
Distributed Systems

Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science

Room R4.20, steen@cs.vu.nl

Chapter 07: Consistency & Replication

Version: November 26, 2012

Consistency & Replication 7.4 Replica Management

Distribution protocols

Replica server placement

Content replication and placement

Content distribution

23 / 41

single data item

Consistency & Replication 7.4 Replica Management

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

Select best location out of N �K for which the average distance to

clients is minimal. Then choose the next best server. (Note: The

first chosen location minimizes the average distance to all clients.)

Computationally expensive.

Select the K -th largest autonomous system and place a server at

the best-connected host. Computationally expensive.

Position nodes in a d-dimensional geometric space, where

distance reflects latency. Identify the K regions with highest

density and place a server in every one. Computationally cheap.

24 / 41

O(N2)

O(N2)

O(N x max {log (N), K}).

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5

Replica-Server Placement

Figure 7-16. Choosing a proper cell size for server placement.

Consistency & Replication 7.4 Replica Management

Content replication

Distinguish different processes
A process is capable of hosting a replica of an object or data:

Permanent replicas: Process/machine always having a replica

Server-initiated replica: Process that can dynamically host a

replica on request of another server in the data store

Client-initiated replica: Process that can dynamically host a

replica on request of a client (client cache)

25 / 41

Consistency & Replication 7.4 Replica Management

Content replication

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication
Server-initiated replication

26 / 41

Consistency & Replication 7.4 Replica Management

Server-initiated replicas

Server without
copy of file F

Client Server with
copy of F

P
Q

C1

C2

Server Q counts access from C and
C as if they would come from P

1
2

File F

Keep track of access counts per file, aggregated by considering

server closest to requesting clients

Number of accesses drops below threshold D) drop file

Number of accesses exceeds threshold R) replicate file

Number of access between D and R) migrate file

27 / 41

Consistency & Replication 7.4 Replica Management

Content distribution

Model
Consider only a client-server combination:

Propagate only notification/invalidation of update (often used for

caches)

Transfer data from one copy to another (distributed databases):

passive replication

Propagate the update operation to other copies: active replication

Note
No single approach is the best, but depends highly on available

bandwidth and read-to-write ratio at replicas.

28 / 41

Client Initiated Replicas

Consistency & Replication 7.4 Replica Management

Content distribution: client/server system

Pushing updates: server-initiated approach, in which update is

propagated regardless whether target asked for it.

Pulling updates: client-initiated approach, in which client requests

to be updated.

Issue Push-based Pull-based

1: List of client caches None

2: Update (and possibly fetch update) Poll and update

3: Immediate (or fetch-update time) Fetch-update time

1: State at server

2: Messages to be exchanged

3: Response time at the client

29 / 41

Consistency & Replication 7.4 Replica Management

Content distribution

Observation
We can dynamically switch between pulling and pushing using leases:

A contract in which the server promises to push updates to the client

until the lease expires.

30 / 41

Consistency & Replication 7.4 Replica Management

Content distribution

Issue
Make lease expiration time dependent on system’s behavior (adaptive

leases):

Age-based leases: An object that hasn’t changed for a long time, will not

change in the near future, so provide a long-lasting lease

Renewal-frequency based leases: The more often a client requests a

specific object, the longer the expiration time for that client (for that

object) will be

State-based leases: The more loaded a server is, the shorter the

expiration times become

Question
Why are we doing all this?

31 / 41

Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 08: Fault Tolerance

Version: December 11, 2012

Dependability

• A component provides services to clients. To provide
services, the component may require the services from
other components → a component may depend on some
other component.

• A component C depends on C* if the correctness of C's
behavior depends on the correctness of C*'s behavior.

• Note: in the context of distributed systems, components
are generally processes or channels.

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired

8.1 Introduction: Basic concepts

2

Reliability versus Availability

• Reliability R(t): probability that a component has been up

and running continuously in the time interval [0,t).

• Some traditional metrics:

– Mean Time To Failure (MTTF): Average time until a component

fails.

– Mean Time To Repair (MTTR): Average time it takes to repair a

failed component.

– Mean Time Between Failures (MTBF): MTTF + MTTR

3

8.1 Introduction: Basic concepts

Reliability versus Availability

• Availability A(t): Average fraction of time that a

component has been up and running in the interval [0,t)

– (Long term) availability A: A(∞)

• Note:

– A = MTTF/MTBF = MTTF/(MTTF + MTTR)

8.1 Introduction: Basic concepts

4

Observation

Reliability and availability make sense only if we have an
accurate notion of what a failure actually is

Terminology

8.1 Introduction: Basic concepts

5

Term Description Example

Failure May occur when a
component is not living up to
its specifications

A crashed program

Error Part of a component that
may lead to a failure

A programming bug

Fault The cause of an error A sloppy programmer

Terminology

8.1 Introduction: Basic concepts6

Term Description Example

Fault
prevention

Prevent the occurrence
of a fault

Don't hire sloppy
programmers

Fault
tolerance

Build a component such
that it can mask the
occurrence of a fault

Build each component by
two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a recruiter is
doing when it comes to
hiring sloppy programmers

Failure models

8.1 Introduction: Failure models

7

 Crash failures: Halt, but correct behavior until halting

 General omission failures: failure in sending or receiving messages

− Receiving omissions: sent messages are not received

− Send omissions: messages are not sent that should have

 Timing failures: correct output, but provided outside a specified time

interval.

− Performance failures: the component is too slow

 Response failures: incorrect output, but cannot be accounted to another

component

− Value failures: wrong output values

− State transition failures: deviation from correct flow of control (Note: this failure

may initially not even be observable)

 Arbitrary failures: any (combination of) failure may occur, perhaps even

unnoticed

Dependability versus security

 Omission failure: A component fails to take an action

that it should have taken

 Commission failure: A component takes an action that it

should not have taken

8.1 Introduction: Failure models

8

Observations

Deliberate failures, be they omission or commission
failures, stretch out to the field of security

There may actually be a thin line between
dependability and security

Halting failures

• Scenario: C no longer perceives any activity from C* ― a

halting failure? Distinguishing between a crash or

omission/timing failure may be impossible:

– Asynchronous system: no assumptions about process execution

speeds or message delivery times → cannot reliably detect

crash failures.

– Synchronous system: process execution speeds and message

delivery times are bounded → we can reliably detect omission

and timing failures.

– In practice we have partially synchronous systems: most of the

time, we can assume the system to be synchronous, yet there is

no bound on the time that a system is asynchronous → can

normally reliably detect crash failures.

8.1 Introduction: Failure models

9

Halting failures

• Assumptions we can make:

– Fail-stop: Crash failures, but reliably detectable

– Fail-noisy: Crash failures, eventually reliably detectable

– Fail-silent: Omission or crash failures: clients cannot tell what

went wrong.

– Fail-safe: Arbitrary, yet benign failures (can't do any harm).

– Fail-arbitrary: Arbitrary, with malicious failures

8.1 Introduction: Failure models

10

Process reslience

 Basic idea: protect yourself against faulty processes

through process replication:

8.2 Process resilience

11

Groups and failure masking

 k-Fault-tolerant group: When a group can mask any k

concurrent member failures (k is called degree of fault

tolerance).

 How large must a k-fault-tolerant group be:

− With halting failures (crash/omission/timing failures): we

need k+1 members: no member will produce an

incorrect result, so the result of one member is good

enough.

− With arbitrary failures: we need 2k+1 members: the

correct result can be obtained only through a majority

vote.

8.2 Process resilience

12

Groups and failure masking

 Important:

− All members are identical

− All members process commands in the same order

 Result:

− Only then do we know that all processes are programmed to do

exactly the same thing.

8.2 Process resilience

13

Observation

The processes need to have consensus on which
command to execute next

Flooding-based consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all process will execute the

same if no failures occur

• Problem:

– Suppose a process crashes before completing its multicast

8.2 Process resilience

14

Flooding-based consensus

8.2 Process resilience15

Failure detection

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process q for a reaction

– q reacts → q is alive

– q does not react within t time units → q is suspected to have crashed

• Note: in a synchronous system:

– a suspected crash is a known crash

– Referred to as a perfect failure detector

8.2 Process resilience: detection

49

Issue

How can we reliably detect that a process has
actually crashed?

Failure detection

• Practice: the eventually perfect failure detector

• Has two important properties:

– Strong completeness: every crashed process is eventually suspected to have

crashed by every correct process.

– Eventual strong accuracy: eventually, no correct process is suspected by any

other correct process to have crashed.

• Implementation:

– If p did not receive heartbeat from q within time t → p suspects q.

– If q later sends a message (received by p):

– p stops suspecting q

– p increases timeout value t

– Note: if q does crash, p will keep suspecting q.

8.2 Process resilience: detection

50

Fault Tolerance 8.3 Reliable Communication

Reliable communication

So far
Concentrated on process resilience (by means of process groups).
What about reliable communication channels?

Error detection
Framing of packets to allow for bit error detection
Use of frame numbering to detect packet loss

Error correction
Add so much redundancy that corrupted packets can be
automatically corrected
Request retransmission of lost, or last N packets

2 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: What can go wrong?
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

RPC communication: Solutions
1: Relatively simple – just report back to client
2: Just resend message

3 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server crashes

3: Server crashes are harder as you don’t what it had already done:

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

4 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

Problem
We need to decide on what we expect from the server

At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what.
At-most-once-semantics: The server guarantees it will carry out
an operation at most once.

5 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server response is lost

4: Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has
carried out the operation
Solution: None, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to
be carried out before.

6 / 35

The parentheses indicate an event that can no longer happen because the server
already crashed. Fig. 8-8 shows all possible combinations. As can be readily veri-
fied, there is no combination of client strategy and server strategy that will work
correctly under all possible event sequences. The bottom line is that the client can
never know whether the server crashed just before or after having the text printed.

Figure 8-8. Different combinations of client and server strategies in the pres-
ence of server crashes.

acknowledgment that its print request had been delivered to the server. In that
case, the client is counting on the fact that the server crashed before the print re-
quest could be delivered. The fourth and last strategy is to reissue a request only if
it has received an acknowledgment for the print request.

With two strategies for the server, and four for the client, there are a total of
eight combinations to consider. Unfortunately, no combination is satisfactory. To
explain, note that there are three events that can happen at the server: send the
completion message (M), print the text (P), and crash (C). These events can occur
in six different orderings:

1. M ~P ~C: A crash occurs after sending the completion message
and printing the text.

2. M ~C (~P): A crash happens after sending the completion mes-
sage, but before the text could be printed.

3. p ~M ~C: A crash occurs after sending the completion message
and printing the text.

4. P~C(~M): The text printed, after which a crash occurs before the
completion message could be sent.

5. C (~P ~M): A crash happens before the server could do anything.

6. C(~M ~P): A crash happens before the server could do anything.

340 FAULT TOLERANCE CHAP. 8

Send the completion message (M), print the text (P), and crash (C).

Client Print Request to Server Example:

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Client crashes

5: Problem: The server is doing work and holding resources for
nothing (called doing an orphan computation).

Orphan is killed (or rolled back) by client when it reboots
Broadcast new epoch number when recovering) servers kill
orphans
Require computations to complete in a T time units. Old ones are
simply removed.

Question
What’s the rolling back for?

7 / 35

Fault Tolerance 8.6 Recovery

Recovery

Introduction
Checkpointing
Message Logging

19 / 35

Fault Tolerance 8.6 Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation
Backward error recovery: Bring the system back into a previous
error-free state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes
need to cooperate in identifying a consistent state from where to recover

20 / 35

Fault Tolerance 8.6 Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been
sent in the state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection
of checkpoints

Message sent
from P2 to P1

21 / 35

Fault Tolerance 8.6 Recovery

Consistent recovery state

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection
of checkpoints

Message sent
from P2 to P1

Observation
If and only if the system provides reliable communication, should sent
messages also be received in a consistent state.

22 / 35

Fault Tolerance 8.6 Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may
lie at system startup time) cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm

23 / 35

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m�1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)! INT[j](n)
The dependency INT[i](m)! INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

24 / 35

Fault Tolerance 8.6 Recovery

Independent checkpointing

Observation
If process Pi rolls back to CP[i](m�1), Pj must roll back to
CP[j](n�1).

Question
How can Pj find out where to roll back to?

25 / 35

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Question
What advantages are there to coordinated checkpointing?

26 / 35

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

27 / 35

