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Example	
  1:	
  

We know L={0n1n0n
 
|n ≥ 0} is not a CFL (pumping lemma) 

Can we show L is decidable? Construct a decider M such that L(M) = L A decider is a TM that always 
halts (in qacc

 
or qrej) and is guaranteed not to go into an infinite loop for any input 

Input: 000001111100000 

Idea: Mark off matching 0s, 1s, and 0s with Xs (left end marked with blank) 

000001111100000  

_00001111100000  

_0000X111100000  

_0000X1111X0000  

_X000X1111X0000  

.... 

Idea	
  for	
  a	
  Decider	
  for	
  {0n1n0n	
  |	
  n	
  ≥	
  0}	
  

General Idea: Match each 0 with a 1 and a 0 following the 1. 

1 Implementation Level Description of a Decider for L: 

On input w: 

1. If first symbol = blank, ACCEPT 

2. If first symbol = 1, REJECT 

3. If first symbol = 0, Write a blank to mark left end of tape 

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank. 

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank. 

c. Write X over 0. Move back to left end of tape. 

4. At left end: Skip X’s until: 

 

 



a. You see 0: Write X over 0 and GOTO 3a 

b. You see 1: REJECT 

c. You see a blank space: ACCEPT 

State Diagram 

 

Note: Some transitions to qREJ (e.g., from qskip0) are not shown to avoid clutter 

 

Try running the decider on: 

010, 001100, ...ACCEPT 

0, 000, 0100, ...REJECT 

What about 010010? 

The decider accepts incorrect strings: 

010010, 010001100ACCEPT!!! 

Accepts (0
n

1
n

0
n

)
*

 

Need to fix it...How?? 

A Simple Fix (to the Decider) 

Scan initially to make sure string is of the form 0*1*0* 

On input w: 

1. If first symbol = blank, ACCEPT  

2. If first symbol = 1, REJECT  

3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,  



Write a blank to mark left end of tape 

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.  

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.  

c. Write X over 0. Move back to left end of tape.  

4. At left end: Skip X’s until: 

a. You see 0: Write X over 0 and GOTO 3a  

b. You see 1: REJECT  

c. You see a blank space: ACCEPT  

 

The Decider TM for L in all its glory 

 

 



Example 2: 

Design a Turing machine which returns whether an input ranging over {a, b}∗ has an even number of a’s. 

 

Graphically, this can be expressed as:  

 

Example 3: 

Here,	
  a	
  TM	
  M3	
  is	
  doing	
  some	
  elementary	
  arithmetic.	
  It	
  decides	
  the	
  language	
  C	
  =	
  {aibjck|	
  i	
  ×	
  j	
  =	
  k	
  and	
  i,	
  j,	
  
k	
  ≥	
  1}.	
  

M3	
  =	
  “On	
  input	
  string	
  w:	
  

1. Scan	
  the	
  input	
  from	
  left	
  to	
  right	
  to	
  determine	
  whether	
  it	
  is	
  a	
  	
  member	
  of	
  a+b+c+	
  and	
  reject	
  if	
  
it	
  isn’t.	
  	
  

2. Return	
  the	
  head	
  to	
  the	
  left-­‐hand	
  end	
  of	
  the	
  tape.	
  	
  

3. Cross	
  off	
  an	
  a	
  and	
  scan	
  to	
  the	
  right	
  until	
  a	
  b	
  occurs.	
  Shuttle	
  	
  between	
  the	
  b’s	
  and	
  the	
  c’s,	
  
crossing	
  off	
  one	
  of	
  each	
  until	
  all	
  b’s	
  are	
  gone.	
  If	
  all	
  c’s	
  have	
  been	
  crossed	
  off	
  and	
  some	
  b’s	
  
remain,	
  reject	
  .	
  	
  

4. Restore	
  the	
  crossed	
  off	
  b’s	
  and	
  repeat	
  stage	
  3	
  if	
  there	
  is	
  another	
  a	
  to	
  cross	
  off.	
  If	
  all	
  a’s	
  have	
  
been	
  crossed	
  off,	
  determine	
  whether	
  all	
  c’s	
  also	
  have	
  been	
  crossed	
  off.	
  If	
  yes,	
  accept;	
  
otherwise,	
  reject	
  .”	
  	
  

Tracing	
  of	
  w	
  =	
  aabbbcccccc	
  :	
  

xabbbcccccc	
  	
  

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.
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xayyyzzzccc	
  	
  

xabbbzzzccc	
  	
  

xxyyyzzzzzz	
  	
  

Example 4: 

A TM to add 1 to a binary number (with a 0 in front)  

M = “On input w 

1. Go to the right end of the input string 

2. Move left as long as a 1 is seen, changing it to a 0. 

3. Change the 0 to a 1, and halt.” 

For example, to add 1 to w = 0110011 Change all the ending 1’s to 0’s ⇒ 0110000 Change the next 0 to a 1 
⇒ 0110100 

Example 5: 

A TM to add two numbers: f(x, y) = x + y 

 

when x = 11, and y = 11, the computation proceeds as follows: 

 

  

  



  

  

  

 

Example 6: 

A TM to compute: f(x) = 2x. 

The TM takes x as unary input, and write in the tape xx as unary 

Pseudo-code: 

• Replace every 1 with $ 

• Repeat: 

• Find rightmost $, replace it with 1 

•  Go to right end, insert 1 

• Until no more $ remain 

 

when x = 11, the computation proceeds as follows: 



 

Example 7: 

A TM to compute:  

1 if x > y  

0 if x ≤ 	
  y 

 

The TM takes x0y as input, and writes in the tape 1 or 0 

Pseudo-code: 

• Repeat 

• Match a 1 from  x with a 1 from y   

•     Until all of x or y is matched 

• If a 1 from x is not matched 

• Erase tape, write 1 

• else 

• Erase tape, write 0 

Combining Turing Machines: 

 

x + y  if x > y 

0  if x ≤ 	
  y 

 

f (x, y) =  

f (x, y) =  


