
ISBN 0-321-49362-1

Chapter 3

Describing Syntax
and Semantics

Copyright © 2015 Pearson. All rights reserved. 2

Chapter 3 Topics

• Introduction
• The General Problem of Describing Syntax
• Formal Methods of Describing Syntax
• Attribute Grammars

Copyright © 2015 Pearson. All rights reserved. 3

Introduction

• Syntax: the form or structure of the
expressions, statements, and program units

• Semantics: the meaning of the expressions,
statements, and program units

• Syntax and semantics provide a language’s
definition
– Users of a language definition

• Other language designers
• Implementers
• Programmers (the users of the language)

Copyright © 2015 Pearson. All rights reserved. 4

The General Problem of Describing
Syntax: Terminology

• A sentence is a string of characters over some
alphabet

• A language is a set of sentences

• A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

• A token is a category of lexemes (e.g., identifier)

Copyright © 2015 Pearson. All rights reserved. 5

Formal Definition of Languages

• Recognizers
– A recognition device reads input strings over the alphabet

of the language and decides whether the input strings
belong to the language

– Example: syntax analysis part of a compiler
 - Detailed discussion of syntax analysis appears in
 Chapter 4

• Generators
– A device that generates sentences of a language
– One can determine if the syntax of a particular sentence

is syntactically correct by comparing it to the structure of
the generator

Copyright © 2015 Pearson. All rights reserved. 6

BNF and Context-Free Grammars

• Context-Free Grammars
– Developed by Noam Chomsky in the mid-1950s
– Language generators, meant to describe the
syntax of natural languages

– Define a class of languages called context-free
languages

• Backus-Naur Form (1959)
– Invented by John Backus to describe the syntax
of Algol 58

– BNF is equivalent to context-free grammars

Recursively-
enumerable
(TM)

Context- 
sensitive (LBA)

Context- 
free (PDA)

Regular
(DFA)

7

• A containment hierarchy of classes of formal languages

8

9

Copyright © 2015 Pearson. All rights reserved. 10

BNF Fundamentals

• In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols, or just
terminals)

• Terminals are lexemes or tokens

• A rule has a left-hand side (LHS), which is a

nonterminal, and a right-hand side (RHS), which is a
string of terminals and/or nonterminals

BNF Fundamentals (continued)

• Nonterminals are often enclosed in angle brackets

– Examples of BNF rules:
 <ident_list> → identifier | identifier, <ident_list>
 <if_stmt> → if <logic_expr> then <stmt>

• Grammar: a finite non-empty set of rules

• A start symbol is a special element of the
nonterminals of a grammar

Copyright © 2015 Pearson. All rights reserved. 11

Copyright © 2015 Pearson. All rights reserved. 12

BNF Rules

• An abstraction (or nonterminal symbol)
can have more than one RHS

 <stmt> → <single_stmt>
 | begin <stmt_list> end

Copyright © 2015 Pearson. All rights reserved. 13

Describing Lists

• Syntactic lists are described using
recursion

 <ident_list> → ident

 | ident, <ident_list>

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

Copyright © 2015 Pearson. All rights reserved. 14

An Example Grammar

 <program> → <stmts>
 <stmts> → <stmt> | <stmt> ; <stmts>
 <stmt> → <var> = <expr>
 <var> → a | b | c | d
 <expr> → <term> + <term> | <term> - <term>
 <term> → <var> | const

Copyright © 2015 Pearson. All rights reserved. 15

An Example Derivation

 <program> => <stmts> => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

Copyright © 2015 Pearson. All rights reserved. 16

Derivations

• Every string of symbols in a derivation is a
sentential form

• A sentence is a sentential form that has only
terminal symbols

• A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded

• A derivation may be neither leftmost nor
rightmost

Copyright © 2015 Pearson. All rights reserved. 17

Parse Tree

• A hierarchical representation of a derivation

 <program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>

Copyright © 2015 Pearson. All rights reserved. 18

Ambiguity in Grammars

• A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Copyright © 2015 Pearson. All rights reserved. 19

An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr> | const
<op> → / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Copyright © 2015 Pearson. All rights reserved. 20

An Unambiguous Expression Grammar

• If we use the parse tree to indicate
precedence levels of the operators, we
cannot have ambiguity

<expr> → <expr> - <term> | <term>
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

Copyright © 2015 Pearson. All rights reserved. 21

Associativity of Operators

• Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+

Unambiguous Grammar for Selector

• Java if-then-else grammar
 <if_stmt> -> if (<logic_expr>) <stmt>
 | if (<logic_expr>) <stmt> else <stmt>

 Ambiguous!

Copyright © 2015 Pearson. All rights reserved. 22

3.3 Formal Methods of Describing Syntax 129

Therefore, there cannot be an if statement without an else between a
then and its matching else. So, for this situation, statements must be distin-
guished between those that are matched and those that are unmatched, where
unmatched statements are else-less ifs and all other statements are matched.
The problem with the earlier grammar is that it treats all statements as if they
had equal syntactic significance—that is, as if they were all matched.

To reflect the different categories of statements, different abstractions, or
nonterminals, must be used. The unambiguous grammar based on these ideas
follows:

<stmt> → <matched> | <unmatched>
<matched> → if <logic_expr> then <matched> else <matched>
 |any non-if statement
<unmatched> → if <logic_expr> then <stmt>
 |if <logic_expr> then <matched> else <unmatched>

There is just one possible parse tree, using this grammar, for the following
sentential form:

if <logic_expr> then if <logic_expr> then <stmt> else <stmt>

Figure 3.5

Two distinct parse trees
for the same sentential
form

if <logic_expr> then <stmt> else <stmt>

if <logic_expr> then <stmt>

<if_stmt>

<if_stmt>

if <logic_expr> then <stmt> else <stmt>

<if_stmt>

if <logic_expr> then <stmt>

<if_stmt>

3.3 Formal Methods of Describing Syntax 129

Therefore, there cannot be an if statement without an else between a
then and its matching else. So, for this situation, statements must be distin-
guished between those that are matched and those that are unmatched, where
unmatched statements are else-less ifs and all other statements are matched.
The problem with the earlier grammar is that it treats all statements as if they
had equal syntactic significance—that is, as if they were all matched.

To reflect the different categories of statements, different abstractions, or
nonterminals, must be used. The unambiguous grammar based on these ideas
follows:

<stmt> → <matched> | <unmatched>
<matched> → if <logic_expr> then <matched> else <matched>
 |any non-if statement
<unmatched> → if <logic_expr> then <stmt>
 |if <logic_expr> then <matched> else <unmatched>

There is just one possible parse tree, using this grammar, for the following
sentential form:

if <logic_expr> then if <logic_expr> then <stmt> else <stmt>

Figure 3.5

Two distinct parse trees
for the same sentential
form

if <logic_expr> then <stmt> else <stmt>

if <logic_expr> then <stmt>

<if_stmt>

<if_stmt>

if <logic_expr> then <stmt> else <stmt>

<if_stmt>

if <logic_expr> then <stmt>

<if_stmt>

24

 <stmt> -> <matched> | <unmatched>
 <matched> -> if (<logic_expr>) <stmt>
 | a non-if statement
 <unmatched> -> if (<logic_expr>) <stmt>
 | if (<logic_expr>) <matched> else
 <unmatched>

An unambiguous grammar for if-then-else

Copyright © 2015 Pearson. All rights reserved. 25

Extended BNF

• Optional parts are placed in brackets []
 <proc_call> -> ident [(<expr_list>)]

• Alternative parts of RHSs are placed inside
parentheses and separated via vertical
bars

 <term> → <term> (+|-) const

• Repetitions (0 or more) are placed inside
braces { }

 <ident> → letter {letter|digit}

Copyright © 2015 Pearson. All rights reserved. 26

BNF and EBNF

• BNF
 <expr> → <expr> + <term>
 | <expr> - <term>
 | <term>
 <term> → <term> * <factor>
 | <term> / <factor>
 | <factor>

• EBNF
 <expr> → <term> {(+ | -) <term>}
 <term> → <factor> {(* | /) <factor>}

Copyright © 2015 Pearson. All rights reserved. 27

Recent Variations in EBNF

• Alternative RHSs are put on separate lines
• Use of a colon instead of =>
• Use of opt for optional parts

• Use of oneof for choices

Copyright © 2015 Pearson. All rights reserved. 28

Static Semantics

• Nothing to do with meaning
• Context-free grammars (CFGs) cannot describe
all of the syntax of programming languages

• Categories of constructs that are trouble:
 - Context-free, but cumbersome (e.g.,
 types of operands in expressions)
 - Non-context-free (e.g., variables must
 be declared before they are used)

Copyright © 2015 Pearson. All rights reserved. 29

Attribute Grammars

• Attribute grammars (AGs) have additions
to CFGs to carry some semantic info on
parse tree nodes

• Primary value of AGs:
– Static semantics specification
– Compiler design (static semantics checking)

Copyright © 2015 Pearson. All rights reserved. 30

Attribute Grammars : Definition

• Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following
additions:
– For each grammar symbol x there is a set A(x)
of attribute values

– Each rule has a set of functions that define
certain attributes of the nonterminals in the rule

– Each rule has a (possibly empty) set of
predicates to check for attribute consistency

Copyright © 2015 Pearson. All rights reserved. 31

Attribute Grammars: Definition

• Let X0 → X1 ... Xn be a rule

• Functions of the form S(X0) = f(A(X1), ... ,
A(Xn)) define synthesized attributes

• Functions of the form I(Xj) = f(A(X0), ... ,
A(Xn)), for i <= j <= n, define inherited
attributes

• Initially, there are intrinsic attributes on the
leaves

32

Attribute Grammars: Example 1

3.4 Attribute Grammars 135

and their types. The contents of the symbol table are set based on earlier declara-
tion statements. Initially, assuming that an unattributed parse tree has been con-
structed and that attribute values are needed, the only attributes with values are the
intrinsic attributes of the leaf nodes. Given the intrinsic attribute values on a parse
tree, the semantic functions can be used to compute the remaining attribute values.

3.4.5 Examples of Attribute Grammars

As a very simple example of how attribute grammars can be used to describe
static semantics, consider the following fragment of an attribute grammar
that describes the rule that the name on the end of an Ada procedure must
match the procedure’s name. (This rule cannot be stated in BNF.) The string
attribute of <proc_name>, denoted by <proc_name>.string, is the actual
string of characters that were found immediately following the reserved
word procedure by the compiler. Notice that when there is more than one
occurrence of a nonterminal in a syntax rule in an attribute grammar, the
nonterminals are subscripted with brackets to distinguish them. Neither the
subscripts nor the brackets are part of the described language.

Syntax rule: <proc_def> → procedure <proc_name>[1]
 <proc_body> end <proc_name>[2];
Predicate: <proc_name>[1]string == <proc_name>[2].string

In this example, the predicate rule states that the name string attribute of the
<proc_name> nonterminal in the subprogram header must match the name string
attribute of the <proc_name> nonterminal following the end of the subprogram.

Next, we consider a larger example of an attribute grammar. In this case, the
example illustrates how an attribute grammar can be used to check the type rules
of a simple assignment statement. The syntax and static semantics of this assign-
ment statement are as follows: The only variable names are A, B, and C. The
right side of the assignments can be either a variable or an expression in the form
of a variable added to another variable. The variables can be one of two types:
int or real. When there are two variables on the right side of an assignment,
they need not be the same type. The type of the expression when the operand
types are not the same is always real. When they are the same, the expression
type is that of the operands. The type of the left side of the assignment must
match the type of the right side. So the types of operands in the right side can be
mixed, but the assignment is valid only if the target and the value resulting from
evaluating the right side have the same type. The attribute grammar specifies
these static semantic rules.

The syntax portion of our example attribute grammar is

<assign> → <var> = <expr>
<expr> → <var> + <var>
 | <var>
<var> → A | B | C

Copyright © 2015 Pearson. All rights reserved. 33

Attribute Grammars: Example 2

• Syntax
<assign> -> <var> = <expr>
<expr> -> <var> + <var> | <var>
<var> A | B | C

• actual_type: synthesized for <var>
and <expr>

• expected_type: inherited for <expr>

Copyright © 2015 Pearson. All rights reserved. 34

Attribute Grammar (continued)

136 Chapter 3 Describing Syntax and Semantics

The attributes for the nonterminals in the example attribute grammar are
described in the following paragraphs:

• actual_type—A synthesized attribute associated with the nonterminals <var>
and <expr>. It is used to store the actual type, int or real, of a variable or
expression. In the case of a variable, the actual type is intrinsic. In the case
of an expression, it is determined from the actual types of the child node
or children nodes of the <expr> nonterminal.

• expected_type—An inherited attribute associated with the nonterminal
<expr>. It is used to store the type, either int or real, that is expected for
the expression, as determined by the type of the variable on the left side of
the assignment statement.

The complete attribute grammar follows in Example 3.6.

EXAMPLE 3.6 An Attribute Grammar for Simple Assignment Statements

 1. Syntax rule: <assign> → <var> = <expr>
 Semantic rule: <expr>.expected_type ← <var>.actual_type

 2. Syntax rule: <expr> → <var>[2] + <var>[3]
 Semantic rule: <expr>.actual_type ←
 if (<var>[2].actual_type = int) and
 (<var>[3].actual_type = int)
 then int
 else real
 end if
 Predicate: <expr>.actual_type == <expr>.expected_type

 3. Syntax rule: <expr> → <var>
 Semantic rule: <expr>.actual_type ← <var>.actual_type
 Predicate: <expr>.actual_type == <expr>.expected_type

 4. Syntax rule: <var> → A | B | C
 Semantic rule: <var>.actual_type ← look-up(<var>.string)

The look-up function looks up a given variable name in the symbol table and
returns the variable’s type.

A parse tree of the sentence A = A + B generated by the grammar in
Example 3.6 is shown in Figure 3.6. As in the grammar, bracketed numbers
are added after the repeated node labels in the tree so they can be referenced
unambiguously.

35

3.4 Attribute Grammars 137

3.4.6 Computing Attribute Values

Now, consider the process of computing the attribute values of a parse tree,
which is sometimes called decorating the parse tree. If all attributes were
inherited, this could proceed in a completely top-down order, from the
root to the leaves. Alternatively, it could proceed in a completely bottom-
up order, from the leaves to the root, if all the attributes were synthesized.
Because our grammar has both synthesized and inherited attributes, the
evaluation process cannot be in any single direction. The following is an
evaluation of the attributes, in an order in which it is possible to compute
them:

 1. <var>.actual_type ← look-up(A) (Rule 4)
 2. <expr>.expected_type ← <var>.actual_type (Rule 1)
 3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)
 4. <expr>.actual_type ← either int or real (Rule 2)
 5. <expr>.expected_type == <expr>.actual_type is either
 TRUE or FALSE (Rule 2)

The tree in Figure 3.7 shows the flow of attribute values in the example of
Figure 3.6. Solid lines are used for the parse tree; dashed lines show attribute
flow in the tree.

The tree in Figure 3.8 shows the final attribute values on the nodes. In this
example, A is defined as a real and B is defined as an int.

Determining attribute evaluation order for the general case of an attribute
grammar is a complex problem, requiring the construction of a dependency
graph to show all attribute dependencies.

<assign>

<var>[3]

B

<var>[2]

A= +

<var>

A

<expr>

Figure 3.6

A parse tree for
A = A + B

Parse Tree for A = A + B

Copyright © 2015 Pearson. All rights reserved. 36

Attribute Grammars (continued)

• How are attribute values computed?
– If all attributes were inherited, the tree could be
decorated in top-down order.

– If all attributes were synthesized, the tree could
be decorated in bottom-up order.

– In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

Copyright © 2015 Pearson. All rights reserved. 37

Attribute Grammars (continued)

3.4 Attribute Grammars 137

3.4.6 Computing Attribute Values

Now, consider the process of computing the attribute values of a parse tree,
which is sometimes called decorating the parse tree. If all attributes were
inherited, this could proceed in a completely top-down order, from the
root to the leaves. Alternatively, it could proceed in a completely bottom-
up order, from the leaves to the root, if all the attributes were synthesized.
Because our grammar has both synthesized and inherited attributes, the
evaluation process cannot be in any single direction. The following is an
evaluation of the attributes, in an order in which it is possible to compute
them:

 1. <var>.actual_type ← look-up(A) (Rule 4)
 2. <expr>.expected_type ← <var>.actual_type (Rule 1)
 3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)
 4. <expr>.actual_type ← either int or real (Rule 2)
 5. <expr>.expected_type == <expr>.actual_type is either
 TRUE or FALSE (Rule 2)

The tree in Figure 3.7 shows the flow of attribute values in the example of
Figure 3.6. Solid lines are used for the parse tree; dashed lines show attribute
flow in the tree.

The tree in Figure 3.8 shows the final attribute values on the nodes. In this
example, A is defined as a real and B is defined as an int.

Determining attribute evaluation order for the general case of an attribute
grammar is a complex problem, requiring the construction of a dependency
graph to show all attribute dependencies.

<assign>

<var>[3]

B

<var>[2]

A= +

<var>

A

<expr>

Figure 3.6

A parse tree for
A = A + B

138 Chapter 3 Describing Syntax and Semantics

expected_type

<assign>

<var>[3]

B

<var>[2]

A= +

<var>

A

<expr>
actual_type

actual_typeactual_typeactual_type

<assign>

<var>[3]

B

actual_type =
int_type

actual_type =
real_type

<var>[2]

A= +

<var>

A

actual_type =
real_type

<expr> expected_type = real_type
actual_type = real_type

Figure 3.7

The flow of attributes
in the tree

Figure 3.8

A fully attributed
parse tree

3.4.7 Evaluation

Checking the static semantic rules of a language is an essential part of all com-
pilers. Even if a compiler writer has never heard of an attribute grammar, he
or she would need to use their fundamental ideas to design the checks of static
semantics rules for his or her compiler.

One of the main difficulties in using an attribute grammar to describe all of
the syntax and static semantics of a real contemporary programming language
is the size and complexity of the attribute grammar. The large number of attri-
butes and semantic rules required for a complete programming language make
such grammars difficult to write and read. Furthermore, the attribute values on
a large parse tree are costly to evaluate. On the other hand, less formal attribute

138 Chapter 3 Describing Syntax and Semantics

expected_type

<assign>

<var>[3]

B

<var>[2]

A= +

<var>

A

<expr>
actual_type

actual_typeactual_typeactual_type

<assign>

<var>[3]

B

actual_type =
int_type

actual_type =
real_type

<var>[2]

A= +

<var>

A

actual_type =
real_type

<expr> expected_type = real_type
actual_type = real_type

Figure 3.7

The flow of attributes
in the tree

Figure 3.8

A fully attributed
parse tree

3.4.7 Evaluation

Checking the static semantic rules of a language is an essential part of all com-
pilers. Even if a compiler writer has never heard of an attribute grammar, he
or she would need to use their fundamental ideas to design the checks of static
semantics rules for his or her compiler.

One of the main difficulties in using an attribute grammar to describe all of
the syntax and static semantics of a real contemporary programming language
is the size and complexity of the attribute grammar. The large number of attri-
butes and semantic rules required for a complete programming language make
such grammars difficult to write and read. Furthermore, the attribute values on
a large parse tree are costly to evaluate. On the other hand, less formal attribute

A fully attributed parse tree

The flow of attributes in the tree

39

References

» Michael Sipser, Introduction to the Theory of
Computation, 2nd or 3rd edition, Course
technology, 2005 or 2013.

» Slides used in the computational theory
course (available on moodle)

» Slides used in System Programming course
for a simple pascal language (available on
moodle)

40

Tools

» http://dinosaur.compilertools.net
» http://jflab.org

