Chapter 3

Describing Syntax CONCEPTS OF
) PROGRAMMING LANGUAGES 1:1/¢
and Semantics

ISBN 0-321-49362-1

Chapter 3 Topics

Introduction
The General Problem of Describing Syntax

Formal Methods of Describing Syntax
Attribute Grammars

Copyright © 2015 Pearson. All rights reserved.

Introduction

Syntax: the form or structure of the
expressions, statements, and program units

Semantics: the meaning of the expressions,
statements, and program units

Syntax and semantics provide a language’s
definition
- Users of a language definition

- Other language designers

- Implementers
- Programmers (the users of the language)

Copyright © 2015 Pearson. All rights reserved.

The General Problem of Describing
Syntax: Terminology

- A sentence is a string of characters over some
alphabet

- A language is a set of sentences

- A lexeme is the lowest level syntactic unit of a
language (e.g., *, sum, begin)

- A token is a category of lexemes (e.g., identifier)

Copyright © 2015 Pearson. All rights reserved. 4

Formal Definition of Languages

Recognizers

- A recognition device reads input strings over the alphabet

of the language and decides whether the input strings
belong to the language

- Example: syntax analysis part of a compiler

- Detailed discussion of syntax analysis appears in
Chapter 4

Generators

- A device that generates sentences of a language
- One can determine if the syntax of a particular sentence

Is syntactically correct by comparing it to the structure of
the generator

Copyright © 2015 Pearson. All rights reserved.

BNF and Context-Free Grammars

- Context-Free Grammars

- Developed by Noam Chomsky in the mid-1950s

- Language generators, meant to describe the
syntax of natural languages

- Define a class of languages called context-free
languages

. Backus-Naur Form (1959)

- Invented by John Backus to describe the syntax
of Algol 58
- BNF is equivalent to context-free grammars

Copyright © 2015 Pearson. All rights reserved.

A containment hierarchy of classes of formal languages

Recursively-
Context- Context- enu;e;\e;bli
free (PDA) sensitive (LBA) (TM)

recognizable

decidable
EXPSPACE
EXPTIME
PSPACE=NPSPACE
CFL

The Extended Chomsky Hierarchy

le' : Decidable Presburger arithmc:ic\\\
i "EXPSPACE :

' iy "EXPTIME .
=(Turing| . [PSPACE

= degrees - = [Context sensitive |3A
Tlell [2].]o|f-NP)
gIRIl IS 2[2= a"b7c)
<22 2 = [Context-free ww"
% %’ '§ = 23| 2]1 [Det. CFa"b”
Z(8IIelZIZIS| & Regular o
= §° ;'{;; ; ; - L[l"initt: :a.hﬂ
SISl SIE[E (= &S =),
(Z)Z)l (T 2)

9

BNF Fundamentals

In BNF, abstractions are used to represent classes
of syntactic structures--they act like syntactic
variables (also called nonterminal symbols, or just
terminals)

Terminals are lexemes or tokens

. A rule has a left-hand side (LHS), which is a
nonterminal, and a right-hand side (RHS), which is a
string of terminals and/or nonterminals

Copyright © 2015 Pearson. All rights reserved. 10

BNF Fundamentals (continued)

Nonterminals are often enclosed in angle brackets

- Examples of BNF rules:

<ldent list> - identifier | identifiler, <ident list>
<1f stmt> - if <logic expr> then <stmt>

Grammar: a finite non-empty set of rules

A start symbol is a special element of the
nonterminals of a grammar

Copyright © 2015 Pearson. All rights reserved. 11

BNF Rules

- An abstraction (or nonterminal symbol)
can have more than one RHS

<stmt> — <single stmt>
| begin <stmt list> end

Copyright © 2015 Pearson. All rights reserved.

12

Describing Lists

- Syntactic lists are described using
recursion

<ident list> — 1ident
| i1dent, <ident list>

- A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

Copyright © 2015 Pearson. All rights reserved.

13

An Example Grammar

<program> — <stmts>

<stmts> — <stmt> | <stmt> ; <stmts>
<stmt> — <var> = <expr>

<var> — a | b | ¢ | d

<expr> — <term> + <term> | <term> - <term>
<term> — <var> | const

Copyright © 2015 Pearson. All rights reserved.

An Example Derivation

<program> => <stmts> => <stmt>
<var> = <expr>

Copyright © 2015 Pearson. All rights reserved.

a

@ v o W

<expr>

<term> + <term>
<var> + <term>
b + <term>

b + const

15

Derivations

- Every string of symbols in a derivation is a
sentential form

- A sentence is a sentential form that has only
terminal symbols

- A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
Is the one that is expanded

- A derivation may be neither leftmost nor
rightmost

Copyright © 2015 Pearson. All rights reserved. 16

Parse Tree

- A hierarchical representation of a derivation

<program>

<stmts>

|
<stmt>
I
<var> = <expr>
| N
a <term> + <term>

<var> const
|

b

Copyright © 2015 Pearson. All rights reserved.

Ambiguity in Grammars

- A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees

Copyright © 2015 Pearson. All rights reserved.

18

An Ambiguous Expression Grammar

<expr> — <expr> <op> <expr> | const
<op> — / | -
<expr> <expr>
<expr> <op> <expr> <expr> <op> <expr>
<expr> <op> <expr> <expr> <op> <expr>

\

const - const | const const - const /| const

Copyright © 2015 Pearson. All rights reserved. 19

An Unambiguous Expression Grammar

f we use the parse tree to indicate
brecedence levels of the operators, we
cannot have ambiguity

<expr> — <expr> - <term> | <term>
<term> — <term> / const| const
<expr>
<expr> - <term>

| S\ T~

<term> <term> | const
| |

const const

Copyright © 2015 Pearson. All rights reserved.

20

Associativity of Operators

Operator associativity can also be indicated by a
grammar

<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
<expr>
<expr> + const

/N

<expr> + const

const

Copyright © 2015 Pearson. All rights reserved. 21

Unambiguous Grammar for Selector

- Java if-then-else grammar

<1f stmt> -> 1f (<logic expr>) <stmt>
| 1f (<logic expr>) <stmt> else <stmt>

Ambiguous!

Copyright © 2015 Pearson. All rights reserved.

22

if

<if _stmt>

<logic_expr>

then <stmt>

<if stmt>

if <logic_expr>

<if_stmt>

if <logic_expr> then <stmt> else <stmt>

<if stmt>

/\

if <logic_expr> then <stmt>

then <stmt> else <stmt>

An unambiguous grammar for if-then-else

<stmt> -> <matched> | <unmatched>
<matched> -> 1f (<logic expr>) <stmt>
| a non-1f statement
<unmatched> -> 1if (<logic expr>) <stmt>
| 1f (<logic expr>) <matched> else
<unmatched>

24

Extended BNF

- Optional parts are placed in brackets | |
<proc call> -> ident [(<expr list>)]

- Alternative parts of RHSs are placed inside
parentheses and separated via vertical
bars

<term> —» <term> (+|-) const

- Repetitions (0 or more) are placed inside
braces { }
<ident> - letter {letter|digit}

Copyright © 2015 Pearson. All rights reserved.

BNF and EBNF

BNF

<expr> — <expr> + <term>
| <expr> - <term>
| <term>
<term> — <term> * <factor>
| <term> / <factor>
| <factor>

EBNF

<expr> — <term> {(+ | —-) <term>}
<term> — <factor> {(* | /) <factor>}

Copyright © 2015 Pearson. All rights reserved. 26

Recent Variations in EBNF

- Alternative RHSs are put on separate lines

- Use of a colon instead of -=»

- Use of _ . for optional parts

. Use of oneof for choices

Copyright © 2015 Pearson. All rights reserved.

27

Static Semantics

- Nothing to do with meaning

- Context-free grammars (CFGs) cannot describe
all of the syntax of programming languages

- Categories of constructs that are trouble:
- Context-free, but cumbersome (e.g.,
types of operands in expressions)

- Non-context-free (e.g., variables must

be declared before they are used)

Copyright © 2015 Pearson. All rights reserved. 28

Attribute Grammars

- Attribute grammars (AGs) have additions
to CFGs to carry some semantic info on
parse tree nodes

- Primary value of AGs:
- Static semantics specification
- Compiler design (static semantics checking)

Copyright © 2015 Pearson. All rights reserved.

29

Attribute Grammars : Definition

- Def: An attribute grammar is a context-free
grammar G = (S, N, T, P) with the following

additions:

- For each grammar symbol x there is a set A(x)
of attribute values

- Each rule has a set of functions that define
certain attributes of the nonterminals in the rule

- Each rule has a (possibly empty) set of
predicates to check for attribute consistency

Copyright © 2015 Pearson. All rights reserved.

Attribute Grammars: Definition

- Let X, — X; .. X, be a rule

. Functions of the form S(X,) = fl(A(X}), ...,
A(X.)) define synthesized attributes

. Functions of the form I(X) = flA(Xy), ...,
A(X), for i <= j <= n, define inherited
attributes

- Initially, there are intrinsic attributes on the
leaves

Copyright © 2015 Pearson. All rights reserved.

31

Attribute Grammars: Example 1

Syntax rule: <proc_def> — procedure <proc_name> [1]
<proc_body> end <proc_name> [2] ;
Predicate: <proc_name> [1]string == <proc_name> [2] .string

32

Attribute Grammars: Example 2

- Syntax
<assign> —-> <var> = <expr>
<expr> -> <var> + <var> | <var>
<var> A | B | C

* actual type: synthesized for <var>
and <expr>

* expected type: inherited for <expr>

Copyright © 2015 Pearson. All rights reserved.

Attribute Grammar (continued)

An Attribute Grammar for Simple Assignment Statements

1. Syntax rule:

Semantic rule:

2. Syntax rule:
Semantic rule:

Predicate:

3. Syntax rule:
Semantic rule:
Predicate:

4. Syntax rule:

Semantic rule:

<assign> — <var> = <expr>
<expr>.expected_type <— <var>.actual_type

<expr> — <var>[2] + <var>[3]
<expr>.actual_type <
if (<var>[2].actual_type = int) and
(<var>[3].actual_type = int)
then int
else real

end if
<expr>.actual_type == <expr>.expected_type

<expr> — <var>
<expr>.actual_type «— <var>.actual_type
<expr>.actual_type == <expr>.expected_type

<var> —>A | B | C
<var>.actual_type < look-up (<var>.string)

The look-up function looks up a given variable name in the symbol table and
returns the variable’s type.

Copyright © 2015 Pearson. All rights reserved.

34

Parse Tree for A = A + B

<assign>

<expr>
<var> <var>[2] <var>[3]
A = A + B

35

Attribute Grammars (continued)

How are attribute values computed?

- If all attributes were inherited, the tree could be
decorated in top-down order.

- If all attributes were synthesized, the tree could

be decorated in bottom-up order.

- In many cases, both kinds of attributes are used,
and it is some combination of top-down and
bottom-up that must be used.

Copyright © 2015 Pearson. All rights reserved. 36

Attribute Grammars (continued)

1. <var>.actual_type < look-up(2) (Rule 4)

2. <expr>.expected_type < <var>.actual_type (Rule 1)

3. <var>[2].actual_type < look-up(2) (Rule 4)
<var>[3].actual_type < look-up(B) (Rule 4)

4. <expr>.actual_type < either int or real (Rule 2)

5. <expr>.expected_type == <expr>.actual_type is either
TRUE or FALSE (Rule 2)

Copyright © 2015 Pearson. All rights reserved.

37

The flow of attributes in the tree

<assign>

D
expected_type <expr>
actual_type

actual_type

actual_type
<var> <var>[3] A
K / A fully attributed parse tree
/ / /
/ /
/ / /
A = A + B
<assign>

<expr> expected_type = real_type
actual_type = real_type

<var>[3] actual_type =
int_type

actual_type = <var>
real_type

<var>[2] actual_type =
real_type

References

» Michael Sipser, Introduction to the Theory of
Computation, 2nd or 3rd edition, Course

technology, 2005 or 2013.

» Slides used in the computational theory
course (available on moodle)

» Slides used in System Programming course
for a simple pascal language (available on
moodle)

39

Tools

» http: N

» http://jflab.org

r

M

r

40

