
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 06: Synchronization

Version: November 19, 2012

Distributed Algorithms 6.1 Clock Synchronization

Clock Synchronization

Physical clocks
Logical clocks
Vector clocks

2 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution
Universal Coordinated Time (UTC):

Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).
At present, the real time is taken as the average of some 50
cesium-clocks around the world.
Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short wave radio and satellite. Satellites can give
an accuracy of about ±0.5 ms.

3 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Problem
Suppose we have a distributed system with a UTC-receiver
somewhere in it) we still have to distribute its time to each machine.

Basic principle
Every machine has a timer that generates an interrupt H times per
second.
There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by Cp(t), where t is UTC time.
Ideally, we have that for each machine p, Cp(t) = t , or, in other
words, dC/dt = 1.

4 / 38

Distributed Algorithms 6.1 Clock Synchronization

Physical clocks

Fa
st

clo
ck

Perf
ec

t c
loc

k

Slow clock

Clock time, C
dC
dt > 1

dC
dt = 1

dC
dt < 1

UTC, t

In practice: 1�r dC
dt 1+r.

Goal
Never let two clocks in any system differ by more than d time units)
synchronize at least every d/(2r) seconds.

5 / 38

ρ is the maximum drift rate given by the manufacturer

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Basic idea
You can get an accurate account of time as a side-effect of GPS.

Height

x

(-7.6,7.6)

r = 11.4

(17.8,17.8)
r = 19

(4.5,28.5)

r = 25.9

6 / 38

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Problem
Assuming that the clocks of the satellites are accurate and
synchronized:

It takes a while before a signal reaches the receiver
The receiver’s clock is definitely out of synch with the satellite

7 / 38

Distributed Algorithms 6.1 Clock Synchronization

Global positioning system

Principal operation

�r : unknown deviation of the receiver’s clock.
xr , yr , zr : unknown coordinates of the receiver.
Ti : timestamp on a message from satellite i
�i = (Tnow �Ti)+�r : measured delay of the message sent by satellite i .
Measured distance to satellite i : c⇥�i
(c is speed of light)
Real distance is

di = c�i �c�r =
q

(xi �xr)2 +(yi �yr)2 +(zi �zr)2

Observation
4 satellites) 4 equations in 4 unknowns (with �r as one of them)

8 / 38

Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle I
Every machine asks a time server for the accurate time at least once
every d/(2r) seconds (Network Time Protocol).

Note
Okay, but you need an accurate measure of round trip delay, including
interrupt handling and processing incoming messages.

9 / 38

Distributed Algorithms 6.1 Clock Synchronization

Clock synchronization principles

Principle II
Let the time server scan all machines periodically, calculate an
average, and inform each machine how it should adjust its time relative
to its present time.

Note
Okay, you’ll probably get every machine in sync. You don’t even need
to propagate UTC time.

Fundamental
You’ll have to take into account that setting the time back is never
allowed) smooth adjustments.

10 / 38

Distributed Algorithms 6.2 Logical Clocks

The Happened-before relationship

Problem
We first need to introduce a notion of ordering before we can order anything.

The happened-before relation

If a and b are two events in the same process, and a comes before b,
then a ! b.
If a is the sending of a message, and b is the receipt of that message,
then a ! b
If a ! b and b ! c, then a ! c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.

11 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Problem
How do we maintain a global view on the system’s behavior that is consistent
with the happened-before relation?

Solution
Attach a timestamp C(e) to each event e, satisfying the following properties:

P1 If a and b are two events in the same process, and a ! b, then we
demand that C(a)< C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a)< C(b).

Problem
How to attach a timestamp to an event when there’s no global clock)
maintain a consistent set of logical clocks, one per process.

12 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks

Solution
Each process Pi maintains a local counter Ci and adjusts this counter
according to the following rules:

1: For any two successive events that take place within Pi , Ci is
incremented by 1.

2: Each time a message m is sent by process Pi , the message receives a
timestamp ts(m) = Ci .

3: Whenever a message m is received by a process Pj , Pj adjusts its local
counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes

Property P1 is satisfied by (1); Property P2 by (2) and (3).
It can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

13 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

0
6
12
18
24
30
36
42
48
54
60

0
8

16
24
32
40
48
56
64
72
80

0
10
20
30
40
50
60
70
80
90

100

m1

m2

m3

m4

0
6

12
18
24
30
36
42
48
70
76

0
8
16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90

100

m1

m2

m3

m4

P adjusts
its clock

P adjusts
its clock

(b)(a)

P1 P2 P3 P1 P2 P3

2

1

14 / 38

Distributed Algorithms 6.2 Logical Clocks

Logical clocks – example

Note
Adjustments take place in the middleware layer

Application layer

Middleware layer

Network layer

Message is delivered to application

Adjust local clock

Message is received

Adjust local clock
and timestamp message

Application sends message

Middleware sends message

15 / 38

Distributed Computing: Principles, Algorithms, and Systems

Scalar Time
Evolution of scalar time:

p
1

p
2

p
3

1 2 3

3 10

11

5 6 7

2
7

9

4
b

1

8 9

4 5

1

Figure 3.1: The space-time diagram of a distributed execution.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 9 / 67

Scalar Time
Evolution of scalar time: The space-time diagram of a distributed execution.

Total Ordering
• Scalar clocks can be used to totally order events in a distributed

system.
• The main problem in totally ordering events is that two or more

events at different processes may have identical timestamp.
• For example in Figure 3.1, the third event of process P1 and the

second event of process P2 have identical scalar timestamp.

Distributed Computing: Principles, Algorithms, and Systems

Total Ordering

A tie-breaking mechanism is needed to order such events. A tie is broken as
follows:

Process identifiers are linearly ordered and tie among events with identical
scalar timestamp is broken on the basis of their process identifiers.

The lower the process identifier in the ranking, the higher the priority.

The timestamp of an event is denoted by a tuple (t, i) where t is its time of
occurrence and i is the identity of the process where it occurred.

The total order relation ≺ on two events x and y with timestamps (h,i) and
(k,j), respectively, is defined as follows:

x ≺ y ⇔ (h < k or (h = k and i < j))

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 11 / 67

Distributed Computing: Principles, Algorithms, and Systems

Properties. . .

Event counting

If the increment value d is always 1, the scalar time has the following
interesting property: if event e has a timestamp h, then h-1 represents the
minimum logical duration, counted in units of events, required before
producing the event e;

We call it the height of the event e.

In other words, h-1 events have been produced sequentially before the event e
regardless of the processes that produced these events.

For example, in Figure 3.1, five events precede event b on the longest causal
path ending at b.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 12 / 67

Distributed Computing: Principles, Algorithms, and Systems

Properties. . .

No Strong Consistency

The system of scalar clocks is not strongly consistent; that is, for two events
ei and ej , C(ei) < C(ej) ̸=⇒ ei → ej .

For example, in Figure 3.1, the third event of process P1 has smaller scalar
timestamp than the third event of process P2.However, the former did not
happen before the latter.

The reason that scalar clocks are not strongly consistent is that the logical
local clock and logical global clock of a process are squashed into one,
resulting in the loss causal dependency information among events at different
processes.

For example, in Figure 3.1, when process P2 receives the first message from
process P1, it updates its clock to 3, forgetting that the timestamp of the
latest event at P1 on which it depends is 2.

A. Kshemkalyani and M. Singhal (Distributed Computing) Logical Time CUP 2008 13 / 67

Distributed Algorithms 6.2 Logical Clocks

Example: Totally ordered multicast

Problem
We sometimes need to guarantee that concurrent updates on a replicated
database are seen in the same order everywhere:

P1 adds $100 to an account (initial value: $1000)
P2 increments account by 1%
There are two replicas

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

Result
In absence of proper synchronization:
replica #1 $1111, while replica #2 $1110.

16 / 38

Distributed Algorithms 6.2 Logical Clocks

Example: Totally ordered multicast

Solution

Process Pi sends timestamped message msgi to all others. The
message itself is put in a local queue queuei .
Any incoming message at Pj is queued in queuej , according to its
timestamp, and acknowledged to every other process.

Pj passes a message msgi to its application if:

(1) msgi is at the head of queuej
(2) for each process Pk , there is a message msgk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

17 / 38

Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a)< C(b) that a causally
preceded b

0
6

12
18
24
30
36
42
48
70
76

0
8
16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90

100

m1
m2

m3

m5

m4

P1 P2 P3

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally precedes b.

18 / 38

Distributed Algorithms 6.2 Logical Clocks

Vector clocks

Solution

Each process Pi has an array VCi [1..n], where VCi [j] denotes the
number of events that process Pi knows have taken place at process Pj .
When Pi sends a message m, it adds 1 to VCi [i], and sends VCi along
with m as vector timestamp vt(m). Result: upon arrival, recipient knows
Pi ’s timestamp.
When a process Pj delivers a message m that it received from Pi with
vector timestamp ts(m), it

(1) updates each VCj [k] to max{VCj [k], ts(m)[k]}
(2) increments VCj [j] by 1.

Question
What does VCi [j] = k mean in terms of messages sent and received?

19 / 38

for all k = 1 to n

Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally
preceding messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts”
VCj when receiving a message (i.e., effectively does not change
VCj [j]).

Pj postpones delivery of m until:

ts(m)[i] = VCj [i]+1.
ts(m)[k] VCj [k] for k 6= i .

20 / 38

Distributed Algorithms 6.2 Logical Clocks

Causally ordered multicasting

Example

P0

P1

P2

 VC = (0,0,0)2 VC = (1,0,0)2

VC = (1,1,0)1

VC = (1,0,0)0 VC = (1,1,0)0

VC = (1,1,0)2

m

m*

Example
Take VC2 = [0,2,2], ts(m) = [1,3,0] from P0. What information does P2
have, and what will it do when receiving m (from P0)?

21 / 38

Thread Synchronisation

27
31

 Synchronizing Statements vs. Methods
Any synchronized instance method can be converted into a
synchronized statement. Suppose that the following is a synchronized
instance method:

public synchronized void xMethod() {
 // method body
}

This method is equivalent to

public void xMethod() {
 synchronized (this) {
 // method body
 }
}

28
32

 Synchronization Using Locks
A synchronized instance method implicitly acquires a lock on the instance
before it executes the method.
JDK 1.5 enables you to use locks explicitly. The new locking features are
flexible and give you more control for coordinating threads. A lock is an
instance of the Lock interface, which declares the methods for acquiring
and releasing locks, as shown in Figure 29.14. A lock may also use the
newCondition() method to create any number of Condition objects,
which can be used for thread communications.

Same as ReentrantLock(false).
Creates a lock with the given fairness policy. When the

fairness is true, the longest-waiting thread will get the
lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void
+unlock(): void
+newCondition(): Condition

Acquires the lock.
Releases the lock.
Returns a new Condition instance that is bound to this

Lock instance.

java.util.concurrent.locks.ReentrantLock
+ReentrantLock()
+ReentrantLock(fair: boolean)

29
33

 Fairness Policy

ReentrantLock is a concrete implementation of Lock for
creating mutual exclusive locks. You can create a lock with the
specified fairness policy. True fairness policies guarantee the
longest-wait thread to obtain the lock first. False fairness
policies grant a lock to a waiting thread without any access
order. Programs using fair locks accessed by many threads may
have poor overall performance than those using the default
setting, but have smaller variances in times to obtain locks and
guarantee lack of starvation.

30
34

 Example: Using Locks

This example revises AccountWithoutSync.java in Listing 29.7
to synchronize the account modification using explicit locks.

AccountWithSyncUsingLock

private static Lock lock = new ReentrantLock(); //
Create a lock
.
. // Critical Section
.
lock.lock(); // Acquire the lock
lock.unlock(); // Release the lock

31
35

 Cooperation Among Threads
The conditions can be used to facilitate communications among
threads. A thread can specify what to do under a certain condition.
Conditions are objects created by invoking the newCondition() method
on a Lock object. Once a condition is created, you can use its await(),
signal(), and signalAll() methods for thread communications, as shown
in Figure 29.15. The await() method causes the current thread to wait
until the condition is signaled. The signal() method wakes up one
waiting thread, and the signalAll() method wakes all waiting threads.

«interface»

java.util.concurrent.Condition

+await(): void
+signal(): void
+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.
Wakes up one waiting thread.
Wakes up all waiting threads.

32
36

 Cooperation Among Threads
To synchronize the operations, use a lock with a condition:
newDeposit (i.e., new deposit added to the account). If the balance is
less than the amount to be withdrawn, the withdraw task will wait for
the newDeposit condition. When the deposit task adds money to the
account, the task signals the waiting withdraw task to try again. The
interaction between the two tasks is shown in Figure 29.16.

while (balance < withdrawAmount)
 newDeposit.await();

Withdraw Task

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

balance -= withdrawAmount

-char token

+getToken
+setToken

lock.unlock();

Deposit Task

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

lock.lock();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

33
37

Example: Thread Cooperation

Write a program that demonstrates thread cooperation. Suppose that
you create and launch two threads, one deposits to an account, and
the other withdraws from the same account. The second thread has to
wait if the amount to be withdrawn is more than the current balance
in the account. Whenever new fund is deposited to the account, the
first thread notifies the second thread to resume. If the amount is still
not enough for a withdrawal, the second thread has to continue to
wait for more fund in the account. Assume the initial balance is 0 and
the amount to deposit and to withdraw is randomly generated.

ThreadCooperation

34
38

 Java’s Built-in Monitors
Locks and conditions are new in Java 5. Prior to Java 5, thread
communications are programmed using object’s built-in
monitors. Locks and conditions are more powerful and flexible
than the built-in monitor. For this reason, this section can be
completely ignored. However, if you work with legacy Java
code, you may encounter the Java’s built-in monitor. A monitor is
an object with mutual exclusion and synchronization
capabilities. Only one thread can execute a method at a time in
the monitor. A thread enters the monitor by acquiring a lock on
the monitor and exits by releasing the lock. Any object can be a
monitor. An object becomes a monitor once a thread locks it.
Locking is implemented using the synchronized keyword on a
method or a block. A thread must acquire a lock before
executing a synchronized method or block. A thread can wait
in a monitor if the condition is not right for it to continue
executing in the monitor.

35
39

 wait(), notify(), and notifyAll()
Use the wait(), notify(), and notifyAll() methods to facilitate
communication among threads.

The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the calling object of
these methods. Otherwise, an IllegalMonitorStateException would
occur.

The wait() method lets the thread wait until some condition occurs.
When it occurs, you can use the notify() or notifyAll() methods to notify
the waiting threads to resume normal execution. The notifyAll()
method wakes up all waiting threads, while notify() picks up only one
thread from a waiting queue.

36
40

 Example: Using Monitor

synchronized (anObject) {
 try {
 // Wait for the condition to become true
 while (!condition)
 anObject.wait();

 // Do something when condition is true
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
}

Task 1

synchronized (anObject) {
 // When condition becomes true
 anObject.notify(); or anObject.notifyAll();
 ...
}

Task 2

 resume

● The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the receiving object
of these methods. Otherwise, an IllegalMonitorStateException will
occur.

● When wait() is invoked, it pauses the thread and simultaneously
releases the lock on the object. When the thread is restarted after
being notified, the lock is automatically reacquired.

● The wait(), notify(), and notifyAll() methods on an object are analogous
to the await(), signal(), and signalAll() methods on a condition.

37
41

Case Study: Producer/Consumer

Consider the classic Consumer/Producer example. Suppose you use a buffer to store
integers. The buffer size is limited. The buffer provides the method write(int) to add
an int value to the buffer and the method read() to read and delete an int value from
the buffer. To synchronize the operations, use a lock with two conditions: notEmpty
(i.e., buffer is not empty) and notFull (i.e., buffer is not full). When a task adds an int
to the buffer, if the buffer is full, the task will wait for the notFull condition. When a
task deletes an int from the buffer, if the buffer is empty, the task will wait for the
notEmpty condition. The interaction between the two tasks is shown in Figure 29.19.

while (count == CAPACITY)
 notFull.await();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

Task for adding an int

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

Add an int to the buffer

-char token

+getToken
+setToken
+paintComponet

notEmpty.signal();

-char token

while (count == 0)
 notEmpty.await();

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

Task for deleting an int

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

Delete an int to the buffer

-char token

+getToken
+setToken
+paintComponet

notFull.signal();

-char token

38
42

Case Study: Producer/Consumer

Listing 29.10 presents the complete program. The program contains
the Buffer class (lines 43-89) and two tasks for repeatedly producing
and consuming numbers to and from the buffer (lines 15-41). The
write(int) method (line 58) adds an integer to the buffer. The read()
method (line 75) deletes and returns an integer from the buffer.

For simplicity, the buffer is implemented using a linked list (lines
48-49). Two conditions notEmpty and notFull on the lock are created
in lines 55-56. The conditions are bound to a lock. A lock must be
acquired before a condition can be applied. If you use the wait() and
notify() methods to rewrite this example, you have to designate two
objects as monitors.

ConsumerProducer

39
43

Blocking Queues

§22.8 introduced queues and priority queues. A blocking queue
causes a thread to block when you try to add an element to a
full queue or to remove an element from an empty queue.

«interface»
java.util.concurrent.BlockingQueue<E>

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.
Waits if the queue is full.

Retrieves and removes the head of this
queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

40
44

Concrete Blocking Queues

Three concrete blocking queues ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue are supported in JDK 1.5, as shown in Figure 29.22. All are
in the java.util.concurrent package. ArrayBlockingQueue implements a blocking
queue using an array. You have to specify a capacity or an optional fairness to
construct an ArrayBlockingQueue. LinkedBlockingQueue implements a blocking
queue using a linked list. You may create an unbounded or bounded
LinkedBlockingQueue. PriorityBlockingQueue is a priority queue. You may create an
unbounded or bounded priority queue.

ArrayBlockingQueue<E>

+ArrayBlockingQueue(capacity: int)
+ArrayBlockingQueue(capacity: int,

fair: boolean)

«interface»
java.util.concurrent.BlockingQueue<E>

LinkedBlockingQueue<E>

+LinkedBlockingQueue()
+LinkedBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

+PriorityBlockingQueue()
+PriorityBlockingQueue(capacity: int)

41
45

Producer/Consumer Using Blocking Queues

Listing 29.11 gives an
example of using an
ArrayBlockingQueue
to simplify the
Consumer/Producer
example in Listing
29.11.

ConsumerProducerUsingBlockingQueue

import java.util.concurrent.*;
public class ConsumerProducerUsingBlockingQueue {
 private static ArrayBlockingQueue<Integer> buffer =
 new ArrayBlockingQueue<Integer>(2);
 public static void main(String[] args) {
 // Create a thread pool with two threads
 ExecutorService executor = Executors.newFixedThreadPool(2);
 executor.execute(new ProducerTask());
 executor.execute(new ConsumerTask());
 executor.shutdown();
 }
 // A task for adding an int to the buffer
 private static class ProducerTask implements Runnable {
 public void run() {
 try {
 int i = 1;
 while (true) {
 System.out.println("Producer writes " + i);
 buffer.put(i++); // Add any value to the buffer, say, 1
 // Put the thread into sleep
 Thread.sleep((int)(Math.random() * 10000));
 }
 } catch (InterruptedException ex) {/* … */}
 }
 }
 // A task for reading and deleting an int from the buffer
 private static class ConsumerTask implements Runnable {
 public void run() {
 try {
 while (true) {
 System.out.println("\t\t\tConsumer reads " + buffer.take());
 // Put the thread into sleep
 Thread.sleep((int)(Math.random() * 10000));
 }
 } catch (InterruptedException ex) {/* … */}
 }
 }
}

42
46

Semaphores

Semaphores can be used to restrict the number of threads that access
a shared resource. Before accessing the resource, a thread must acquire
a permit from the semaphore. After finishing with the resource, the
thread must return the permit back to the semaphore, as shown in
Figure 29.29.

Acquire a permit from a semaphore.
Wait if the permit is not available.

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

A thread accessing a shared resource

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

Access the resource

-char token

+getToken
+setToken
+paintComponet

Release the permit to the semaphore

-char token

semaphore.acquire();

A thread accessing a shared resource

-char token

+getToken
+setToken
+paintComponet
+mouseClicked

 Access the resource

-char token

+getToken
+setToken
+paintComponet

semaphore.release();

-char token

43
47

Creating Semaphores

To create a semaphore, you have to specify the number of permits
with an optional fairness policy, as shown in Figure 29.29. A task
acquires a permit by invoking the semaphore’s acquire() method
and releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of available
permits in a semaphore is reduced by 1. Once a permit is released,
the total number of available permits in a semaphore is increased
by 1.

Creates a semaphore with the specified number of permits. The
fairness policy is false.

Creates a semaphore with the specified number of permits and
the fairness policy.

Acquires a permit from this semaphore. If no permit is
available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

java.util.concurrent.Semaphore
+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:
boolean)

+acquire(): void

+release(): void

44
48

Deadlock

Sometimes two or more threads need to acquire the locks on several shared objects.
This could cause deadlock, in which each thread has the lock on one of the objects and
is waiting for the lock on the other object. Consider the scenario with two threads and
two objects, as shown in Figure 29.15 (32.25). Thread 1 acquired a lock on object1
and Thread 2 acquired a lock on object2. Now Thread 1 is waiting for the lock on
object2 and Thread 2 for the lock on object1. The two threads wait for each other to
release the in order to get the lock, and neither can continue to run.

synchronized (object1) {

 // do something here

 synchronized (object2) {

 // do something here

 }

}

Thread 1

synchronized (object2) {

 // do something here

 synchronized (object1) {

 // do something here

 }

}

Thread 2

Step

1

2

3

4

5

6

Wait for Thread 2 to
release the lock on object2

Wait for Thread 1 to
release the lock on object1

45
49

Preventing Deadlock

Deadlock can be easily avoided by using a simple technique known as
resource ordering. With this technique, you assign an order on all the
objects whose locks must be acquired and ensure that each thread
acquires the locks in that order. For the example in Figure 29.15
(32.25) , suppose the objects are ordered as object1 and object2.
Using the resource ordering technique, Thread 2 must acquire a lock
on object1 first, then on object2. Once Thread 1 acquired a lock on
object1, Thread 2 has to wait for a lock on object1. So Thread 1 will
be able to acquire a lock on object2 and no deadlock would occur.

46
50

Thread States

New Ready

Thread created

Finished

Running

start()
run()

Wait for target
to finish

join()

run() returns
yield(), or
time out

interrupt()

Wait for time
out

Wait to be
notified

sleep()
wait() Target

finished

notify() or
notifyAll()

Time out

Blocked

Interrupted()

A thread can be in one of five states: New, Ready,
Running, Blocked, or Finished.

47
51

Synchronized Collections

The classes in the Java Collections Framework are not thread-safe, i.e.,
the contents may be corrupted if they are accessed and updated
concurrently by multiple threads. You can protect the data in a
collection by locking the collection or using synchronized collections.

The Collections class provides six static methods for wrapping a
collection into a synchronized version, as shown in Figure 29.27. The
collections created using these methods are called synchronization wrappers.

 java.util.Collections

+synchronizedCollection(c: Collection): Collection
+synchronizedList(list: List): List
+synchronizedMap(m: Map): Map
+synchronizedSet(s: Set): Set
+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.
Returns a synchronized list from the specified list.
Returns a synchronized map from the specified map.
Returns a synchronized set from the specified set.
Returns a synchronized sorted map from the specified

sorted map.
Returns a synchronized sorted set.

48
52

Vector, Stack, and Hashtable

Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original
collection c are synchronized. These methods are implemented using the
synchronized keyword. For example, the add method is implemented like
this:

public boolean add(E o) {
 synchronized (this) { return c.add(o); }
}

The synchronized collections can be safely accessed and modified by
multiple threads concurrently.

The methods in java.util.Vector, java.util.Stack, and Hashtable are already
synchronized. These are old classes introduced in JDK 1.0. In JDK 1.5,
you should use java.util.ArrayList to replace Vector, java.util.LinkedList to
replace Stack, and java.util.Map to replace Hashtable. If synchronization
is needed, use a synchronization wrapper.

49
53

Fail-Fast
The synchronization wrapper classes are thread-safe, but the iterator is fail-fast. This
means that if you are using an iterator to traverse a collection while the underlying
collection is being modified by another thread, then the iterator will immediately fail
by throwing java.util.ConcurrentModificationException, which is a subclass of
RuntimeException. To avoid this error, you need to create a synchronized collection
object and acquire a lock on the object when traversing it. For example, suppose you
want to traverse a set, you have to write the code like this:

Set hashSet = Collections.synchronizedSet(new HashSet());
synchronized (hashSet) { // Must synchronize it
 Iterator iterator = hashSet.iterator();
 while (iterator.hasNext()) {
 System.out.println(iterator.next());
 }
}

Failure to do so may result in nondeterministic behavior, such as
ConcurrentModificationException.

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion

Problem
A number of processes in a distributed system want exclusive access
to some resource.

Basic solutions
Via a centralized server.
Completely decentralized, using a peer-to-peer system.
Completely distributed, with no topology imposed.
Completely distributed along a (logical) ring.

22 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: centralized

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request Request ReleaseOK OK

Coordinator

Queue is
empty

No reply

23 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Decentralized mutual exclusion

Principle
Assume every resource is replicated n times, with each replica having
its own coordinator) access requires a majority vote from m > n/2
coordinators. A coordinator always responds immediately to a request.

Assumption
When a coordinator crashes, it will recover quickly, but will have
forgotten about permissions it had granted.

24 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Decentralized mutual exclusion

Issue
How robust is this system? Let p =�t/T denote the probability that a
coordinator crashes and recovers in a period �t while having an
average lifetime T) probability that k out m coordinators reset:

P[violation] = pv =
n

Â
k=2m�n

✓
m
k

◆
pk (1�p)m�k

With p = 0.001, n = 32, m = 0.75n, pv < 10�40

25 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion Ricart & Agrawala

Principle
The same as Lamport except that acknowledgments aren’t sent. Instead,
replies (i.e. grants) are sent only when

The receiving process has no interest in the shared resource; or
The receiving process is waiting for the resource, but has lower priority
(known through comparison of timestamps).
In all other cases, reply is deferred, implying some more local
administration.

0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Accesses
resource

Accesses
resource

(a) (b) (c)

26 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed
between them. The one that holds the token is allowed to enter the
critical region (if it wants to).

1

00

2
3

4

5
6

7

2 4 7 1 6 53

(a) (b)

27 / 38

Distributed Algorithms 6.3 Mutual Exclusion

Mutual exclusion: comparison

Algorithm # msgs per Delay before entry Problems
entry/exit (in msg times)

Centralized 3 2 Coordinator crash
Decentralized 2mk + m, k = 1,2,... 2mk Starvation, low eff.
Distributed 2 (n – 1) 2 (n – 1) Crash of any process
Token ring 1 to • 0 to n – 1 Lost token, proc. crash

28 / 38

• Finally, all algorithms except the decentralized one suffer
badly in the event of crashes.

• Special measures and additional complexity must be
introduced to avoid having a crash bring down the entire
system.

• It is ironic that the distributed algorithms are even more
sensitive to crashes than the centralized one.

• In a system that is designed to be fault tolerant, none of
these would be suitable, but if crashes are very infrequent,
they might do.

• The decentralized algorithm is less sensitive to crashes,
but processes may suffer from starvation and special
measures are needed to guarantee efficiency.

Distributed Algorithms 6.4 Node Positioning

Global positioning of nodes

Problem
How can a single node efficiently estimate the latency between any
two other nodes in a distributed system?

Solution
Construct a geometric overlay network, in which the distance d(P,Q)
reflects the actual latency between P and Q.

29 / 38

Distributed Algorithms 6.4 Node Positioning

Computing position

Observation
A node P needs k +1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

P

(x ,y)3 3

(x ,y)2 2

(x ,y)1 1

3d

2d

1d

Solution
P needs to solve three
equations in two unknowns
(xP ,yP):

di =
q
(xi �xP)2 +(yi �yP)2

30 / 38

Distributed Algorithms 6.4 Node Positioning

Computing position

Problems

measured latencies to
landmarks fluctuate
computed distances will not
even be consistent:

P
1 2 3 4

Q R

3.2

1.0 2.0

Solution
Let the L landmarks measure their pairwise latencies d(bi ,bj) and let each
node P minimize

L

Â
i=1

d(bi ,P)� d̂(bi ,P)

d(bi ,P)

�2

where d̂(bi ,P) denotes the distance to landmark bi given a computed
coordinate for P.

31 / 38

Distributed Algorithms 6.5 Election Algorithms

Election algorithms

Principle
An algorithm requires that some process acts as a coordinator. The question
is how to select this special process dynamically.

Note
In many systems the coordinator is chosen by hand (e.g. file servers). This
leads to centralized solutions) single point of failure.

Question
If a coordinator is chosen dynamically, to what extent can we speak about a
centralized or distributed solution?

Question
Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

32 / 38

Distributed Algorithms 6.5 Election Algorithms

Election by bullying

Principle
Each process has an associated priority (weight). The process with
the highest priority should always be elected as the coordinator. Issue
How do we find the heaviest process?

Any process can just start an election by sending an election
message to all other processes (assuming you don’t know the
weights of the others).
If a process Pheavy receives an election message from a lighter
process Plight, it sends a take-over message to Plight. Plight is out of
the race.
If a process doesn’t get a take-over message back, it wins, and
sends a victory message to all other processes.

33 / 38

Distributed Algorithms 6.5 Election Algorithms

Election by bullying

1
2

4

0

5

6

3
7

1
2

4

0

5

6

3
7

1
2

4

0

5

6

3
7

1
2

4

0

5

6

3
7

Election

El
ec

tio
nElection

Election

OK

OK

Previous coordinator
has crashed

Elec
tio

n

Election

1
2

4

0

5

6

3
7

OK
Coordinator

(a) (b) (c)

(d) (e)

34 / 38

Distributed Algorithms 6.5 Election Algorithms

Election in a ring

Principle
Process priority is obtained by organizing processes into a (logical)
ring. Process with the highest priority should be elected as
coordinator.

Any process can start an election by sending an election message
to its successor. If a successor is down, the message is passed
on to the next successor.
If a message is passed on, the sender adds itself to the list. When
it gets back to the initiator, everyone had a chance to make its
presence known.
The initiator sends a coordinator message around the ring
containing a list of all living processes. The one with the highest
priority is elected as coordinator.

35 / 38

Distributed Algorithms 6.5 Election Algorithms

Election in a ring

Question
Does it matter if two processes initiate an election?

Question
What happens if a process crashes during the election?

36 / 38

266 SYNCHRONIZA nON CHAP. 6

A Ring Algorithm

Another election algorithm is based on the use of a ring. Unlike some ring al-
gorithms, this one does not use a token. We assume that the processes are physi-
cally or logically ordered, so that each process knows who its successor is. When
any process notices that the coordinator is not functioning, it builds an ELEC-
TION message containing its own process number and sends the message to' its
successor. If the successor is down, the sender skips over the successor and goes
to the next member along the ring. or the one after that, until a running process is
located. At each step along the way, the sender adds its own process number to
the list in the message effectively making itself a candidate to be elected as coor-
dinator.

Eventually, the message gets back to the process that started it all. That proc-
ess recognizes this event when it receives an incoming message containing its
own process number. At that point, the message type is changed to COORDINA-
TOR and circulated once again, this time to inform everyone else who the coordi-
nator is (the list member with the highest number) and who the members of the
new ring are. When this message has circulated once, it is removed and everyone
goes back to work.

Figure 6-21. Election algorithm using a ring.

In Fig. 6-21 we see what happens if two processes, 2 and 5, discover simul-
taneously that the previous coordinator, process 7, has crashed. Each of these
builds an ELECTION message and and each of them starts circulating its mes-
sage, independent of the other one. Eventually, both messages will go all the way
around, and both 2 and 5 will convert them into COORDINATOR messages, with
exactly the same members and in the same order. When both have gone around
again, both will be removed. It does no harm to have extra messages circulating;
at worst it consumes a little bandwidth, but this not considered wasteful.

Distributed Algorithms 6.5 Election Algorithms

Superpeer election

Issue
How can we select superpeers such that:

Normal nodes have low-latency access to superpeers
Superpeers are evenly distributed across the overlay network
There is be a predefined fraction of superpeers
Each superpeer should not need to serve more than a fixed
number of normal nodes

37 / 38

Distributed Algorithms 6.5 Election Algorithms

Superpeer election

DHTs
Reserve a fixed part of the ID space for superpeers. Example: if S
superpeers are needed for a system that uses m-bit identifiers, simply
reserve the k = dlog2 Se leftmost bits for superpeers. With N nodes,
we’ll have, on average, 2k�mN superpeers.

Routing to superpeer
Send message for key p to node responsible for
p AND 11 · · ·11| {z }

k

00 · · ·00| {z }
m�k

38 / 38

