
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 6 Methods

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 2

Opening Problem

Find the sum of integers from 1 to 10, from 20 to 30, and
from 35 to 45, respectively.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 3

Problem

int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 30; i++)
 sum += i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)
 sum += i;
System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 4

Problem

int sum = 0;
for (int i = 1; i <= 10; i++)
 sum += i;
System.out.println("Sum from 1 to 10 is " + sum);

sum = 0;
for (int i = 20; i <= 30; i++)
 sum += i;
System.out.println("Sum from 20 to 30 is " + sum);

sum = 0;
for (int i = 35; i <= 45; i++)
 sum += i;
System.out.println("Sum from 35 to 45 is " + sum);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 5

Solution
public static int sum(int i1, int i2) {
 int sum = 0;
 for (int i = i1; i <= i2; i++)
 sum += i;
 return sum;
}

public static void main(String[] args) {
 System.out.println("Sum from 1 to 10 is " + sum(1, 10));
 System.out.println("Sum from 20 to 30 is " + sum(20, 30));
 System.out.println("Sum from 35 to 45 is " + sum(35, 45));
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 6

Objectives
▪ To define methods with formal parameters (§6.2).
▪ To invoke methods with actual parameters (i.e., arguments) (§6.2).
▪ To define methods with a return value (§6.3).
▪ To define methods without a return value (§6.4).
▪ To pass arguments by value (§6.5).
▪ To develop reusable code that is modular, easy to read, easy to debug, and

easy to maintain (§6.6).
▪ To write a method that converts hexadecimals to decimals (§6.7).
▪ To use method overloading and understand ambiguous overloading (§6.8).
▪ To determine the scope of variables (§6.9).
▪ To apply the concept of method abstraction in software development

(§6.10).
▪ To design and implement methods using stepwise refinement (§6.10).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 7

Defining Methods

A method is a collection of statements that are
grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 8

Defining Methods

A method is a collection of statements that are
grouped together to perform an operation.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 9

Method Signature

Method signature is the combination of the method name and the
parameter list.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 10

Formal Parameters

The variables defined in the method header are known as
formal parameters.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 11

Actual Parameters

When a method is invoked, you pass a value to the parameter. This
value is referred to as actual parameter or argument.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 12

Return Value Type
A method may return a value. The returnValueType is the data type
of the value the method returns. If the method does not return a
value, the returnValueType is the keyword void. For example, the
returnValueType in the main method is void.

public static int max(int num1, int num2) {

int result;

if (num1 > num2)
 result = num1;
else
 result = num2;

return result;

}

modifier
return value

type
method
name

formal
parameters

return value

method
body

method
header

parameter list

Define a method Invoke a method

int z = max(x, y);

 actual parameters
(arguments)

method
signature

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Calling Methods
Testing the max method

This program demonstrates calling a method max
to return the largest of the int values

TestMax.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Calling Methods, cont.

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the value of i
pass the value of j

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 15

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

i is now 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

j is now 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

invoke max(i, j)

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

invoke max(i, j)
Pass the value of i to num1
Pass the value of j to num2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

declare variable result

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

(num1 > num2) is true since num1
is 5 and num2 is 2

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

result is now 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

return result, which is 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

return max(i, j) and assign the
return value to k

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 24

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Execute the print statement

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 25

CAUTION
A return statement is required for a value-returning method. The
method shown below in (a) is logically correct, but it has a
compilation error because the Java compiler thinks it possible that
this method does not return any value.

To fix this problem, delete if (n < 0) in (a), so that the compiler will
see a return statement to be reached regardless of how the if
statement is evaluated.

 public static int sign(int n) {
 if (n > 0)
 return 1;
 else if (n == 0)
 return 0;
 else if (n < 0)
 return –1;
}

(a)

Should be

(b)

public static int sign(int n) {
 if (n > 0)
 return 1;
 else if (n == 0)
 return 0;
 else
 return –1;
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Reuse Methods from Other Classes
NOTE: One of the benefits of methods is for reuse. The max
method can be invoked from any class besides TestMax. If you
create a new class Test, you can invoke the max method using
ClassName.methodName (e.g., TestMax.max).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Call Stacks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

i is declared and initialized

The main method
is invoked.

i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 29

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

j is declared and initialized

The main method
is invoked.

j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Declare k

The main method
is invoked.

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Invoke max(i, j)

The main method
is invoked.

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

pass the values of i and j to num1
and num2

The max method is
invoked.

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Declare result

The max method is
invoked.

 result:

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

(num1 > num2) is true

The max method is
invoked.

 result:

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Assign num1 to result

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

Space required for the
main method

 k:
j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Return result and assign it to k

The max method is
invoked.

Space required for the
max method
 result: 5

num2: 2
num1: 5

Space required for the
main method
 k:5

j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

Trace Call Stack

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +
 " and " + j + " is " + k);
}
public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

 return result;
}

Execute print statement

The main method
is invoked.

Space required for the
main method
 k:5

j: 2
i: 5

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 38

void Method Example

This type of method does not return a value. The method
performs some actions.

TestVoidMethod.java

TestReturnGradeMethod.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

Passing Parameters
public static void nPrintln(String message, int n) {
 for (int i = 0; i < n; i++)
 System.out.println(message);
}

Suppose you invoke the method using
nPrintln(“Welcome to Java”, 5);

What is the output?

Suppose you invoke the method using
nPrintln(“Computer Science”, 15);

What is the output?

Can you invoke the method using
nPrintln(15, “Computer Science”);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

Pass by Value

This program demonstrates passing values to
the methods.

Increment.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

Pass by Value

Testing Pass by value

This program demonstrates passing values to
the methods.

TestPassByValue.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

Pass by Value, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

Modularising Code
Methods can be used to reduce redundant coding
and enable code reuse. Methods can also be used to
modularise code and improve the quality of the
program.

GreatestCommonDivisorMethod.java

PrimeNumberMethod.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

Case Study: Converting Hexadecimals
to Decimals

Write a method that converts a hexadecimal
number into a decimal number.

Hex2Dec.java

ABCD =>

 A*16^3 + B*16^2 + C*16^1+ D*16^0

= ((A*16 + B)*16 + C)*16+D

= ((10*16 + 11)*16 + 12)*16+13 = ?

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Overloading Methods
Overloading the max Method

public static double max(double num1, double
num2) {

 if (num1 > num2)
 return num1;
 else
 return num2;
}

TestMethodOverloading.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 46

Ambiguous Invocation

Sometimes there may be two or more possible
matches for an invocation of a method, but the
compiler cannot determine the most specific
match. This is referred to as ambiguous
invocation. Ambiguous invocation is a
compile error.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 47

Ambiguous Invocation
public class AmbiguousOverloading {
 public static void main(String[] args) {
 System.out.println(max(1, 2));
 }

 public static double max(int num1, double num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }

 public static double max(double num1, int num2) {
 if (num1 > num2)
 return num1;
 else
 return num2;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 48

Scope of Local Variables
A local variable: a variable defined inside a

method.
Scope: the part of the program where the

variable can be referenced.
The scope of a local variable starts from its

declaration and continues to the end of the
block that contains the variable. A local
variable must be declared before it can be
used.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 49

Scope of Local Variables, cont.
You can declare a local variable with the same
name multiple times in different non-nesting
blocks in a method, but you cannot declare a
local variable twice in nested blocks.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 50

Scope of Local Variables, cont.

A variable declared in the initial action part of a for loop
header has its scope in the entire loop. But a variable
declared inside a for loop body has its scope limited in the
loop body from its declaration and to the end of the block
that contains the variable.

public static void method1() {
 .
 .
 for (int i = 1; i < 10; i++) {
 .
 .
 int j;
 .
 .
 .
 }
}

The scope of j

The scope of i

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 51

Scope of Local Variables, cont.

public static void method1() {
 int x = 1;
 int y = 1;

 for (int i = 1; i < 10; i++) {

 x += i;
 }

 for (int i = 1; i < 10; i++) {

 y += i;
 }
}

It is fine to declare i in two
non-nesting blocks

 public static void method2() {

 int i = 1;
 int sum = 0;

 for (int i = 1; i < 10; i++) {

 sum += i;
 }

 }

It is wrong to declare i in
two nesting blocks

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 52

Scope of Local Variables, cont.

// Fine with no errors
public static void correctMethod() {
 int x = 1;
 int y = 1;
 // i is declared
 for (int i = 1; i < 10; i++) {
 x += i;
 }
 // i is declared again
 for (int i = 1; i < 10; i++) {
 y += i;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 53

Scope of Local Variables, cont.

// With errors
public static void incorrectMethod() {
 int x = 1;
 int y = 1;
 for (int i = 1; i < 10; i++) {
 int x = 0;
 x += i;
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 54

Method Abstraction
You can think of the method body as a black box
that contains the detailed implementation for the
method.

Method Header

Method body
Black Box

Optional arguments
for Input

Optional return
value

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 55

Benefits of Methods
• Write a method once and reuse it anywhere.

• Information hiding. Hide the implementation
from the user.

• Reduce complexity.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 56

Case Study: Generating Random
Characters

Computer programs process numerical data and characters.
You have seen many examples that involve numerical data.
It is also important to understand characters and how to
process them.
As introduced in Section 2.9, each character has a unique
Unicode between 0 and FFFF in hexadecimal (65535 in
decimal). To generate a random character is to generate a
random integer between 0 and 65535 using the following
expression: (note that since 0 <= Math.random() < 1.0, you
have to add 1 to 65535.)

(int)(Math.random() * (65535 + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 57

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 58

Case Study: Generating Random
Characters, cont.

Now let us consider how to generate a random
lowercase letter. The Unicode for lowercase letters
are consecutive integers starting from the Unicode
for 'a', then for 'b', 'c', ..., and 'z'. The Unicode for 'a'
is

(int)'a'
So, a random integer between (int)'a' and (int)'z' is

(int)((int)'a' + Math.random() * ((int)'z' - (int)'a' + 1)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 59

Case Study: Generating Random
Characters, cont.

As discussed in Chapter 2., all numeric operators
can be applied to the char operands. The char
operand is cast into a number if the other operand is
a number or a character. So, the preceding
expression can be simplified as follows:

'a' + Math.random() * ('z' - 'a' + 1)

So a random lowercase letter is

(char)('a' + Math.random() * ('z' - 'a' + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 60

Case Study: Generating Random
Characters, cont.

To generalise the foregoing discussion, a random character
between any two characters ch1 and ch2 with ch1 < ch2
can be generated as follows:

(char)(ch1 + Math.random() * (ch2 – ch1 + 1))

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 61

The RandomCharacter Class
// RandomCharacter.java: Generate random characters
public class RandomCharacter {
 /** Generate a random character between ch1 and ch2 */
 public static char getRandomCharacter(char ch1, char ch2) {
 return (char)(ch1 + Math.random() * (ch2 - ch1 + 1));
 }

 /** Generate a random lowercase letter */
 public static char getRandomLowerCaseLetter() {
 return getRandomCharacter('a', 'z');
 }

 /** Generate a random uppercase letter */
 public static char getRandomUpperCaseLetter() {
 return getRandomCharacter('A', 'Z');
 }

 /** Generate a random digit character */
 public static char getRandomDigitCharacter() {
 return getRandomCharacter('0', '9');
 }

 /** Generate a random character */
 public static char getRandomCharacter() {
 return getRandomCharacter('\u0000', '\uFFFF');
 }
}

TestRandomCharacter.java

RandomCharacter.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 62

Stepwise Refinement (Optional)

The concept of method abstraction can be applied
to the process of developing programs. When
writing a large program, you can use the “divide
and conquer” strategy, also known as stepwise
refinement, to decompose it into subproblems. The
subproblems can be further decomposed into
smaller, more manageable problems.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 63

PrintCalender Case Study

Let us use the PrintCalendar example to demonstrate the
stepwise refinement approach.

PrintCalendar.java

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

64

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

65

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

66

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

67

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

68

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

 printCalendar
(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

69

Design Diagram

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 70

Design Diagram
 printCalendar

(main)

readInput printMonth

getStartDay

printMonthTitle printMonthBody

getTotalNumOfDays

getNumOfDaysInMonth

getMonthName

isLeapYear

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 71

Implementation: Top-Down

A Skeleton for printCalendar.java

Top-down approach is to implement one method in the
structure chart at a time from the top to the bottom. Stubs
can be used for the methods waiting to be implemented. A
stub is a simple but incomplete version of a method. The
use of stubs enables you to test invoking the method from
a caller. Implement the main method first and then use a
stub for the printMonth method. For example, let
printMonth display the year and the month in the stub.
Thus, your program may begin like this:

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 72

Implementation: Bottom-Up

Bottom-up approach is to implement one method in the
structure chart at a time from the bottom to the top. For
each method implemented, write a test program to test it.
Both top-down and bottom-up methods are fine. Both
approaches implement the methods incrementally and help
to isolate programming errors and makes debugging easy.
Sometimes, they can be used together.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 73

Benefits of Stepwise Refinement

Simpler Program

Reusing Methods

Easier Developing, Debugging, and Testing

Better Facilitating Teamwork

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 74

• (Math: pentagonal numbers) A pentagonal
number is defined as n(3n–1)/2 for n = 1,
2, . . ., and so on. Therefore, the first few
numbers are 1, 5, 12, 22, Write a method
with the following header that returns a
pentagonal number:

public static int getPentagonalNumber(int n)
• Write a test program that uses this method

to display the first 100 pentagonal numbers
with 10 numbers on each line.

Assignment – ass2

