The question is:

Use the pumping lemma to show that the following languages are not regular.  
a. A1={0n1n2n|n≥0}
 b. A2 = {www| w ∈ {a,b}∗}  
c. A3 ={a2n|n≥0} (Here, a2n means a string of 2n a’s.) 

The solution:
[bookmark: _GoBack]A small solution would look like the following for the language in b, and can be reached using the game in JFLAP:
A2 = {ωωω| ω is in {a,b}*} Assume to the contrary that A2 is regular, and let p be the pumping length given by pumping lemma. Choose s = apbapbapb, which can be divided into three pieces s = xyz, where |xy| ≤ p. This means xy contains only a’s. Since |y| > 0, let y = ak, k>0. However, xy2z = ap+kbapbapb, where p+k>p, is not in A2. That is s cannot be pumped. This is a contradiction. Thus, A2 is not regular. 

A detailed answer is as follows for the three languages. Both forms of answers are alright:

(a) A1 = {0n1n2n| n ≥ 0}
Condensed proof:

Proof. Suppose A1 is regular. Let p be the pumping length given by the pumping lemma. Choose s = 0p1p2p. By the lemma, |xy| ≤ p and |y| > 0 therefore p ≥ 0 sos∈A1. Clearly,|s|≥pthuss=xyzforsomex,yandz. Since|xy|≤p,xy cannot extend beyond the first p symbols of s, meaning xy = 0k where 1 ≤ k ≤ p. Letuswritex=0a,y=0b,z=0c1p2p. Thenumberof0’s,1’sand2’sinsare givenbya+b+c=p. Leti=0suchthats′ =xyiz=xz. Thenumberof1’sin s′ ispwhereasthenumberof0’sins′ isa+c. Fors′ ∈A,thenumberof0’sins′ must equal the number of 1’s in s′, namely a + c = p. Substituting for p, we have a+c=a+b+cwithequalityholdingwhenb=0. Because|y|>0and|y|=b, b > 0, thus s′ ∈/ A, a contradiction. Therefore A1 is non-regular.
Detailed proof:
Proof. We want to prove the language A1 is non-regular. In order to use the pump- ing lemma, we must assume A1 is regular, since the lemma only applies to regular languages. The goal is to show our assumption leads to a contradiction, meaning the assumption is false and therefore the opposite must be true. Since our assump- tion is that A1 is regular, the opposite of this assumption is A1 is non-regular, which is precisely what we want to show.
Once we assume A1 is regular, the lemma provides us with the pumping length, p. We are now free to choose a word s which belongs to A1 and has length ≥ p. If we choose s appropriately, we should be able to “pump up” the size of s in the manner described by the pumping lemma and show the resulting word, s′, does not belong to A1. Since the lemma states all such words should also belong to the language, this would be a contradiction, leading us to our conclusion that A1 is non-regular.
For s to be a word in A1, it must follow the form given by the definition above. Due to the manner in which A1 is defined, to obtain a unique word, we must fix a value for n. Given some careful thought, we can greatly reduce the number of cases we need to consider based on the value we choose for n. To understand the available choices, let us observe the effects “pumping” will have on the word s.
If we select s to be a large enough word from the language, the pumping lemma states s can be divided into three parts s = xyz. From this division, the lemma describes an infinite set of words of the form s′ = xyiz where s′ must also belong to the language for any i ≥ 0. Depending on the size of y and likewise where y falls within the word s, we will have one of the following representative forms for y (where 1≤k≤p):
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y = 0k y = 1k y = 2k y = 0k1k y = 1k2k y = 0k1n2k
This means we have at least six different cases to consider if we allow the size and position of y to be arbitrary (with the exception |y| > 0).
However, we are not forced to allow this much variation in the structure of y. In fact, using the third condition of the pumping lemma, |xy| ≤ p, we effectively limit both the size and position of y within the word s. Furthermore, depending on the word we choose for s (the value we choose for n), we can also limit the symbols which may appear in y and hence the relevance of each form of y in the above list.
Given the form of the words in A1, setting n allows us to control the number of 0’s in the prefix of s. If we set n ≥ p, the entire string xy must consist entirely of 0’s since xy consists of no more than the first p symbols of s, all of which are now 0. Hence,ytakesonasingleform,namelyy=0k where1≤k≤p. So,byusing condition three and choosing n appropriately (specifically, we will let n = p), we have narrowed the number of cases we need to consider to a single case!
Once we select the word s = 0p1p2p, for the word to be useful in the context of the lemma, it must be evident that s ∈ A1 and |s| ≥ p. We have nearly proved that s ∈ A1. What remains to be shown is n ≥ 0. This follows from the conditions |y|>0and|xy|≤p. Wehaven=p≥|xy|≥|y|>0,thusn>0and,trivially, n≥0. Lastly,itiseasytoshowthat|s|≥p. Since|s|=3p>p,|s|≥p.
Now that it is clear s ∈ A1 and |s| ≥ p, the lemma allows us to divide s into s = xyz for some x, y and z. We can write the representative forms of x, y and z as follows:
x = 0a y = 0b z = 0c1p2p
We have already indicated that x and y consist entirely of 0’s. As for the form of z, since |xy| ≤ p and there are p leading 0’s in s, if |xy| < p there will be some leftover 0’s which carry over into z, hence the 0c. (The rest of z is just the remainder of s.) Furthermore, since the 0’s distributed across x, y and z are from the p leading 0’s of s, a+b+c must sum to p.
At this point, we focus our attention on the new word, s′ = xyiz, as provided by the lemma. The difference between s and s′ is the number of times the substring y

is allowed to repeat. For s, y simply appears once but for s′, y is allowed to repeat any number of times. A particular instance of s′ can be chosen by fixing the value for i. Preferably, we would like a value for i other than 1, as i = 1 would make s = s′ and we are trying to construct a word which is not in A1 (recall s needed to be a word in A1). The simplest value we can choose for i is i = 0. In this case, s′ = xz.
We must now show xz ∈/ A1 in order to form a contradiction with the pumping lemma. (The first condition of the lemma states xyiz ∈ A1 for all i ≥ 0.) Recall the representative forms of x and z. x = 0a and z = 0c1p2p. One way to show xz ∈/ A1 is by showing the number of 0’s in xz does not equal the number of 1’s in xz since the definition of A1 requires these quantities to be equal. By the forms of x and z, it is apparent the number of 0’s in xz is given by a+c and the number of 1’s is given by p. Remembering that a + b + c = p, we can determine when the two quantities are equal.
a+c=p a+c=a+b+c
0=b
If we can show that b cannot possibly be 0, then our proof is complete. For- tunately, we can demonstrate this fact using the condition |y| > 0. Replacing y with its representative form, we obtain |0b| > 0. More or less by definition, |0b| = b and therefore b > 0. So, it follows b cannot be 0, meaning the number of 0’s in xz cannot equal the number of 1’s. Thus, xz ∈/ A1 and since this forms a contradiction with the claims of the pumping lemma, our supposition that A1 is regular must be incorrect. Hence, we conclude A1 is non-regular.
(b) A2 ={www|w∈{a,b}∗}
Proof. Suppose A2 is regular. Let p be the pumping length given by the pumping lemma. Chooses=wwwwherew=apb. Clearly,s∈A2 and|s|≥p,thuss=xyz for some x, y and z. Since |xy| ≤ p, xy cannot extend beyond the first p symbols of s,meaningxy=ak where1≤k≤p. Letuswritex=aa,y=ab,z=acbapbapb. Thenumberofa’sineachwisgivenbya+b+c=p. Leti=0ands′ =xyiz=xz. For reference, let xz = w1w2w3 where w1 = aaacb and w2 = w3 = apb. The number of a’s in w2 and w3 are each p whereas the number of a’s in w1 is a+c. For s′ ∈ A, the number of a’s in w1 must equal the number of a’s in w2 and w3, namely a+c = p. Substituting for p, we have a+c = a+b+c with equality holding when b = 0. Because |y| > 0 and |y| = b, b > 0, thus s′ ∈/ A, a contradiction. Therefore A2 is non-regular.
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(c) A3 ={a2n|n≥0} NOTE: n is assumed to be an integer.
Proof. Suppose A3 is regular. Let p be the pumping length given by the pumping lemma. Choose s = a2n. By the lemma, |xy| ≤ p and |y| > 0 therefore p ≥ 0 and s∈A3. Clearly,|s|=2p ≥p,thuss=xyzforsomex,yandz. Letuswrite x=aa,y=ab,z=ac. Thenumberofa’sinsisa+b+c=2p. Leti=2and s′ = xyiz = xyyz. The number of a’s in s′, denoted #a(s′), is a+2b+c = 2p +b. Since|y|>0and|y|=b,b>0. From2p =a+b+c<a+2b+c,weconclude 2p < #a(s′). Substituting for b on the right-hand side of a+2b+c = 2p +b, we find a+2b+c = 2p +2p −a−c. Since |xy| ≤ p, c = |xyz|−|xy| ≥ 2p −p > 0, we have a + 2b + c < 2p+1, thus #a(s′) < 2p+1. Because 2p < #a(s′) < 2p+1, #a(s′) is not an even power of 2 and s′ ∈/ A3, a contradiction. Therefore A3 is non-regular.
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