
Arab	
 Academy	
 for	
 Science	
 &Technology	
 and	
 Maritime	
 Transport	
 (AASTMT)	

College	
 of	
 Computing	
 and	
 Information	
 Technology	
 (CCIT)	

Theory	
 of	
 Computation	
 CS311	
 –	
 Spring	
 2014	

Dr.	
 Manal	
 Helal	

Eng.	
 Nada	
 Mahmoud	
 	

Turing	
 Machines	
 Examples	

Example	
 1:	

We know L={0n1n0n

|n ≥ 0} is not a CFL (pumping lemma)

Can we show L is decidable? Construct a decider M such that L(M) = L A decider is a TM that always
halts (in qacc

or qrej) and is guaranteed not to go into an infinite loop for any input

Input: 000001111100000

Idea: Mark off matching 0s, 1s, and 0s with Xs (left end marked with blank)

000001111100000

_00001111100000

_0000X111100000

_0000X1111X0000

_X000X1111X0000

....

Idea	
 for	
 a	
 Decider	
 for	
 {0n1n0n	
 |	
 n	
 ≥	
 0}	

General Idea: Match each 0 with a 1 and a 0 following the 1.

1 Implementation Level Description of a Decider for L:

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = 1, REJECT

3. If first symbol = 0, Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.

c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:

a. You see 0: Write X over 0 and GOTO 3a

b. You see 1: REJECT

c. You see a blank space: ACCEPT

State Diagram

Note: Some transitions to qREJ (e.g., from qskip0) are not shown to avoid clutter

Try running the decider on:

010, 001100, ...ACCEPT

0, 000, 0100, ...REJECT

What about 010010?

The decider accepts incorrect strings:

010010, 010001100ACCEPT!!!

Accepts (0
n

1
n

0
n

)
*

Need to fix it...How??

A Simple Fix (to the Decider)

Scan initially to make sure string is of the form 0*1*0*

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = 1, REJECT

3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,

Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.

c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:

a. You see 0: Write X over 0 and GOTO 3a

b. You see 1: REJECT

c. You see a blank space: ACCEPT

The Decider TM for L in all its glory

Example 2:

Design a Turing machine which returns whether an input ranging over {a, b}∗ has an even number of a’s.

Graphically, this can be expressed as:

Example 3:

Here,	
 a	
 TM	
 M3	
 is	
 doing	
 some	
 elementary	
 arithmetic.	
 It	
 decides	
 the	
 language	
 C	
 =	
 {aibjck|	
 i	
 ×	
 j	
 =	
 k	
 and	
 i,	
 j,	

k	
 ≥	
 1}.	

M3	
 =	
 “On	
 input	
 string	
 w:	

1. Scan	
 the	
 input	
 from	
 left	
 to	
 right	
 to	
 determine	
 whether	
 it	
 is	
 a	
 	
 member	
 of	
 a+b+c+	
 and	
 reject	
 if	

it	
 isn’t.	
 	

2. Return	
 the	
 head	
 to	
 the	
 left-­‐hand	
 end	
 of	
 the	
 tape.	
 	

3. Cross	
 off	
 an	
 a	
 and	
 scan	
 to	
 the	
 right	
 until	
 a	
 b	
 occurs.	
 Shuttle	
 	
 between	
 the	
 b’s	
 and	
 the	
 c’s,	

crossing	
 off	
 one	
 of	
 each	
 until	
 all	
 b’s	
 are	
 gone.	
 If	
 all	
 c’s	
 have	
 been	
 crossed	
 off	
 and	
 some	
 b’s	

remain,	
 reject	
 .	
 	

4. Restore	
 the	
 crossed	
 off	
 b’s	
 and	
 repeat	
 stage	
 3	
 if	
 there	
 is	
 another	
 a	
 to	
 cross	
 off.	
 If	
 all	
 a’s	
 have	

been	
 crossed	
 off,	
 determine	
 whether	
 all	
 c’s	
 also	
 have	
 been	
 crossed	
 off.	
 If	
 yes,	
 accept;	

otherwise,	
 reject	
 .”	
 	

Tracing	
 of	
 w	
 =	
 aabbbcccccc	
 :	

xabbbcccccc	
 	

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.

60

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.

60

xayyyzzzccc	
 	

xabbbzzzccc	
 	

xxyyyzzzzzz	
 	

Example 4:

A TM to add 1 to a binary number (with a 0 in front)

M = “On input w

1. Go to the right end of the input string

2. Move left as long as a 1 is seen, changing it to a 0.

3. Change the 0 to a 1, and halt.”

For example, to add 1 to w = 0110011 Change all the ending 1’s to 0’s ⇒ 0110000 Change the next 0 to a 1
⇒ 0110100

Example 5:

A TM to add two numbers: f(x, y) = x + y

when x = 11, and y = 11, the computation proceeds as follows:

Example 6:

A TM to compute: f(x) = 2x.

The TM takes x as unary input, and write in the tape xx as unary

Pseudo-code:

• Replace every 1 with $

• Repeat:

• Find rightmost $, replace it with 1

• Go to right end, insert 1

• Until no more $ remain

when x = 11, the computation proceeds as follows:

Example 7:

A TM to compute:

1 if x > y

0 if x ≤ 	
 y

The TM takes x0y as input, and writes in the tape 1 or 0

Pseudo-code:

• Repeat

• Match a 1 from x with a 1 from y

• Until all of x or y is matched

• If a 1 from x is not matched

• Erase tape, write 1

• else

• Erase tape, write 0

Combining Turing Machines:

x + y if x > y

0 if x ≤ 	
 y

f (x, y) =

f (x, y) =

