply
Server essentially waits only for incoming requests, and
subsequently processes them

Drawbacks synchronous communication
Client cannot do any other work while waiting for reply
Failures have to be handled immediately: the client is waiting
The model may simply not be appropriate (mail, news)
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Communication 4.1 Layered Protocols

Messaging

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

Processes send each other messages, which are queued
Sender need not wait for immediate reply, but can do other things
Middleware often ensures fault tolerance
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Communication 4.2 Remote Procedure Call

Remote Procedure Call (RPC)

Basic RPC operation
Parameter passing
Variations
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Communication 4.2 Remote Procedure Call

Basic RPC operation

Observations
Application developers are familiar with simple procedure model
Well-engineered procedures operate in isolation (black box)
There is no fundamental reason not to execute procedures on
separate machine

Conclusion
Communication between caller &
callee can be hidden by using
procedure-call mechanism.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply
Server

Time

Wait for result
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Communication 4.2 Remote Procedure Call

Basic RPC operation

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int:     val(i)
int:     val(j)

proc: "add"
int:     val(i)
int:     val(j)

proc: "add"
int:     val(i)
int:     val(j)

1 Client procedure calls client stub.
2 Stub builds message; calls local OS.
3 OS sends message to remote OS.
4 Remote OS gives message to stub.
5 Stub unpacks parameters and calls

server.

6 Server makes local call and returns
result to stub.

7 Stub builds message; calls OS.
8 OS sends message to client’s OS.
9 Client’s OS gives message to stub.
10 Client stub unpacks result and

returns to the client.
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Communication 4.2 Remote Procedure Call

RPC: Parameter passing

Parameter marshaling
There’s more than just wrapping parameters into a message:

Client and server machines may have different data
representations (think of byte ordering)
Wrapping a parameter means transforming a value into a
sequence of bytes
Client and server have to agree on the same encoding:

How are basic data values represented (integers, floats, characters)
How are complex data values represented (arrays, unions)

Client and server need to properly interpret messages,
transforming them into machine-dependent representations.
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Communication 4.2 Remote Procedure Call

RPC: Parameter passing

RPC parameter passing: some assumptions

Copy in/copy out semantics: while procedure is executed, nothing can
be assumed about parameter values.
All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

Observation
A remote reference mechanism enhances access transparency:

Remote reference offers unified access to remote data
Remote references can be passed as parameter in RPCs
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Communication 4.2 Remote Procedure Call

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client
continue without waiting for an answer from the server.

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)
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Communication 4.2 Remote Procedure Call

Deferred synchronous RPCs

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

Variation
Client can also do a (non)blocking poll at the server to see whether
results are available.
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Communication 4.3 Message-Oriented Communication

Message-Oriented Communication

Transient Messaging
Message-Queuing System
Message Brokers
Example: IBM Websphere
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Communication 4.3 Message-Oriented Communication

Transient messaging: sockets

Berkeley socket interface

SOCKET Create a new communication endpoint
BIND Attach a local address to a socket
LISTEN Announce willingness to accept N connections
ACCEPT Block until request to establish a connection
CONNECT Attempt to establish a connection
SEND Send data over a connection
RECEIVE Receive data over a connection
CLOSE Release the connection
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Communication 4.3 Message-Oriented Communication

Transient messaging: sockets

connect

socket

socket

bind listen read

read

write

write

accept close

close

Server

Client

Synchronization point Communication

23 / 55



Begins a nonblocking send

Performs a blocking send

Blocking synchronous send

Basic send with user-provided buffering

Starts a nonblocking synchronous send

Begins a nonblocking receive

Blocking receive for a message

Message Passing Interface



Communication 4.3 Message-Oriented Communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of
middleware-level queues. Queues correspond to buffers at
communication servers.

PUT Append a message to a specified queue
GET Block until the specified queue is nonempty, and re-

move the first message
POLL Check a specified queue for messages, and remove

the first. Never block
NOTIFY Install a handler to be called when a message is put

into the specified queue
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Communication 4.3 Message-Oriented Communication

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data
representation)

Message broker
Centralized component that takes care of application heterogeneity in
an MQ system:

Transforms incoming messages to target format
Very often acts as an application gateway
May provide subject-based routing capabilities ) Enterprise
Application Integration
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Communication 4.3 Message-Oriented Communication

Message broker

Queuing
layer

Broker
program

 
Repository with 
conversion rules 
and programsSource client Destination client

OS OSOS

Message broker

Network
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Communication 4.4 Stream-Oriented Communication

Stream-oriented communication

Support for continuous media
Streams in distributed systems
Stream management
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Communication 4.4 Stream-Oriented Communication

Continuous media

Observation
All communication facilities discussed so far are essentially based on a
discrete, that is time-independent exchange of information

Continuous media
Characterized by the fact that values are time dependent:

Audio
Video
Animations
Sensor data (temperature, pressure, etc.)
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Communication 4.4 Stream-Oriented Communication

Continuous media

Transmission modes
Different timing guarantees with respect to data transfer:

Asynchronous: no restrictions with respect to when data is to be
delivered
Synchronous: define a maximum end-to-end delay for individual
data packets
Isochronous: define a maximum and minimum end-to-end delay
(jitter is bounded)
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Communication 4.4 Stream-Oriented Communication

Stream

Definition
A (continuous) data stream is a connection-oriented communication
facility that supports isochronous data transmission.

Some common stream characteristics
Streams are unidirectional
There is generally a single source, and one or more sinks
Often, either the sink and/or source is a wrapper around hardware
(e.g., camera, CD device, TV monitor)
Simple stream: a single flow of data, e.g., audio or video
Complex stream: multiple data flows, e.g., stereo audio or
combination audio/video
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Communication 4.4 Stream-Oriented Communication

Streams and QoS

Essence
Streams are all about timely delivery of data. How do you specify this
Quality of Service (QoS)? Basics:

The required bit rate at which data should be transported.
The maximum delay until a session has been set up (i.e., when an
application can start sending data).
The maximum end-to-end delay (i.e., how long it will take until a
data unit makes it to a recipient).
The maximum delay variance, or jitter.
The maximum round-trip delay.
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

Observation
There are various network-level tools, such as differentiated services
by which certain packets can be prioritized.

Also
Use buffers to reduce jitter:

0 5

1 2 3 4 5 6 7 8

10
Time (sec)

Time in buffer

15 20

Gap in playback

Packet removed from buffer

1 2 3 4 5 6 7 8Packet arrives at buffer

1 2 3 4 5 6 7 8Packet departs source
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

Problem
How to reduce the effects of packet loss (when multiple samples are in
a single packet)?
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Communication 4.4 Stream-Oriented Communication

Enforcing QoS

1 2 3 4 5 6 7 8 9 10 11 12

1 5 9 13 2 6 10 14 3 7 11 15

13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 8 12 16

Lost packet

Lost packet

Gap of lost frames

Lost frames

(a)

(b)

 Sent

Delivered

Sent

Delivered
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Communication 4.4 Stream-Oriented Communication

Stream synchronization

Problem
Given a complex stream, how do you keep the different substreams in
synch?

Example
Think of playing out two channels, that together form stereo sound.
Difference should be less than 20–30 µsec!
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Communication 4.4 Stream-Oriented Communication

Stream synchronization

Network

Incoming stream

Application

Receiver's machine

Procedure that reads
two audio data units for
each video data unit

OS

Alternative
Multiplex all substreams into a single stream, and demultiplex at the
receiver. Synchronization is handled at multiplexing/demultiplexing
point (MPEG).
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CHAPTER 5: NAMING
Names, Flat Names, Structured, Attribute Based



Naming 5.1 Naming Entities

Naming

Essence
Names are used to denote entities in a distributed system. To operate
on an entity, we need to access it at an access point. Access points
are entities that are named by means of an address.

Note
A location-independent name for an entity E , is independent from the
addresses of the access points offered by E .
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Naming 5.1 Naming Entities

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure
names can be used for comparison only.

Identifier
A name having the following properties:

P1: Each identifier refers to at most one entity
P2: Each entity is referred to by at most one identifier
P3: An identifier always refers to the same entity (prohibits reusing
an identifier)

Observation
An identifier need not necessarily be a pure name, i.e., it may have
content.
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Naming 5.2 Flat Naming

Flat naming

Problem
Given an essentially unstructured name (e.g., an identifier), how can
we locate its associated access point?

Simple solutions (broadcasting)
Home-based approaches
Distributed Hash Tables (structured P2P)
Hierarchical location service
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Naming 5.2 Flat Naming

Simple solutions

Broadcasting
Broadcast the ID, requesting the entity to return its current address.

Can never scale beyond local-area networks
Requires all processes to listen to incoming location requests

Forwarding pointers
When an entity moves, it leaves behind a pointer to its next location

Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers
Update a client’s reference when present location is found
Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

Long chains are not fault tolerant
Increased network latency at dereferencing

6 / 34
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Naming 5.2 Flat Naming

Home-based approaches

Single-tiered scheme
Let a home keep track of where the entity is:

Entity’s home address registered at a naming service
The home registers the foreign address of the entity
Client contacts the home first, and then continues with foreign
location

7 / 34
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Naming 5.2 Flat Naming

Home-based approaches

Host's present location

Client's
location

1. Send packet to host at its home

2. Return address
of current location

3. Tunnel packet to
current location

4. Send successive packets
to current location

Host's home
location
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Naming 5.2 Flat Naming

Home-based approaches

Two-tiered scheme
Keep track of visiting entities:

Check local visitor register first
Fall back to home location if local lookup fails

Problems with home-based approaches
Home address has to be supported for entity’s lifetime
Home address is fixed ) unnecessary burden when the entity
permanently moves
Poor geographical scalability (entity may be next to client)

Question
How can we solve the “permanent move” problem?
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Naming 5.2 Flat Naming

Distributed Hash Tables (DHT)

Chord
Consider the organization of many nodes into a logical ring

Each node is assigned a random m-bit identifier.
Every entity is assigned a unique m-bit key.
Entity with key k falls under jurisdiction of node with smallest
id � k (called its successor).

Nonsolution
Let node id keep track of succ(id) and start linear search along the
ring.
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Naming 5.2 Flat Naming

DHTs: Finger tables

Principle
Each node p maintains a finger table FTp[] with at most m entries:

FTp[i] = succ(p+2i�1)

Note: FTp[i] points to the first node succeeding p by at least 2i�1.
To look up a key k , node p forwards the request to node with index
j satisfying

q = FTp[j] k < FTp[j +1]

If p < k < FTp[1], the request is also forwarded to FTp[1]
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Naming 5.2 Flat Naming

DHTs: Finger tables

0 1
2

3
4

5

6

7

8

9

10

11

12
13

14
151617

18
19

20

21

22

23

24

25

26

27

28
29

30
31

1 4
2 4
3 9
4 9
5 18

1 9
2 9
3 9
4 14
5 20

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 18
2 18
3 18
4 28
5 1

1 20
2 20
3 28
4 28
5 4

1 21
2 28
3 28
4 28
5 4

1 28
2 28
3 28
4 1
5 9

1 1
2 1
3 1
4 4
5 14

Resolve k = 26 
from node 1

Resolve k = 12 
from node 28

i suc
c(p

 + 2 
   )

 i-1

Finger table

Actual node
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Naming 5.2 Flat Naming

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node k and node succ(k +1) may be
very far apart.

Topology-aware node assignment: When assigning an ID to a node, make
sure that nodes close in the ID space are also close in the network. Can
be very difficult.

Proximity routing: Maintain more than one possible successor, and forward to
the closest.
Example: in Chord FTp[i] points to first node in
INT = [p+2i�1,p+2i �1]. Node p can also store pointers to other
nodes in INT .

Proximity neighbor selection: When there is a choice of selecting who your
neighbor will be (not in Chord), pick the closest one.
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Naming 5.2 Flat Naming

Hierarchical Location Services (HLS)

Basic idea
Build a large-scale search tree for which the underlying network is
divided into hierarchical domains. Each domain is represented by a
separate directory node.

A leaf domain, contained in S

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
(S is contained in T)

Top-level
domain T

The root directory
node dir(T)
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Naming 5.2 Flat Naming

HLS: Tree organization

Invariants

Address of entity E is stored in a leaf or intermediate node
Intermediate nodes contain a pointer to a child iff the subtree rooted at
the child stores an address of the entity
The root knows about all entities

Domain D2Domain D1

M

Field with no data

Location record
with only one field,
containing an address

Field for domain
dom(N) with
pointer to N

Location record
for E at node M

N
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Naming 5.2 Flat Naming

HLS: Lookup operation

Basic principles

Start lookup at local leaf node
Node knows about E ) follow downward pointer, else go up
Upward lookup always stops at root

Domain D

M

Node has no
record for E, so
that request is
forwarded to
parent

Look-up
request

Node knows
about E, so request
is forwarded to child

16 / 34



Naming 5.2 Flat Naming

HLS: Insert operation

Domain�D

M

Node�has�no
record�for�E,
so�request�is
forwarded
to�parent

Insert
request

Node�knows
about�E,�so�request
is�no�longer�forwarded

(a)

M

Node�creates�record
and�stores�pointer

Node�creates
record�and
stores�address

(b)
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Naming 5.3 Structured Naming

Name space

Essence
A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

elke

.twmrc mbox

steen

home keys

"/home/steen/mbox"

"/keys"
"/home/steen/keys"

Data stored in n1

Directory node

Leaf node

n2: "elke"
n3: "max"
n4: "steen"

max

keys

n1

n2

n5

n0

n3 n4

Note
A directory node contains a (directory) table of (edge label, node identifier)
pairs.
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Naming 5.3 Structured Naming

Name space

Observation
We can easily store all kinds of attributes in a node, describing aspects
of the entity the node represents:

Type of the entity
An identifier for that entity
Address of the entity’s location
Nicknames
...

Note
Directory nodes can also have attributes, besides just storing a
directory table with (edge label, node identifier) pairs.
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Naming 5.3 Structured Naming

Name resolution

Problem
To resolve a name we need a directory node. How do we actually find that
(initial) node?

Closure mechanism
The mechanism to select the implicit context from which to start name
resolution:

www.cs.vu.nl: start at a DNS name server
/home/steen/mbox: start at the local NFS file server (possible recursive
search)
0031204447784: dial a phone number
130.37.24.8: route to the VU’s Web server

Question
Why are closure mechanisms always implicit?
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Naming 5.3 Structured Naming

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations
Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.
Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.
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Naming 5.3 Structured Naming

Name-space implementation

org net jp us nl

sun

eng

yale

eng

ai linda

robot

acm

jack jill

ieee

keio

cs

cs

pc24

co

nec

csl

oce vu

cs

ftp www

ac

com edu gov mil

pub

globe

index.txt

Mana-
gerial
layer

Adminis-
trational

layer

Global
layer

Zone
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Naming 5.3 Structured Naming

Name-space implementation

Item Global Administrational Managerial
1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate
4 Lazy Immediate Immediate
5 Many None or few None
6 Yes Yes Sometimes
1: Geographical scale 4: Update propagation
2: # Nodes 5: # Replicas
3: Responsiveness 6: Client-side caching?
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Naming 5.3 Structured Naming

Iterative name resolution

1 resolve(dir,[name1,...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir,name1) ! dir1, returning the identification

(address) of Server1, which stores dir1.
3 Client sends resolve(dir1,[name2,...,nameK]) to Server1, etc.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. <nl,vu,cs,ftp>

2. #<nl>, <vu,cs,ftp>

3. <vu,cs,ftp>

4. #<vu>, <cs,ftp>

5. <cs,ftp>

6. #<cs>, <ftp>

ftp

cs

vu

nl

Nodes are
managed by
the same server

7. <ftp>

8. #<ftp>

#<nl,vu,cs,ftp><nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Recursive name resolution

1 resolve(dir,[name1,...,nameK]) sent to Server0 responsible for dir
2 Server0 resolves resolve(dir,name1) ! dir1, and sends

resolve(dir1,[name2,...,nameK]) to Server1, which stores dir1.
3 Server0 waits for result from Server1, and returns it to client.

Client's
name
resolver

Root
name server

Name server
nl node

Name server
vu node

Name server
cs node

1. <nl,vu,cs,ftp>

2. <vu,cs,ftp>

7. #<vu,cs,ftp>
3. <cs,ftp>

6. #<cs,ftp>
4. <ftp>

5. #<ftp>

#<nl,vu,cs,ftp>

8. #<nl,vu,cs,ftp>

<nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Caching in recursive name resolution

Server Should Looks up Passes to Receives Returns
for node resolve child and caches to requester

cs <ftp> #<ftp> — — #<ftp>
vu <cs,ftp> #<cs> <ftp> #<ftp> #<cs>

#<cs, ftp>
nl <vu,cs,ftp> #<vu> <cs,ftp> #<cs> #<vu>

#<cs,ftp> #<vu,cs>
#<vu,cs,ftp>

root <nl,vu,cs,ftp> #<nl> <vu,cs,ftp> #<vu> #<nl>
#<vu,cs> #<nl,vu>

#<vu,cs,ftp> #<nl,vu,cs>
#<nl,vu,cs,ftp>
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Naming 5.3 Structured Naming

Scalability issues

Size scalability
We need to ensure that servers can handle a large number of requests per
time unit ) high-level servers are in big trouble.

Solution
Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping
nodes to multiple servers, and start name resolution at the nearest server.

Observation
An important attribute of many nodes is the address where the represented
entity can be contacted. Replicating nodes makes large-scale traditional
name servers unsuitable for locating mobile entities.
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Naming 5.3 Structured Naming

Scalability issues

Geographical scalability
We need to ensure that the name resolution process scales across large
geographical distances.

Name server
nl node

Name server
vu node

Name server
cs node

Client

Long-distance communication

Recursive name resolution

Iterative name resolution

I1

I2

I3

R1

R2

R3

Problem
By mapping nodes to servers that can be located anywhere, we introduce an
implicit location dependency.
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CHAPTER 6: SYNCHRONISATION
Physical Clocks, Logical Clocks, Vector Clocks



Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution
Universal Coordinated Time (UTC):

Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50
cesium-clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short wave radio and satellite. Satellites can give
an accuracy of about ±0.5 ms.
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Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Suppose we have a distributed system with a UTC-receiver
somewhere in it ) we still have to distribute its time to each machine.

Basic principle
Every machine has a timer that generates an interrupt H times per
second.
There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by Cp(t), where t is UTC time.
Ideally, we have that for each machine p, Cp(t) = t , or, in other
words, dC/dt = 1.
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Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Fa
st 

clo
ck

Perf
ec

t c
loc

k

Slow clock

Clock time, C
dC
dt > 1

dC
dt = 1

dC
dt < 1

UTC, t

In practice: 1�r  dC
dt  1+r.

Goal
Never let two clocks in any system differ by more than d time units )
synchronize at least every d/(2r) seconds.
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Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle I
Every machine asks a time server for the accurate time at least once
every d/(2r) seconds (Network Time Protocol).

Note
Okay, but you need an accurate measure of round trip delay, including
interrupt handling and processing incoming messages.
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Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle II
Let the time server scan all machines periodically, calculate an
average, and inform each machine how it should adjust its time relative
to its present time.

Note
Okay, you’ll probably get every machine in sync. You don’t even need
to propagate UTC time.

Fundamental
You’ll have to take into account that setting the time back is never
allowed ) smooth adjustments.
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Distributed Algorithms 6.2 Logical Clocks

The Happened-before relationship

Problem
We first need to introduce a notion of ordering before we can order anything.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a ! b.
If a is the sending of a message, and b is the receipt of that message,
then a ! b
If a ! b and b ! c, then a ! c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.
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Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Solution
Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a ! b, then we
demand that C(a)< C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a)< C(b).

Problem
How to attach a timestamp to an event when there’s no global clock )
maintain a consistent set of logical clocks, one per process.
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Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Solution
Each process Pi maintains a local counter Ci and adjusts this counter
according to the following rules:

1: For any two successive events that take place within Pi , Ci is
incremented by 1.

2: Each time a message m is sent by process Pi , the message receives a
timestamp ts(m) = Ci .

3: Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes

Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.
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Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

0 
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Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

Note
Adjustments take place in the middleware layer

Application layer

Middleware layer

Network layer

Message is delivered to application

Adjust local clock

Message is received

Adjust local clock 
and timestamp message

Application sends message

Middleware sends message
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Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a)< C(b) that a causally
preceded b

0 
6 

12 
18 
24 
30 
36 
42 
48 
70 
76

0 
8 
16 
24 
32 
40 
48 
61 
69 
77 
85

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100

m1
m2

m3

m5

m4

P1 P2 P3

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally precedes b.

18 / 38



Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Solution

Each process Pi has an array VCi [1..n], where VCi [j] denotes the
number of events that process Pi knows have taken place at process Pj .
When Pi sends a message m, it adds 1 to VCi [i], and sends VCi along
with m as vector timestamp vt(m). Result: upon arrival, recipient knows
Pi ’s timestamp.
When a process Pj delivers a message m that it received from Pi with
vector timestamp ts(m), it

(1) updates each VCj [k ] to max{VCj [k ], ts(m)[k ]}
(2) increments VCj [j] by 1.

Question
What does VCi [j] = k mean in terms of messages sent and received?
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Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts”
VCj when receiving a message (i.e., effectively does not change
VCj [j]).

Pj postpones delivery of m until:

ts(m)[i] = VCj [i]+1.
ts(m)[k ] VCj [k ] for k 6= i .
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Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Example

P0

P1

P2

 VC  = (0,0,0)2 VC  = (1,0,0)2

VC  = (1,1,0)1

VC  = (1,0,0)0 VC  = (1,1,0)0

VC  = (1,1,0)2

m

m*

Example
Take VC2 = [0,2,2], ts(m) = [1,3,0] from P0. What information does P2
have, and what will it do when receiving m (from P0)?
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CHAPTER 7: CONSISTENCY & 
REPLICATION
Week & Strict Consistency
Data Centric Consistency
Client Centric Consistency



Consistency & Replication 7.1 Introduction

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting

operations are done in the the same order everywhere

Conflicting operations

From the world of transactions:

Read–write conflict: a read operation and a write operation act

concurrently

Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly

operation, downgrading scalability Solution: weaken consistency

requirements so that hopefully global synchronization can be avoided
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Consistency & Replication 7.2 Data-Centric Consistency Models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the

data store specifies precisely what the results of read and write operations

are in the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy
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Consistency & Replication 7.2 Data-Centric Consistency Models

Continuous Consistency

Observation
We can actually talk a about a degree of consistency:

replicas may differ in their numerical value

replicas may differ in their relative staleness

there may be differences with respect to (number and order) of

performed update operations

Conit
Consistency unit ) specifies the data unit over which consistency is to

be measured.
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Consistency & Replication 7.2 Data-Centric Consistency Models

Example: Conit

<  5, B> x := x + 2 [ x = 2 ]

[ y = 2 ]

[ y = 3 ]

[ x = 6 ]

<  8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result
 

x = 6; y = 3
Conit

Replica A

Vector clock A = (15, 5) 
Order deviation  = 3 
Numerical deviation  = (1, 5)

<  5, B> x := x + 2 [ x = 2 ]

[ y = 5 ]<10, B> y := y + 5

Operation Result
 

x = 2; y = 5
Conit

Replica B

Vector clock B = (0, 11) 
Order deviation  = 2 
Numerical deviation  = (3, 6)

Conit (contains the variables x and y )

Each replica has a vector clock: ([known] time @ A, [known] time @ B)

B sends A operation [h5,Bi: x := x +2]; A has made this operation

permanent (cannot be rolled back)
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Consistency & Replication 7.2 Data-Centric Consistency Models

Example: Conit

<  5, B> x := x + 2 [ x = 2 ]

[ y = 2 ]

[ y = 3 ]

[ x = 6 ]

<  8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result
 

x = 6; y = 3
Conit

Replica A

Vector clock A = (15, 5) 
Order deviation  = 3 
Numerical deviation  = (1, 5)

<  5, B> x := x + 2 [ x = 2 ]

[ y = 5 ]<10, B> y := y + 5

Operation Result
 

x = 2; y = 5
Conit

Replica B

Vector clock B = (0, 11) 
Order deviation  = 2 
Numerical deviation  = (3, 6)

Conit (contains the variables x and y )

A has three pending operations ) order deviation = 3

A has missed one operation from B, yielding a max diff of 5 units ) (1,5)
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Consistency & Replication 7.2 Data-Centric Consistency Models

Sequential consistency

Definition
The result of any execution is the same as if the operations of all

processes were executed in some sequential order, and the operations

of each individual process appear in this sequence in the order

specified by its program.

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

(a)

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(b)
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Consistency & Replication 7.2 Data-Centric Consistency Models

Causal consistency

Definition
Writes that are potentially causally related must be seen by all

processes in the same order. Concurrent writes may be seen in a

different order by different processes.

P1:

P1:

W(x)a

W(x)a

R(x)aP2:

P2:

P3:

P3:

P4:

P4:

W(x)b

W(x)b

R(x)a

R(x)a

R(x)a

R(x)a

R(x)b

R(x)b

R(x)b

R(x)b

(a)

(b)
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Consistency & Replication 7.2 Data-Centric Consistency Models

Grouping operations

Definition
Accesses to synchronization variables are sequentially consistent.

No access to a synchronization variable is allowed to be

performed until all previous writes have completed everywhere.

No data access is allowed to be performed until all previous

accesses to synchronization variables have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are

immediately known to other processes. You just want the effect of the

series itself to be known.
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Consistency & Replication 7.2 Data-Centric Consistency Models

Grouping operations

Acq(Lx)  W(x)a  Acq(Ly)  W(y)b  Rel(Lx)  Rel(Ly)

Acq(Lx)  R(x)a         R(y) NIL

Acq(Ly)  R(y)b

P1:
P2:

P3:

Observation
Weak consistency implies that we need to lock and unlock data

(implicitly or not).

Question
What would be a convenient way of making this consistency more or

less transparent to programmers?
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Consistency & Replication 7.3 Client-Centric Consistency Models

Client-centric consistency models

Overview
System model

Monotonic reads

Monotonic writes

Read-your-writes

Write-follows-reads

Goal
Show how we can perhaps avoid systemwide consistency, by

concentrating on what specific clients want, instead of what should be

maintained by servers.
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Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency for mobile users

Example
Consider a distributed database to which you have access through

your notebook. Assume your notebook acts as a front end to the

database.

At location A you access the database doing reads and updates.

At location B you continue your work, but unless you access the

same server as the one at location A, you may detect

inconsistencies:

your updates at A may not have yet been propagated to B

you may be reading newer entries than the ones available at A

your updates at B may eventually conflict with those at A
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Consistency & Replication 7.3 Client-Centric Consistency Models

Consistency for mobile users

Note
The only thing you really want is that the entries you updated and/or

read at A, are in B the way you left them in A. In that case, the

database will appear to be consistent to you.
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Consistency & Replication 7.3 Client-Centric Consistency Models

Basic architecture

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database
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Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic reads

Definition
If a process reads the value of a data item x , any successive read

operation on x by that process will always return that same or a more

recent value.

WS(    )x 1 R(    )x1

WS(    ;    )x 1 x 2 R(    )x2

L1:

L2:

WS(    )x 1

WS(    )x 2

R(    )x1

R(    )x2

L1:

L2:
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Consistency & Replication 7.3 Client-Centric Consistency Models

Client-centric consistency: notation

Notation
WS(x

i

[t ]) is the set of write operations (at L

i

) that lead to version

x

i

of x (at time t)

WS(x
i

[t
1

];x
j

[t
2

]) indicates that it is known that WS(x
i

[t
1

]) is part of

WS(x
j

[t
2

]).
Note: Parameter t is omitted from figures.
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Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic reads

Example
Automatically reading your personal calendar updates from different

servers. Monotonic Reads guarantees that the user sees all updates,

no matter from which server the automatic reading takes place.

Example
Reading (not modifying) incoming mail while you are on the move.

Each time you connect to a different e-mail server, that server fetches

(at least) all the updates from the server you previously visited.

18 / 41



Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic writes

Definition
A write operation by a process on a data item x is completed before

any successive write operation on x by the same process.

L1:

L2: x2

W(    )x1

W(    )

x2

W(    )x1

W(    )

L1:

L2:

WS(    )x 1
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Consistency & Replication 7.3 Client-Centric Consistency Models

Monotonic writes

Example
Updating a program at server S

2

, and ensuring that all components on

which compilation and linking depends, are also placed at S

2

.

Example
Maintaining versions of replicated files in the correct order everywhere

(propagate the previous version to the server where the newest

version is installed).
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Consistency & Replication 7.3 Client-Centric Consistency Models

Read your writes

Definition
The effect of a write operation by a process on data item x , will always

be seen by a successive read operation on x by the same process.

L1:

L2:

W(    )x1

W(    )x1L1:

L2:

WS(    ;    )x 1 x 2 R(    )x2

R(    )x2WS(    )x 2

Example
Updating your Web page

and guaranteeing that your

Web browser shows the

newest version instead of its

cached copy.
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Consistency & Replication 7.3 Client-Centric Consistency Models

Writes follow reads

Definition
A write operation by a process on a data item x following a previous

read operation on x by the same process, is guaranteed to take place

on the same or a more recent value of x that was read.

WS(    )x 1 R(    )x1

WS(    ;    )x 1 x 2

L1:

L2:

WS(    )x 1

WS(    )x 2

R(    )x1L1:

L2:

W(    )x2

W(    )x3

Example
See reactions to posted

articles only if you have the

original posting (a read

“pulls in” the corresponding

write operation).
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CHAPTER 8: FAULT TOLERANCE
Failure Models
Failure Masking & Replication
Agreement in a Faulty System
Recover by Checkpointing



Failure models

8.1 Introduction: Failure models

7

 Crash failures: Halt, but correct behavior until halting

 General omission failures: failure in sending or receiving messages

− Receiving omissions: sent messages are not received 

− Send omissions: messages are not sent that should have

 Timing failures: correct output, but provided outside a specified time 

interval. 

− Performance failures: the component is too slow

 Response failures: incorrect output, but cannot be accounted to another 

component

− Value failures: wrong output values

− State transition failures: deviation from correct flow of control (Note: this failure 

may initially not even be observable)

 Arbitrary failures: any (combination of) failure may occur, perhaps even 

unnoticed



Halting failures

• Assumptions we can make:

– Fail-stop: Crash failures, but reliably detectable

– Fail-noisy: Crash failures, eventually reliably detectable

– Fail-silent: Omission or crash failures: clients cannot tell what 

went wrong.

– Fail-safe: Arbitrary, yet benign failures (can't do any harm).

– Fail-arbitrary: Arbitrary, with malicious failures

8.1 Introduction: Failure models

10



Process reslience

 Basic idea: protect yourself against faulty processes 

through process replication:

8.2 Process resilience

11



Groups and failure masking

 k-Fault-tolerant group: When a group can mask any k 

concurrent member failures (k is called degree of fault 

tolerance).

 How large must a k-fault-tolerant group be:

− With halting failures (crash/omission/timing failures): we 

need k+1 members: no member will produce an 

incorrect result, so the result of one member is good 

enough.

− With arbitrary failures: we need 2k+1 members: the 

correct result can be obtained only through a majority 

vote.

8.2 Process resilience

12



Groups and failure masking

 Important:

− All members are identical

− All members process commands in the same order

 Result: 

− Only then do we know that all processes are programmed to do 

exactly the same thing.

8.2 Process resilience

13

Observation

The processes need to have consensus on which
command to execute next



Flooding-based consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all process will execute the 

same if no failures occur

• Problem:

– Suppose a process crashes before completing its multicast

8.2 Process resilience

14



Flooding-based consensus

8.2 Process resilience15



Failure detection

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process q for a reaction

– q reacts → q is alive

– q does not react within t time units → q is suspected to have crashed

• Note: in a synchronous system: 

– a suspected crash is a known crash

– Referred to as a perfect failure detector

8.2 Process resilience: detection

49

Issue

How can we reliably detect that a process has 
actually crashed?



Failure detection

• Practice: the eventually perfect failure detector

• Has two important properties:

– Strong completeness: every crashed process is eventually suspected to have 

crashed by every correct process.

– Eventual strong accuracy: eventually, no correct process is suspected by any 

other correct process to have crashed.

• Implementation:

– If p did not receive heartbeat from q within time t → p suspects q.

– If q later sends a message (received by p):

– p stops suspecting q

– p increases timeout value t

– Note: if q does crash, p will keep suspecting q.

8.2 Process resilience: detection

50



Fault Tolerance 8.3 Reliable Communication

Reliable communication

So far
Concentrated on process resilience (by means of process groups).
What about reliable communication channels?

Error detection
Framing of packets to allow for bit error detection
Use of frame numbering to detect packet loss

Error correction
Add so much redundancy that corrupted packets can be
automatically corrected
Request retransmission of lost, or last N packets
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Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: What can go wrong?
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

RPC communication: Solutions
1: Relatively simple – just report back to client
2: Just resend message

3 / 35



Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server crashes

3: Server crashes are harder as you don’t what it had already done:

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)
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Fault Tolerance 8.3 Reliable Communication

Reliable RPC

Problem
We need to decide on what we expect from the server

At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what.
At-most-once-semantics: The server guarantees it will carry out
an operation at most once.
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Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server response is lost

4: Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has
carried out the operation
Solution: None, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to
be carried out before.
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Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Client crashes

5: Problem: The server is doing work and holding resources for
nothing (called doing an orphan computation).

Orphan is killed (or rolled back) by client when it reboots
Broadcast new epoch number when recovering ) servers kill
orphans
Require computations to complete in a T time units. Old ones are
simply removed.

Question
What’s the rolling back for?

7 / 35



Fault Tolerance 8.6 Recovery

Recovery

Introduction
Checkpointing
Message Logging
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Fault Tolerance 8.6 Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation
Backward error recovery: Bring the system back into a previous
error-free state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes
need to cooperate in identifying a consistent state from where to recover
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Fault Tolerance 8.6 Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been
sent in the state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection 
of checkpoints

Message sent
from P2 to P1

21 / 35



Fault Tolerance 8.6 Recovery

Consistent recovery state

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection 
of checkpoints

Message sent
from P2 to P1

Observation
If and only if the system provides reliable communication, should sent
messages also be received in a consistent state.
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Fault Tolerance 8.6 Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may
lie at system startup time ) cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm
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Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m�1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)! INT[j](n)
The dependency INT[i](m)! INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)
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Fault Tolerance 8.6 Recovery

Independent checkpointing

Observation
If process Pi rolls back to CP[i](m�1), Pj must roll back to
CP[j](n�1).

Question
How can Pj find out where to roll back to?

25 / 35



Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Question
What advantages are there to coordinated checkpointing?
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Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest
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Fault Tolerance 8.6 Recovery

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your
(communication) behavior from the most recent checkpoint ) store
messages in a log.

Assumption
We assume a piecewise deterministic execution model:

The execution of each process can be considered as a sequence
of state intervals
Each state interval starts with a nondeterministic event (e.g.,
message receipt)
Execution in a state interval is deterministic
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