Arab Academy for Science &Technology and Maritime Transport (AASTMT)
College of Computing and Information Technology (CCIT)
Theory of Computation CS311 - Spring 2014
Dr. Manal Helal
Eng. Nada Mahmoud

Section 11 - 25h of May 2014

Building A Turing Machine

Definition

JFLAP defines a Turing Machine M as the septuple M = (Q, %, T, §, g5, O, F) where

Q is the set of internal states {q; | i is a nonnegative integer} X is the input alphabet T is the
finite set of symbols in the tape alphabet § is the transition function Sis Q * I'n - subset of Q
I'n{L, S, R}» 0 is the blank symbol. g, (is member of Q) is the initial state F (is a subset of
Q) is the set of final states

Note that this definition includes both deterministic and nondeterministic Turing machines.

How to Create a Turing Machine

Before starting, click on the “Preferences” item in the menu. A few preferences will be listed,
and one of them, with a check box next to it, is “Enable Transitions from Turing Machine
Final States.” Don't do anything with this preference just now and leave it unchecked, but
just note that it exists.

We will begin by constructing a Turing machine for the language L = {a"bncn}. To start a new
one-tape Turing machine, start JFLAP and click the Turing Machine option from the menu,
as shown below:

K New vociment 777777 8L

VFiIe Help Batch Preferences
Finite Automaton
Mealy Machine
Moore Machine
Pushdown Automaton
Turing Machine
Multi-Tape Turing Machine
Grammar
L-System
Regular Expression

Regular Pumping Lemma

L(Zontext— Free Pumping Le mma_l

One should eventually see a blank screen that looks like the screen below. There are many
of the same buttons, menus, and features present that exist for finite automata. This tutorial
will principally focus on features and options that differentiate Turing machines from finite

automata.

A4 IFLAP : (blankscreen,jff)

File Input Test Convert Help

[Editor
o

l;‘

We will be adding a lot of states to create a Turing machine for L = {anbncn}. Add seven states
to the screen, setting the initial state to be q0 and the final state to be q6. The screen should
be roughly similar to one below.

A JFLAP : (turingAnBnCn,jff)
File Input Test Convert Help
[Editor |

NI EAFNES

Now its time to add the transitions. Attempt to add a transition between the states q0 and
gql. However, there is something different about these transitions in comparison to those

created with finite automata. One will notice that there are three inputs instead of one.
O O R

The value in the first box represents the current value under the head of the Turing
machine. The second value is the value that will replace the first value on the tape once this
step has been processed. The size of the values in these two boxes is limited to one
character. The third value represents where the head will move after processing the step. It
can be one of three values: 'R' (move right one square), 'L' (move left one square), and S
(stay put and do not move the head). One could enter the value directly, or enter it from the
pull-down menu that comes up when the third box is clicked on directly.

Now, it's time to add input. To change the transition from the default, click on the first box.
Enter a value of “a” for the first box, a value of “x” for the second box, and a value of “R” in
the third box. Use Tab or the mouse to move between the boxes, and press enter or click the
mouse on the screen outside the boxes when done. This transition has the following
meaning. If the head is under an “a” and the machine is in state “q0”, then replace the “a”
with an “x” and move the head to the right. When done adding input, the area between q0
and q1 should resemble the example below.

Let's finish up the transitions. Add the transitions in your screen below to your Turing

machine. If you would rather not add every transition directly and would prefer to load the
file of the screen below.

File Input Test Convert Help

Editor

L =

Now, let's try out our new Turing machine. Because of the number of steps, we will avoid
the “Step” option we used with finite automata (although for finite automata titled “Step
with Closure”) and instead use the “Fast Run” option. To use this, click on the “Input” menu,
and then click on “Fast Run”. When it prompts you for input, enter “aabbcc”, representing
azb2c2. After clicking “OK” or pressing enter, the following screen should come up:

%]DE]EIEIDDEIDDDEIDDEIDDDEIDaabbcc [

N%

bDDDDDDDDDDDDDDDDDDxabbcc 00ooa

N2

'}]DDDDDDDDDDDDDDDDD}(abhccO00000C

N2

@DDDDDDDDDDDDDDDDDXa*y-bchEIDDDDE

N2

{]DDDDDDDDDDDDDDDDXaybccE]DDDDEID[

N2

&)

a3

Keep looking I'm done

L _J

One can scroll down and see the tape, the current state, and the position of the head as the
automaton processes the input step by step. One can see the algorithm at work, which is if
the head encounters an “a”, it replaces it with an “x”. Then, it replaces a corresponding “b”

. _n

with a “y” and a corresponding “c” with a “z”. This repeats until it is no longer possible, and

» o« » o«

this loop is what makes up the cycle encompassing “q0”, “q1”, “q2”, and “q3”. Once this is
done, the program makes sure that there is nothing but “x”s, “y”s, and “z”s left in the correct
order. In the case of input with length zero, the program immediately goes to the final state.
The “Keep looking” button is for finding other possible paths in automata that aren't
deterministic, which is not applicable here. When finished, click “I'm done.” Congratulations,
you have built your first Turing Machine!

Transitions from Final States

Recall the “Enable Transitions from Turing Machine Final States” preference mentioned
earlier. Also note the slightly modified earlier example below that now has two final states.

File Input Test VYiew Convert Help

[Editor

4
L

Because the preference was not enabled, and because there is an edge leading from the final
state “q6”, the following error message will appear if you try to run it. Just note that if you
wish to simulate such a machine, you need to either enable the preference or remove all
offending edges.

[‘;"‘] There are transitions from final states. Please remove them or change
the preference in the "Preferences” menu in the JFLAP main menu.

Using Your New Turing Machine as a Building Block

There are a few other features in JFLAP concerning Turing machines, and one very useful
one is “building blocks”. We will not go into an in depth study of building blocks on this
page, and one can learn more about them here. However, it is worth noting that Turing
machines, once created, can function as building blocks in other machines. Below is one
such example, where the block we just created for L = {anbncn} is used to implement the
language L = {anbncrdn}. One can create Turing machines to accomplish one task, and if
another task could utilize the first task to further its designs, one can use a building block as
a shortcut to represent that task on the screen. The “block” was put onto the screen by the
second rightmost button in the toolbar, which has an icon resembling a step pyramid. When
clicked, a file menu will come up, as if you were opening a file. By selecting the file for the
language L = {a"bncm}, and clicking “Open”, a yellow square will appear on the screen labeled
by the file name. This functions on the screen as a state, and transitions can be created to

and from it. Whenever something leads to the building block, it will preform its task based
on the current state of the tape, and the tape will be changed by the block's output, for the
benefit of the rest of the states in the machine.

The screen below is an example of using a block for L = {anbncn} as a tool to implement the
language L = {anbncndn}, this example is accessible here:

(turing AnBnCnDn.jff)
File Input Test Convert Help

Editor |

JICIEIE A

a;a,R
b;b,R
c,;c,R

One may try a variety of different inputs and realize that the block functions as an acceptor
by checking to see whether the number of “a”s, “b”s, and “c”s equal at the beginning of the
input. It also functions as a transducer, as it changes those values to “x”s, “y”s, and “z”s
respectively. The program builds off of this by checking to see whether the number of “d”s
equals the number of “z”s. One must also note that a blank was placed where the first “d”
value was. This is because, in order for the arbicracceptor to work, one must have blanks

surrounding the smaller string. The “d” value is restored after leaving the block.

Shortcut Syntax for Turing Machines

It is worth mentioning a few shortcut syntax rules that JFLAP implements. These syntax
rules were developed for use with building blocks, but they also can be used with standard
Turing Machines. These rules are covered in depth in the building blocks tutorial, but for the
sake of a general overview, a brief summary is as follows. The first shortcut is that there
exists the option of using the “!” character to convey the meaning of “any character but this
character.” For example, concerning the transition (!a; x, R), if the head encounters any
character but an “a”, it will replace the character with an “x” and move right. To write the
expression “!0”, just type a “I” in when inputting a command.

One can also utilize variables when constructing a Turing machine in order to make
inputting rules less tedious. For example, there is a second special character, “~”, that
stands for whichever character was last read. Thus, in the transition (~; ~, R), the head will,
no matter what character is underneath it, move to the right without changing the
character. One can also explicitly define other variables. For example, the transition
(a,b,c}w; w, R) would command the head, if either “a”, “b”, or “c” was under it, to assign the
letter to the new variable w and then to move right without changing the tape. Whenever w
is encountered later in the machine, it is synonymous with its stored value until it is

assigned another value.
Our Turing machine from earlier is shown below in a slightly different layout with some

variable-containing transitions (there was not a good place to use the “!” feature). Notice the
fewer transitions present for preforming the exact same task.

File Input Test View Convert Help

[Editor |

