
Introducing the
For...Next Repetition

Statement
NumericUpDown Control and

Multiline TextBox

1

2

Test-Driving the Interest Calculator App

■ Input some values into the completed app and then

click calculate (Fig. 11.2).

3

11.2 Essentials of the Counter-
Controlled Repetition

 The four essential elements of counter-controlled
repetition are:

◦ the name of a control variable (or loop counter)

◦ the initial value of the control variable

◦ the increment (or decrement) by which the control
variable is modified during each iteration

◦ the condition that tests for the final value of the
control variable

 Figure 11.3 is an example of counter-controlled

repetition.

4

5

11.3 Introducing the For...Next
Repetition Statement

 The For...Next repetition statement makes it easier
for you to write code to perform counter-controlled
repetition.

 The For...Next statement takes less time to code
and is easier to read.

 The For...Next header (Fig. 11.4) specifies all four
essential elements of counter controlled loops.

6

11.3 Introducing the For...Next
Repetition Statement (Cont.)

 For counter As Integer = 2 To 10 Step 2
 body statement(s)
Next

 A For...Next statement begins with the
keyword For.

 The statement declares and initializes a control
variable.

◦ Note that you do not use the Dim keyword.

 Following the initial value of the control
variable is the keyword To, followed by the

final value of the control variable.

7

11.3 Introducing the For...Next Repetition
Statement (Cont.)

 The Step keyword to specifies the amount by
which to change the control variable each time
the loop executes.

◦ If you omit the Step keyword, the control
variable increments by 1 (one) after each
repetition.

 The body of a For...Next statement is placed
after the For...Next header.

 The keyword Next marks the end of the
For...Next repetition statement.

8

9

10

11.3 Introducing the For...Next
Repetition Statement (Cont.)

 Visual Basic provides a feature called local type
inference that enables it to infer a local variable’s
type based on the context in which the variable is
initialized.

 Dim x = 7

◦ The compiler infers that the variable x should be of type
Integer, because whole-number values, like 7, are of
type Integer.

 Dim y = -123.45

◦ The compiler infers that the variable y should be of type
Double, because floating-point number values, like -
123.45 are of type Double.

11

11.3 Introducing the For...Next
Repetition Statement (Cont.)

 You can also use local type inference with
control variables in the header of a
For...Next statement.

 For years = 2 To 5

 The local type inference feature is one of
several new Visual Basic features that
support Language Integrated Query (LINQ).

12

11.4 Examples Using the For...Next
Statement

 The following examples demonstrate different ways
of varying the control variable in a For...Next

statement.

◦ Vary the control variable from 1 to 100 in increments of 1.

 For i As Integer = 1 To 100
 or

 For i As Integer = 1 To 100 Step 1
◦ Vary the control variable from 100 to 1 in increments of -1

(decrements of 1).

 For i As Integer = 100 To 1 Step -1

13

11.4 Examples Using the For...Next
Statement (Cont.)

◦ Vary the control variable from 7 to 77 in increments of 7.

 For i As Integer = 7 To 77 Step 7
◦ Vary the control variable from 20 to -20 in increments of

-2 (decrements of 2).

 For i As Integer = 20 To -20 Step -2
◦ Vary the control variable over the sequence of the

following values: 2, 5, 8, 11, 14, 17, 20.

 For i As Integer = 2 To 20 Step 3
◦ Vary the control variable over the sequence of the

following values: 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

 For i As Integer = 99 To 0 Step -11

14

11.5 Constructing the Interest
Calculator Application
■ Input some values into the completed app and then

click calculate (Fig. 11.2).

15

11.5 Constructing the Interest
Calculator Application

 When the user clicks the Calculate Button

 Get the values for the principal, interest rate and years
 entered by the user

 Store a header String to be added to the output TextBox

 For each year (starting at 1 and ending with the number of
years entered)

 Calculate the current value of the investment

 Append the year and the current value of the
 investment to the String that will be displayed in
 the output TextBox

16

Adding and Customizing a
NumericUpDown Control

■ Add a NumericUpDown control to the Form (Fig. 11.9),

and change the Name property to yearUpDown.

■ Set yearUpDown’s Location property to 91, 82 and its

Width property to 100. Set property TextAlign to

Right.

17

18

Adding and Customizing a NumericUpDown Control
(Cont.)

 By default, this control sets 0 as the minimum and 100 as the
maximum.

◦ To change these values, set the Minimum property of the
Years: NumericUpDown control to 1 and its Maximum
property to 10.

◦ If the user inputs a value less than Minimum or greater than
Maximum, the value is automatically set to the minimum or
maximum value.

 The Increment property specifies by how much the current
number in the NumericUpDown control changes when the user
clicks the control’s up or down arrow.

◦ This app uses the default Increment property value, 1.

19

Adding and Customizing a Multiline
TextBox with a Scrollbar
 Add a TextBox named resultTextBox (Fig. 11.10).

◦ Change the TextBox’s Multiline property value
to True.

◦ Set the ReadOnly property to True.

20

21

Adding and Customizing a Multiline
TextBox with a Scrollbar

 Using scrollbars allows you to keep the size of
a TextBox small while still allowing the user to
view all the information in that TextBox.

◦ Set resultTextBox’s ScrollBars property to
Vertical.

◦ You can also set property ScrollBars to
Horizontal or Both.

◦ A scrollbar is enabled only when it is needed.
◦ Without scrollbars, the user can scroll through

the text by using the arrow keys.

22

 String variables

 String variables (Fig. 11.11) store a series of
characters.

◦ The most commonly used characters are
letters and numbers.

◦ There are also many special characters, such
as $, *, ^, tabs and newlines.

◦ Labels and TextBoxes both store values in
the Text property as values of type String.

23

24

 String variables (cont)

■ This TextBox will display the results in two columns,

labeled Year and Amount on Deposit (Fig. 11.12).

25

 String variables (cont)

 When assigning new text to a String variable, you
must begin and end the text with a double
quotation mark (").

◦ You can append a String or a character to the
end of another String by using the concatenation
operator (&).

 The ControlChars.Tab constant inserts a tab

character.

 The ControlChars.CrLf constant inserts a new

line.

26

Calculating Cumulative Interest
with a For...Next Statement

■ The For...Next statement (Fig. 11.13) executes its

body once for each year up to the value of

yearUpDown’s Value property.

■ Lines 24-25 append text to the end of output, using

the &= operator.

27

Calculating Cumulative Interest
with a For...Next Statement (Cont.)

■ The For...Next statement executes until the control
variable exceeds the number of years specified by the user.

■ After exiting the For...Next statement, output is ready
to be displayed to the user in resultTextBox
(Fig. 11.14).

■ Your app can now calculate and display the amount on
deposit for each year.

28

29

30

31

Fahrenheit-Celsius conversion table

Fahrenheit Celsius
 105 40.5
 104 40.0
 103 39.4
 102 38.9
 101 38.3
 100 37.7
 99 37.2
 98 36.6
 97 36.1
 96 35.5

The formula to convert temperature recorded on

Fahrenheit scale into Celsius scale is as follows:

http://drrajivdesaimd.com/wp-content/uploads/2012/09/temperature-conversion-formula.png

