

Department: Computer Engineering

Lecturer : Dr. Manal Helal

Course Name: Pattern Recognition

Course Code: CC716 Total Marks:

Date : Jan. 19-2016 Start time : 3 pm Time allowed: 1.5 Days

Final Examination Paper

Answer the following questions:

Exam Instructions:

- This is an open Book(s) and slides exam.
- You can use matlab, R, python or any package installed in your machine if required.
- No Internet access is allowed.
- The exam will be curve graded on best effort, and worth 20% of your final mark.

Statistical Classification [7 points]

- 1) When learning a logistic regression classifier, you run gradient ascent for 50 iterations with the learning rate, η =0.3, and compute $J(\theta)$ after each iteration. Compute the conditional log-likelihood $J(\theta)$ after each iteration (where θ denotes the weight vectors). You find that the value of $J(\theta)$ increases quickly then levels off. Based on this, which of the following conclusions seems most plausible?
- A) Rather than use the current value of η , it'd be more promising to try a larger value for the learning rate (say $\eta = 1.0$).
- B) $\eta = 0.3$ is an effective choice of learning rate.
- C) Rather than use the current value of η , it'd be more promising to try a smaller value (say $\eta = 0.1$).
- 2) Consider a binary classification problem with variable $X_1 \in \{0, 1\}$ and label $Y \in \{0, 1\}$. The true generative distribution $P(X_1, Y) = P(Y)P(X_1|Y)$ is shown as Table 1 and Table 2.

Table 1: P(Y)	Table 2: $P(X_1 Y)$			
Y = 0 $Y = 1$		$X_1 = 0$	$X_1 = 1$	
0.8 0.2	$\mathbf{Y} = 0$	0.7	0.3	
	Y = 1	0.3	0.7	

Now suppose we have trained a Naive Bayes classifier, using infinite training data generated according to Table 1 and Table 2. In Table 3, please write down the predictions from the trained Naive Bayes for different configurations of X_1 . Note that $\hat{Y}(X_1)$ in the table is the decision about the value of Y given X_1 . For decision terms in the table, write down either $\hat{Y} = 0$ or $\hat{Y} = 1$; for probability terms in the table, write down the actual values (and the calculation process if you prefer, e.g., 0.8 * 0.7 = 0.56).

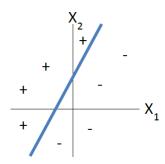
Table 3: Predictions from the trained Naive Bayes

	$P(X_1, Y = 0)$	$\widehat{P}(X_1, Y=1)$	$\hat{Y}(X_1)$				
$X_1 = 0$							
$X_1 = 1$							

Department: Computer Engineering

Lecturer : Dr. Manal Helal

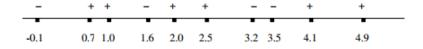
Course Name: Pattern Recognition


Course Code: CC716 Total Marks:

Date : Jan. 19-2016 Start time : 3 pm Time allowed: 1.5 Days

What is the expected error rate of this Naive Bayes classifier on testing examples that are generated according to Table 1 and Table 2? In other words, $P(\hat{Y}(X_1) \neq Y)$ when (X_1, Y) is generated according to the two tables. Hint: $P(\hat{Y}(X_1) \neq Y) = P(\hat{Y}(X_1) \neq Y, X_1 = 0) + P(\hat{Y}(X_1) \neq Y, X_1 = 1)$.

Linear Classification [3 points]


3) What are the weights w_0 , w_1 , and w_2 for the perceptron whose decision surface is illustrated below? You should assume that the decision surface crosses the X_1 axis at -5 and crosses the X_2 axis at 8.

Non-Linear Classification

[15 points]

4) Consider the following dataset with one real-valued input and one binary output (+ or -). The following questions assume that we are using k-nearest-neighbor learning with unweighted Euclidean distance to predict y for an input x. [2 points]

- A) What is the leave-one-out cross-validation error of 1-NN on this dataset. Give your answer as the number of misclassifications and circle them in the diagram above.
- B) What is the leave-one-out cross-validation error of 3-NN on this dataset. Give your answer as the number of misclassifications and circle them in the diagram below.

Department: Computer Engineering

Lecturer : Dr. Manal Helal

Course Name: Pattern Recognition

Course Code: CC716 Total Marks:

Date : Jan. 19-2016 Start time : 3 pm Time allowed: 1.5 Days

5) Consider the following set of training examples:

[5 points]

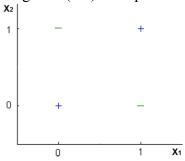
Example	Is Heavy?	Is Smelly?	Is Spotted?	Is Smooth	Is Poisonous?
A	0	0	0	0	0
В	0	0	1	0	0
C	1	1	0	1	0
D	1	0	0	1	1
E	0	1	1	0	1
F	0	0	1	1	1
G	0	0	0	1	1
Н	1	1	0	0	1
U	1	1	1	1	?
V	0	1	0	1	?
\mathbf{W}	1	1	0	0	?

You know whether or not mushrooms A to H are poisonous, but you do not know about U to W. Consider only mushrooms A to H in questions A and B.

- A) What is the entropy of "Is Poisonous"?
- B) What attribute should you choose as the root of a decision tree? Hint: You can decide without computing the information gain for all four attributes.
- C) What is the information gain of the attribute you chose in the previous question?
- D) Build the decision tree to classify mushrooms as poisonous or not.
- E) Decide whether U to W mushrooms are poisonous or not.

Department: Computer Engineering

Lecturer : Dr. Manal Helal


Course Code: CC716

Course Name : Pattern Recognition

Date : Jan. 19-2016 Start time : 3 pm Time allowed: 1.5 Days

Total Marks:

6) Consider a classification problem with two Boolean variables $X_1, X_2 \in \{0, 1\}$ and label $Y \in \{0, 1\}$. In the Figure, two positive ("+") and two negative ("-") examples are shown. [4 points]

- A) Draw (or just simply describe) a decision tree that can perfectly classify the four examples in the Figure
- B) What will happen if you try to train a Gaussian Based Bayed Classifier on such a dataset? Assume that the classifier is able to learn arbitrarily covariance matrix.
- C) Suppose we learn a Naive Bayes classifier from the examples in the Figure, using MLE (maximum likelihood estimation) as the training rule. Write down all the parameters and their estimated values (note: both P(Y) and $P(X_i|Y)$ should be Bernoulli distributions). Also, does this learned Naive Bayes perfectly classify the four examples?
- D) Is there any logistic regression classifier using X_1 and X_2 that can perfectly classify the examples in the Figure? Why?
- 7) Describe how multiclass datasets are handled in Bayesian, perceptron, neural networks, and SVM classification algorithms? [4 points]