Introducing the
For...Next Repetition
Statement
NumericUpDown Control and
Multiline TextBoXx

App Requirements

You're considering investing $1,000.00 in a savings account that yields 2% inter-
est compounded annually, and you want fo forecast how your investment will
grow. Assuming that you leave all inferest on deposit, calculate and display
the amount of money in the account at the end of each year over a period of
n years. Io compute these amounts, use the following formula:

a=p(1+n"
where

p is the original amount of money invested (the principal)

r is the annual inferest rate (for example, .02 is equivalent to 2%)
n is the number of years

a is the amount on deposit at the end of the nth year,

Test-Driving the Interest Calculator App

m Input some values into the completed app and then
click calculate (Fig. 11.2).

o Interest Calculator ‘ = ” (=) H-E:h]
Principal: 1000 | Calculate |
Interest rate: 2
Years: 105

Yearly account balance:

Year Amount on Deposit »
1 §1,020.00
§1,040.40
§1,061.21
§1,082.43
§1,104.08
§1,126.16 v

m

Multiline TextBox displays
app results

O n B Uu o

Figure 11.2 Output of completed Interest Calculator app.

11.2 Essentials of the Counter-
Controlled Repetition

The four essential elements of counter-controlled
repetition are:
the name of a control variable (or loop counter)
the initial value of the control variable

the increment (or decrement) by which the control
variable is modified during each iteration

the condition that tests for the final value of the
control variable

Figure 11.3 is an example of counter-controlled
repetition.

1 Dim years As Integer = 2 ' control variable

2

3 Do While years <= 5

4 months = 12 * years ' calculate payment period

5

6 ' calculate payment value

7 monthlyPayment =

8 Pmt (monthTyInterest, months, -loanAmount)

9
10 " display payment value
11 paymentsListBox.Items.Add(months & ControlChars.Tab &
12 ControlChars.Tab & String.Format("{0:C}", monthlyPayment))
13
14 years += 1 ' increment counter
15 Loop

Figure 11.3 Counter-controlled repetifion example.

11.3 Introducing the For...Next

Repetition Statement

The For...Next repetition statement makes it easier
for you to write code to perform counter-controlled
repetition.

The For...Next statement takes less time to code
and is easier to read.

The For...Next header (Fig. 11.4) specifies all four
essential elements of counter controlled loops.

For keyword Control variable’s type Final value of control variable

I | 7

For counter As Integer = 2 To 10 Step 2 Increment of

control variable

Control variable name To keyword Step keyword

Initial value of control variable

Figure 11.4 For...Next header components.

11.3 Introducing the For...Next
Repetition Statement (Cont.)

For counter As Integer = 2 TO Step
body statement(s)
Next

A For...Next statement begins with the
keyword For.

The statement declares and initializes a control
variable.

Note that you do not use the Dim keyword.
Following the initial value of the control
variable is the keyword To, followed by the
final value of the control variable.

11.3 Introducing the For...Next Repetition
Statement (Cont.)

The Step keyword to specifies the amount by
which to change the control variable each time
the loop executes.
If you omit the Step keyword, the control
variable increments by 1 (one) after each
repetition.
The body of a For. . .Next statement is placed
after the For...Next header.

The keyword Next marks the end of the
For...Next repetition statement.

@Common

Programming Error

Aftempting fo access the confrol variable (when it’s
declared in a For...Next header) in code affer the
loop results in a compilation error, because the vari-

able no longer exists.

1 For years As Integer = 2 To 5

2 months = 12 * years ' calculate payment period

3

4 " calculate payment value

5 value = Pmt(monthlyRate, months, -loanAmount)

6

7 " display payment value

8 paymentsListBox.Items.Add(months & ControlChars.Tab &
9 ControlChars.Tab & String.Format("{0:C}", value))
10 Next

Figure 11.6 Code segment for the Car Payment Calculator app that demonstrates
the For...Next statement.

—

Common
Programming Error

Counter-controlled loops should not be confrolled
with floating-point variables. These are represented
only gpproximately in the computer’'s memory, possi-
bly resulting in imprecise counfter values and inaccu-
rate tests for termination that could lead to logic
errors.,

% Error-Prevention Tip

If you use a For...Next loop for counter-controlled
repetition, off-by-one errors (which occur when a
loop executes for one Mmore or one less iteration than
is necessary) are normally avoided, because the ter-
Minating value is clear.

11.3 Introducing the For...Next
Repetition Statement (Cont.)

Visual Basic provides a feature called local type
inference that enables it to infer a local variable’s
type based on the context in which the variable is
initialized.

Dim X =

The compiler infers that the variable x should be of type

Integer, because whole-number values, like 7, are of
type Integer.

DIim y =

The compiler infers that the variable y should be of type

Double, because floating-point number values, like -
123.45 are of type Double.

11.3 Introducing the For...Next
Repetition Statement (Cont.)

You can also use local type inference with
control variables in the header of a
For.. .Next statement.

For years = ./ To
The local type inference feature is one of

several new Visual Basic features that
support Language Integrated Query (LINQ).

11.4 Examples Using the For...Next
Statement

The following examples demonstrate different ways
of varying the control variable in a For. . .Next

statement.

Vary the control variable from 1 to 100 in increments of 1.

For i As Integer = 1 To 100

or

For i As Integer = 1 To 100 Step 1

Vary the control variable from 100 to 1 in increments of -1
(decrements of 1).

For i As Integer = 100 To 1 Step -1

11.4 Examples Using the For...Next
Statement (Cont.)

Vary the control variable from 7 to 77 in increments of 7.

For i As Integer = 7 To /77 Step 7

Vary the control variable from 20 to -20 in increments of
-2 (decrements of 2).

For i As Integer = 20 To -20 Step -2

Vary the control variable over the sequence of the
following values: 2, 5, 8§, 11, 14, 17, 20.

For i As Integer = 2 To 20 Step 3

Vary the control variable over the sequence of the
following values: 99, 88, 77, 66, 55, 44, 33, 22, 11, O.

For i As Integer = 99 To 0 Step -11

11.5 Constructing the Interest

Calculator Application
m Input some values into the completed app and then
click calculate (Fig. 11.2).

- Interest Calculator 3
Principal: 1000 ' Calculate ‘
Interest rate: 2
Years: 105

Yearly account balance:

Year Amount on Deposit »
1 §1,020.00
§1,040.40
§1,061.21
§1,082.43
§1,104.08
§1,126.16 v

m

Multiline TextBox displays
app results

O n B Uu o

Figure 11.2 Output of completed Interest Calculator app.

11.5 Constructing the Interest
Calculator Application

When the user clicks the Calculate Button

Get the values for the principal, interest rate and years
entered by the user

Store a header String to be added to the output TextBox

For each year (starting at 1 and ending with the number of
years entered)

Calculate the current value of the investment

Append the year and the current value of the
investment to the String that will be displayed in
the output TextBox

Adding and Customizing a
NumericUpDown Control

= Add a Numer1icUpDown control to the Form (Fig. 11.9),
and change the Name property to yearupbDown.

H- MurmenclpDown
m Set yearupDown’s Location property to 91, 82 and its

width property to 100. Set property TextAlign to
Right.

o= Interest Calculator ‘ = H (=] H-Eh]

Principal: ‘ Calculate ‘

Interest rate:

Years: 12 NumericUpDown control

Yearly account balance:

Figure 11.9 NumericUpDown control added to Interest Calculator app.

Adding and Customizing a NumericUpDown Control
(Cont.)

By default, this control sets 0 as the minimum and 100 as the
maximum.

To change these values, set the Minimum property of the

Years: NumericUpDown control to 1 and its Maximum
property to 10.

If the user inputs a value less than Minimum or greater than

Maximum, the value is automatically set to the minimum or
maximum value.

The Increment property specifies by how much the current
number in the Numericupbown control changes when the user
clicks the control’s up or down arrow.

This app uses the default Increment property value, 1.

pFS
= [New]
=

e GUI Design Tip

Use a Numer-i cUpDown control to limit the range of user
input.

Adding and Customizing a Multiline

TextBox with a Scrollbar
Add a TextBox named resultTextBox (Fig. 11.10).

Change the TextBox's Multiline property value
to True.

Set the ReadOnly property to True.

o=l Interest Calculator == |@

Principal: | Calculate |
Interest rate:

Years: 1=

Yearly account balance

Multiline TextBox

T Vertical scrollbar (disabled)

Figure 11.10 Multiline TextBox with vertical scrolloar added to the Form.

GUI Design Tip

If a TextBox will display multiple lines of output, set the
Multiline property to True and left align the output
by setting the TextAlign property to Left (its default
value).

GUI Design Tip

If a TextBox is used to display output, set the Rea-
dOnly property to True to ensure that the user cannot
change the output.

If a multiline TextBox will display many lines of out-
put, limit the TextBox height and use a vertical scroll-

bar to allow users to view additional lines of output.

g GUI Design Tip

Adding and Customizing a Multiline
TextBox with a Scrollbar

Using scrollbars allows you to keep the size of
a TextBox small while still allowing the user to
view all the information in that TextBox.
Set resultTextBox’s Scroll1Bars property to
Vertical.
You can also set property Scrol1Bars to
Horizontal or Both.
A scrollbar is enabled only when it is needed.
Without scrollbars, the user can scroll through
the text by using the arrow keys.

String variables

String variables (Fig. 11.11) store a series of
characters.

The most commonly used characters are
letters and numbers.

There are also many special characters, such
as $, *, ~, tabs and newlines.

Labels and TextBoxes both store values in
the Text property as values of type String.

' handles Calculate Button's Click event
Private Sub calculateButton_Click(sender As System.Object,
e As System.EventArgs) Handles calculateButton.Click

" declare variables to store user input
Dim principal As Decimal ' store principal
LDim rate As Double ' store interest rate

Dim amount As Decimal ' store each calculation

Input variable
declarations 9

10 Dim output As String ' store output
1
12 ' retrieve user input
. . 13 principal = Val(principalTextBox.Text)
Retrieve user inpuf
P 14 Lrate = Val(rateTextBox.Text)

Figure 11.11 App code for retrieving and storing user input.

String variables (cont)

m This TextBox will display the results in two columns,
labeled Year and Amount on Deposit (Fig. 11.12).

16 ' set output header
\ppending header text 17 [output = "Year" & ControlChars.Tab &
to the oufput String 18 _ "Amount on Deposit"” & ControlChars.CrLf

Figure 11.12 App code for appending the header text to the String
variable.

String variables (cont)

When assigning new text to a String variable, you

must begin and end the text with a double
quotation mark (™).

You can append a String or a character to the
end of another String by using the concatenation
operator (&).
The ControlChars.Tab constant inserts a tab
character.
T

he CcontrolcChars.CrLf constant inserts a new
line.

m The For. . .Next statement (Fig. 11.13) executes its
body once for each year up to the value of
yearupbDown’s Value property.

m Lines 24-25 append text to the end of output, using
the &= operator.

20 ' calculate amount after each year and append to string
21 For yearCounter As Integer = 1 To yearUpDown.Value
: 22 amount =
Using the For...Next
: 23 principal * ((1 + rate / 100) A yearCounter)
statement to format
and append text to 24 output &= (yearCounter & ControlChars.Tab &
the output String gg Next String.Format("{0:C}", amount) & ControlChars.CrLf)
ex

Figure 11.13 App code for the For...Next statement.

m The For...Next statement executes until the control
variable exceeds the number of years specified by the user.

m After exiting the For. . .Next statement, output is ready
to be displayed to the user in resul tTextBox
(Fig. 11.14).

m Your app can now calculate and display the amount on
deposit for each year.

Displaying in the

multiline TextBox the 28 resultTextBox.Text = output ' display result
3sult of the calculations 29 End Sub ' calculateButton_Click
performed in the 30 End Class ' InterestCalculatorForm

For...Next statement Figure 11.14 App code for displaying calculation results.

Public Class InterestCalculatorForm
' handles Calculate Button's Click event
Private Sub calculateButton_Click(sender As System.Object,
e As System.EventArgs) Handles calculateButton.Click

1
2
3
4
5
6 ' declare variables to store user input

7 Dim principal As Decimal ' store principal

8 Dim rate As Double ' store interest rate

9 Dim amount As Decimal ' store each calculation

Declare a variable

of type String :? Dim output As String ' store output
12 ' retrieve user input
13 principal = Val(principalTextBox.Text)
14 rate = Val(rateTextBox.Text)
15
16 ' set output header
Construct a header 17 [output = "Year" & ControlChars.Tab &
ﬁxTheTéxt@ox 18 L "Amount on Deposit" & ControlChars.CrLf
as a String 19

Figure 11.15 Interest Calculator app. (Part 1 of 2.)

Loop from 1 to the
value specified by the
user in the yearUpDown

control

Append resulf of
calculation to the
>tring named output

Display results in
resultTextBox

20
21

22
23
24

calculate amount after each year and append to string
For yearCounter = 1 To yearUpDown.Value
amount =

principal * ((1 + rate / 100) A yearCounter)

25
26
27

28
29
30

(output &= (yearCounter & ControlChars.Tab &
String.Format("{0:C}", amount) & ControlChars.CrLf)
Next

resultTextBox.Text = output ' display result

End Sub ' calculateButton_Click
End Class ' InterestCalculatorForm

Figure 11.15

Interest Calculator app. (Part 2 of 2.)

The formula to convert temperature recorded on
Fahrenheit scale into Celsius scale is as follows:

C F—32

S 9

Fahrenheit-Celsius conversion table

Fahrenheit Celsius
105 40.5
104 40.0
103 39.4
102 38.9
101 38.3
100 37.7
99 37.2
98 36.6
97 36.1

96 35.5

http://drrajivdesaimd.com/wp-content/uploads/2012/09/temperature-conversion-formula.png

