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Chapter 3 Topics
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Introduction

• Syntax: the form or structure of the 
expressions, statements, and program units 

• Semantics: the meaning of the expressions,  
statements, and program units 

• Syntax and semantics provide a language’s 
definition 
–  Users of a language definition 

• Other language designers 
• Implementers 
• Programmers (the users of the language)



Copyright © 2015 Pearson. All rights reserved. 4

The General Problem of Describing 
Syntax: Terminology

• A sentence is a string of characters over some 
alphabet 

• A language is a set of sentences 

• A lexeme is the lowest level syntactic unit of a 
language (e.g., *, sum, begin) 

• A token is a category of lexemes (e.g., identifier)
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Formal Definition of Languages

• Recognizers 
– A recognition device reads input strings over the alphabet 

of the language and decides whether the input strings 
belong to the language  

– Example: syntax analysis part of a compiler 
     - Detailed discussion of syntax analysis appears in  
         Chapter 4 

• Generators 
– A device that generates sentences of a language 
– One can determine if the syntax of a particular sentence 

is syntactically correct by comparing it to the structure of 
the generator
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BNF and Context-Free Grammars

• Context-Free Grammars 
– Developed by Noam Chomsky in the mid-1950s 
– Language generators, meant to describe the 
syntax of natural languages 

– Define a class of languages called context-free 
languages 

• Backus-Naur Form (1959) 
– Invented by John Backus to describe the syntax 
of Algol 58 

– BNF is equivalent to context-free grammars



Recursively-
enumerable  
(TM)

Context- 
sensitive  (LBA)

Context- 
free (PDA)

Regular 
(DFA)

7

• A containment hierarchy of classes of formal languages
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BNF Fundamentals

• In BNF, abstractions are used to represent classes 
of syntactic structures--they act like  syntactic  
variables (also called nonterminal symbols, or just 
terminals) 

• Terminals are lexemes or tokens 
  
• A rule has a left-hand side (LHS), which is a 

nonterminal, and a right-hand side (RHS), which is a 
string of terminals and/or nonterminals



BNF Fundamentals (continued)

• Nonterminals are often enclosed in angle brackets 

– Examples of BNF rules: 
 <ident_list> → identifier | identifier, <ident_list> 
 <if_stmt> → if <logic_expr> then <stmt> 

• Grammar: a finite non-empty set of rules 

• A start symbol is a special element of the 
nonterminals of a grammar
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BNF Rules

• An abstraction (or nonterminal symbol) 
can have more than one RHS 

     <stmt> → <single_stmt>  
             | begin <stmt_list> end
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Describing Lists

• Syntactic lists are described using 
recursion 

    <ident_list> → ident 

                | ident, <ident_list> 

• A derivation is a repeated application of 
rules, starting with the start symbol and 
ending with a sentence (all terminal 
symbols)
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An Example Grammar

 <program> → <stmts> 
   <stmts> → <stmt> | <stmt> ; <stmts> 
   <stmt> → <var> = <expr> 
   <var> → a | b | c | d 
   <expr> → <term> + <term> | <term> - <term> 
   <term> → <var> | const
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An Example Derivation

 <program> => <stmts> => <stmt>  
                      => <var> = <expr>  
                      => a = <expr>  
                      => a = <term> + <term> 
                      => a = <var> + <term>  
                      => a = b + <term> 
                      => a = b + const
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Derivations

• Every string of symbols in a derivation is a 
sentential form 

• A sentence is a sentential form that has only 
terminal symbols 

• A leftmost derivation is one in which the 
leftmost nonterminal in each sentential form 
is the one that is expanded 

• A derivation may be neither leftmost nor 
rightmost
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Parse Tree

• A hierarchical representation of a derivation 
           
  <program>

<stmts>

<stmt>

const

a

<var> = <expr>

<var>

b

<term> + <term>
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Ambiguity in Grammars

• A grammar is ambiguous if and only if it 
generates a sentential form that has two 
or more distinct parse trees
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An Ambiguous Expression Grammar

<expr> → <expr> <op> <expr>  |  const 
<op> → /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>
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An Unambiguous Expression Grammar

• If we use the parse tree to indicate 
precedence levels of the operators, we 
cannot have ambiguity 

<expr> → <expr> - <term>  |  <term> 
<term> → <term> / const| const

<expr>

<expr> <term>

<term> <term>

const const

const/

-
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Associativity of Operators

• Operator associativity can also be indicated by a 
grammar 

<expr> -> <expr> + <expr> |  const  (ambiguous) 
<expr> -> <expr> + const  |  const  (unambiguous)

<expr><expr>

<expr>

<expr> const

const

const

+

+



Unambiguous Grammar for Selector

• Java if-then-else grammar 
  <if_stmt> -> if (<logic_expr>) <stmt> 
            | if (<logic_expr>) <stmt> else <stmt> 

      Ambiguous! 
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Therefore, there cannot be an if statement without an else between a 
then and its matching else. So, for this situation, statements must be distin-
guished between those that are matched and those that are unmatched, where 
unmatched statements are else-less ifs and all other statements are matched. 
The problem with the earlier grammar is that it treats all statements as if they 
had equal syntactic significance—that is, as if they were all matched.

To reflect the different categories of statements, different abstractions, or 
nonterminals, must be used. The unambiguous grammar based on these ideas 
follows:

<stmt> → <matched> | <unmatched>
<matched> → if <logic_expr> then <matched> else <matched>
                     |any non-if statement
<unmatched> → if <logic_expr> then <stmt>
                        |if <logic_expr> then <matched> else <unmatched>

There is just one possible parse tree, using this grammar, for the following 
sentential form:

if <logic_expr> then if <logic_expr> then <stmt> else <stmt>

Figure 3.5

Two distinct parse trees 
for the same sentential 
form

if     <logic_expr>    then     <stmt>     else     <stmt>

if     <logic_expr>     then     <stmt>

<if_stmt>

<if_stmt>
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<if_stmt>

if     <logic_expr>     then    <stmt>     

<if_stmt>
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  <stmt> -> <matched> | <unmatched> 
 <matched> -> if (<logic_expr>) <stmt> 
             | a non-if statement 
 <unmatched> -> if (<logic_expr>) <stmt> 
              | if (<logic_expr>) <matched> else 
                   <unmatched>

An unambiguous grammar for if-then-else
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Extended BNF

• Optional parts are placed in brackets [ ] 
 <proc_call> -> ident [(<expr_list>)] 

• Alternative parts of RHSs are placed inside 
parentheses and separated via vertical 
bars  

 <term> → <term> (+|-) const 

• Repetitions (0 or more) are placed inside 
braces { } 

 <ident> → letter {letter|digit}
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BNF and EBNF

• BNF 
   <expr> → <expr> + <term> 
           | <expr> - <term> 
           | <term> 
    <term> → <term> * <factor> 
           | <term> / <factor> 
          | <factor> 

• EBNF 
   <expr> → <term> {(+ | -) <term>} 
    <term> → <factor> {(* | /) <factor>}
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Recent Variations in EBNF

• Alternative RHSs are put on separate lines 
• Use of a colon instead of => 
• Use of opt for optional parts 

• Use of oneof for choices
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Static Semantics

• Nothing to do with meaning 
• Context-free grammars (CFGs) cannot describe 
all of the syntax of programming languages  

• Categories of constructs that are trouble: 
    - Context-free, but cumbersome (e.g., 
        types of operands in expressions) 
    - Non-context-free (e.g., variables must 
        be declared before they are used)
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Attribute Grammars

• Attribute grammars (AGs) have additions 
to CFGs to carry some semantic info on 
parse tree nodes  

• Primary value of AGs: 
– Static semantics specification 
– Compiler design (static semantics checking)
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Attribute Grammars : Definition

• Def: An attribute grammar is a context-free 
grammar G = (S, N, T, P) with the following 
additions: 
– For each grammar symbol x there is a set A(x) 
of attribute values 

– Each rule has a set of functions that define 
certain attributes of the nonterminals in the rule 

– Each rule has a (possibly empty) set of 
predicates to check for attribute consistency  
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Attribute Grammars: Definition

• Let   X0 → X1 ... Xn  be a rule 

• Functions of the form S(X0) = f(A(X1), ... , 
A(Xn)) define synthesized attributes 

• Functions of the form I(Xj) = f(A(X0), ... , 
A(Xn)), for i <= j <= n, define inherited 
attributes 

• Initially, there are intrinsic attributes on the 
leaves
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Attribute Grammars: Example 1

3.4 Attribute Grammars     135

and their types. The contents of the symbol table are set based on earlier declara-
tion statements. Initially, assuming that an unattributed parse tree has been con-
structed and that attribute values are needed, the only attributes with values are the 
intrinsic attributes of the leaf nodes. Given the intrinsic attribute values on a parse 
tree, the semantic functions can be used to compute the remaining attribute values.

3.4.5 Examples of Attribute Grammars

As a very simple example of how attribute grammars can be used to describe 
static semantics, consider the following fragment of an attribute grammar 
that describes the rule that the name on the end of an Ada procedure must 
match the procedure’s name. (This rule cannot be stated in BNF.) The string 
attribute of <proc_name>, denoted by <proc_name>.string, is the actual 
string of characters that were found immediately following the reserved 
word procedure by the compiler. Notice that when there is more than one 
occurrence of a nonterminal in a syntax rule in an attribute grammar, the 
nonterminals are subscripted with brackets to distinguish them. Neither the 
subscripts nor the brackets are part of the described language.

Syntax rule: <proc_def> → procedure <proc_name>[1] 
                                                    <proc_body> end <proc_name>[2];
Predicate:    <proc_name>[1]string == <proc_name>[2].string

In this example, the predicate rule states that the name string attribute of the 
<proc_name> nonterminal in the subprogram header must match the name string 
attribute of the <proc_name> nonterminal following the end of the subprogram.

Next, we consider a larger example of an attribute grammar. In this case, the 
example illustrates how an attribute grammar can be used to check the type rules 
of a simple assignment statement. The syntax and static semantics of this assign-
ment statement are as follows: The only variable names are A, B, and C. The 
right side of the assignments can be either a variable or an expression in the form 
of a variable added to another variable. The variables can be one of two types: 
int or real. When there are two variables on the right side of an assignment, 
they need not be the same type. The type of the expression when the operand 
types are not the same is always real. When they are the same, the expression 
type is that of the operands. The type of the left side of the assignment must 
match the type of the right side. So the types of operands in the right side can be 
mixed, but the assignment is valid only if the target and the value resulting from 
evaluating the right side have the same type. The attribute grammar specifies 
these static semantic rules.

The syntax portion of our example attribute grammar is

<assign> → <var> = <expr> 
<expr> → <var> + <var>
              | <var>
<var> → A | B | C
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Attribute Grammars: Example 2

• Syntax 
<assign> -> <var> = <expr> 
<expr> -> <var> + <var> | <var> 
<var> A | B | C 

• actual_type: synthesized for <var> 
and <expr>  

• expected_type: inherited for <expr>  
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Attribute Grammar (continued)
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The attributes for the nonterminals in the example attribute grammar are 
described in the following paragraphs:

• actual_type—A synthesized attribute associated with the nonterminals <var> 
and <expr>. It is used to store the actual type, int or real, of a variable or 
expression. In the case of a variable, the actual type is intrinsic. In the case 
of an expression, it is determined from the actual types of the child node 
or children nodes of the <expr> nonterminal.

• expected_type—An inherited attribute associated with the nonterminal 
<expr>. It is used to store the type, either int or real, that is expected for 
the expression, as determined by the type of the variable on the left side of 
the assignment statement.

The complete attribute grammar follows in Example 3.6.

EXAMPLE 3.6 An Attribute Grammar for Simple Assignment Statements

 1. Syntax rule:     <assign> → <var> = <expr>
     Semantic rule: <expr>.expected_type ← <var>.actual_type

 2. Syntax rule:     <expr> → <var>[2] + <var>[3]
     Semantic rule: <expr>.actual_type ← 
                                                   if (<var>[2].actual_type = int) and 
                                                            (<var>[3].actual_type = int) 
                                                  then int
                                              else real
                                              end if 
     Predicate:        <expr>.actual_type == <expr>.expected_type

 3. Syntax rule:     <expr> → <var>
     Semantic rule: <expr>.actual_type ← <var>.actual_type
     Predicate:        <expr>.actual_type == <expr>.expected_type

 4. Syntax rule:     <var> → A | B | C
     Semantic rule: <var>.actual_type ← look-up(<var>.string)

The look-up function looks up a given variable name in the symbol table and 
returns the variable’s type.

A parse tree of the sentence A = A + B generated by the grammar in 
Example 3.6 is shown in Figure 3.6. As in the grammar, bracketed numbers 
are added after the repeated node labels in the tree so they can be referenced 
unambiguously.
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3.4.6 Computing Attribute Values

Now, consider the process of computing the attribute values of a parse tree, 
which is sometimes called decorating the parse tree. If all attributes were 
inherited, this could proceed in a completely top-down order, from the 
root to the leaves. Alternatively, it could proceed in a completely bottom-
up order, from the leaves to the root, if all the attributes were synthesized. 
Because our grammar has both synthesized and inherited attributes, the 
evaluation process cannot be in any single direction. The following is an 
evaluation of the attributes, in an order in which it is possible to compute 
them:

 1. <var>.actual_type ← look-up(A) (Rule 4)
 2. <expr>.expected_type ← <var>.actual_type (Rule 1)
 3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)
 4. <expr>.actual_type ← either int or real (Rule 2)
 5. <expr>.expected_type == <expr>.actual_type is either
                                                                TRUE or FALSE (Rule 2)

The tree in Figure 3.7 shows the flow of attribute values in the example of 
Figure 3.6. Solid lines are used for the parse tree; dashed lines show attribute 
flow in the tree.

The tree in Figure 3.8 shows the final attribute values on the nodes. In this 
example, A is defined as a real and B is defined as an int.

Determining attribute evaluation order for the general case of an attribute 
grammar is a complex problem, requiring the construction of a dependency 
graph to show all attribute dependencies.

<assign>

<var>[3]

B

<var>[2]

A= +

<var>

A

<expr>

Figure 3.6

A parse tree for  
A = A + B

Parse Tree for A = A + B
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Attribute Grammars (continued)

• How are attribute values computed? 
– If all attributes were inherited, the tree could be 
decorated in top-down order. 

– If all attributes were synthesized, the tree could 
be decorated in bottom-up order. 

– In many cases, both kinds of attributes are used, 
and it is some combination of top-down and 
bottom-up that must be used.
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Attribute Grammars (continued)
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3.4.7 Evaluation

Checking the static semantic rules of a language is an essential part of all com-
pilers. Even if a compiler writer has never heard of an attribute grammar, he 
or she would need to use their fundamental ideas to design the checks of static 
semantics rules for his or her compiler.

One of the main difficulties in using an attribute grammar to describe all of 
the syntax and static semantics of a real contemporary programming language 
is the size and complexity of the attribute grammar. The large number of attri-
butes and semantic rules required for a complete programming language make 
such grammars difficult to write and read. Furthermore, the attribute values on 
a large parse tree are costly to evaluate. On the other hand, less formal attribute 
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