
1

CC755: Distributed and Parallel
Systems

Dr. Manal Helal, Spring 2016
moodle.manalhelal.com

Lecture 6: Socket Programming
Remote Procedure Calls (RPC)

11/21/07 Kubiatowicz CS162 ©UCB Fall 2007 2

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote machine

(called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/21/07 Kubiatowicz CS162 ©UCB Fall 2007 3

Server
Socket

socket socketconnection
Reque

st Co
nnect

ion
new

socket

ServerClient

Socket Setup (Con’t)

• Things to remember:
– Connection requires 5 values: 
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]

– Often, Src Port “randomly” assigned
» Done by OS during client socket setup

– Dst Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

4

/* A simple server in the internet domain using  
TCP The port number is passed as an argument */

int main(int argc, char *argv[]) {
int sockfd, newsockfd, portno, n;
socklen_t clilen;char buffer[256];
struct sockaddr_in serv_addr, cli_addr;
if (argc < 2) {
fprintf(stderr,"ERROR, no port provided\n");
exit(1); }
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = atoi(argv[1]);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *)

&serv_addr, sizeof(serv_addr)) < 0)
error("ERROR on binding");

listen(sockfd,5);
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr, &clilen);
if (newsockfd < 0) error("ERROR on accept");
bzero(buffer,256);
n = read(newsockfd,buffer,255);
if (n < 0) error("ERROR reading from socket");
printf("Here is the message: %s\n",buffer);
n = write(newsockfd,"I got your message",18);
if (n < 0) error("ERROR writing to socket");
close(newsockfd); close(sockfd);
return 0;
}

/* Corresponding client code*/

int main(int argc, char *argv[]) {
int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;
char buffer[256];
if (argc < 3) {
 fprintf(stderr,"usage %s hostname port\n",

argv[0]);
 exit(0);}
portno = atoi(argv[2]);
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) error("ERROR opening socket");
server = gethostbyname(argv[1]);
if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);}
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr,
(char *)&serv_addr.sin_addr.s_addr,
server->h_length);
serv_addr.sin_port = htons(portno);
if (connect(sockfd,(struct sockaddr *)

&serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");
printf("Please enter the message: ");
bzero(buffer,256); fgets(buffer,255,stdin);
n = write(sockfd,buffer,strlen(buffer));
if (n < 0) error("ERROR writing to socket");
bzero(buffer,256);
n = read(sockfd,buffer,255);
if (n < 0) error("ERROR reading from socket");
printf("%s\n",buffer);close(sockfd);return 0;
}

C Example:

Java Socket Programming
● Y Daniel Liang, Introduction to JAVA Programming, 10th

Edition, Prentice Hall, 2013. (http://
www.cs.armstrong.edu/liang/intro10e/)

o Chapter 31 in the 10th Edition

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 6

Objectives
� To explain terms: TCP, IP, domain name, domain name server,

stream-based communications, and packet-based communications
(§31.2).

� To create servers using server sockets (§31.2.1) and clients using
client sockets (§31.2.2).

� To implement Java networking programs using stream sockets
(§31.2.3).

� To develop an example of a client/server application (§31.2.4).
� To obtain Internet addresses using the InetAddress class (§31.3).
� To develop servers for multiple clients (§31.4).
� To send and receive objects on a network (§31.5).
� To develop an interactive tic-tac-toe game played on the Internet

(§31.6).

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 7

Client/Server Communications

Server Host

Server socket on port 8000
SeverSocket server =
 new ServerSocket(8000);

A client socket
Socket socket =
 server.accept()

Client Host

Client socket
Socket socket =
 new Socket(host, 8000)

I/O Stream

The server must be running when a client starts.
The server waits for a connection request from a
client. To establish a server, you need to create a
server socket and attach it to a port, which is where
the server listens for connections.

After a server
socket is created,
the server can use
this statement to
listen for
connections.

The client issues
this statement to
request a
connection to a
server.

After the server accepts the
connection, communication
between server and client is
conducted the same as for I/
O streams.

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 8

Data Transmission through Sockets

InputStream input = socket.getInputStream();
OutputStream output = socket.getOutputStream();

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 9

A Client/Server Example
�Problem: Write a client to send data to a server. The

server receives the data, uses it to produce a result,
and then sends the result back to the client. The client
displays the result on the console. In this example,
the data sent from the client is the radius of a circle,
and the result produced by  
the server is the area of the circle.

radius

Server Client

compute area

area

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 10

A Client/Server Example, cont.

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 11

A Client/Server Example, cont.

radius

Server Client

compute area

area

Server Code Client Code

Note: Start the server, then the client.

Start Server Start Client

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 12

The InetAddress Class
Occasionally, you would like to know who is connecting to the server.
You can use the InetAddress class to find the client's host name and IP
address. The InetAddress class models an IP address. You can use the
statement shown below to create an instance of InetAddress for the
client on a socket.

InetAddress inetAddress = socket.getInetAddress();

Next, you can display the client's host name and IP address, as
follows:

System.out.println("Client's host name is " +
 inetAddress.getHostName());
System.out.println("Client's IP Address is " +
 inetAddress.getHostAddress());

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 13

Serving Multiple Clients
Multiple clients are quite often connected to a single server at the same time.
Typically, a server runs constantly on a server computer, and clients from all over the
Internet may want to connect to it. You can use threads to handle the server's
multiple clients simultaneously. Simply create a thread for each connection. Here is
how the server handles the establishment of a connection:

while (true) {
 Socket socket = serverSocket.accept();
 Thread thread = new ThreadClass(socket);
 thread.start();
}

The server socket can have many connections. Each iteration of the while loop
creates a new connection. Whenever a connection is established, a new thread is
created to handle communication between the server and the new client; and this
allows multiple connections to run at the same time.

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 14

Example: Serving Multiple Clients

Server for Multiple Clients

Note: Start the server first, then start multiple clients.

Start Server

Start Client

15

 try {
// Create a server socket
ServerSocket serverSocket = new ServerSocket(8000);
ta.appendText("MultiThreadServer started at "
 + new Date() + '\n');
while (true) {
 // Listen for a new connection request
 Socket socket = serverSocket.accept();

 // Increment clientNo
 clientNo++;

 Platform.runLater(() -> {
// Display the client number
ta.appendText("Starting thread for client " + clientNo +
 " at " + new Date() + '\n');

// Find the client's host name, and IP address
InetAddress inetAddress = socket.getInetAddress();
ta.appendText("Client " + clientNo + "'s host name is "
 + inetAddress.getHostName() + "\n");
ta.appendText("Client " + clientNo + "'s IP Address is "
 + inetAddress.getHostAddress() + "\n");
 });

 // Create and start a new thread for the connection
 new Thread(new HandleAClient(socket)).start();
}
 }
 catch(IOException ex) {
System.err.println(ex);
 }

 try {

 // Create a socket to connect to the server
 Socket socket = new Socket("localhost", 8000);
 // Socket socket = new Socket("130.254.204.36", 8000);
 // Socket socket = new Socket("drake.Armstrong.edu", 8000);

 // Create an input stream to receive data from the server
DataInputStream fromServer = new DataInputStream

(socket.getInputStream());

 // Create an output stream to send data to the server
 DataOutputStream toServer = new DataOutputStream

(socket.getOutputStream());

double radius = in.nextDouble()
// Send the radius to the server
toServer.writeDouble(radius);
toServer.flush();

// Get area from the server
double area = fromServer.readDouble();

// Display to the text area
ta.appendText("Radius is " + radius + "\n");
ta.appendText("Area received from the server is "
 + area + '\n');
}
 catch (IOException ex) {
 ta.appendText(ex.toString() + '\n');
}

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 16

Example: Passing Objects in Network Programs

Write a program that
collects student
information from a
client and send them to
a server. Passing
student information in
an object.

Student Sever

Student Class

Start Server
Note: Start the server first, then the client.

Start ClientStudent Client

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 17

Case Studies: Distributed TicTacToe Games

TicTacToeServer Run Server

TicTacToeClient Run Client

Optional

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 18

Distributed TicTacToe, cont.

Liang, Introduction to Java Programming, Ninth Edition, (c) 2013 Pearson Education, Inc. All
rights reserved. 19

Distributed TicTacToe Game

RPC

Remote Procedure Call

● RPC exposes a programming interface
across machines:

interface PriceService {
 float getPrice(ASIN uniqueID);
}

Client Server

PriceImpl

RPC
System

Caller

RPC
System

getPrice

Networking in two slides

● Network software is
arranged in layers

● Higher layers offer more
convenient
programming
abstractions
○ TCP provides in-order,

reliable delivery of a byte
stream

Application (HTTP, FTP)

Transport (TCP, UDP)

Network (IP)

Link (Ethernet, 802.11)

What TCP Does (Not) Provide

● TCP allows one machine to send a reliable byte
stream to another machine:
○ Socket.send(byte[] byteBuffer);

● TCP does not provide:
○ Mapping to/from programming language types

● Called “marshalling”
○ Thread management
○ Intelligent failure semantics
○ Discovery

● RCP packages build on TCP (or sometimes
UDP) to provide these services

Remote Procedure Call 24

Remote Procedure Call (RPC)

• The most common framework for newer protocols and
for middleware

• Used both by operating systems and by applications
– NFS is implemented as a set of RPCs
– DCOM, CORBA, Java RMI, etc., are just RPC systems  

• Reference
– Birrell, Andrew D., and Nelson, Bruce, “Implementing

Remote Procedure Calls,” ACM Transactions on Computer
Systems, vol. 2, #1, February 1984, pp 39-59. (.pdf)

CS-502 Fall 2007

Remote Procedure Call 25

Remote Procedure Call (RPC)

• Fundamental idea: –
– Server process exports an interface of procedures

or functions that can be called by client programs
• similar to library API, class definitions, etc.

• Clients make local procedure/function calls
– As if directly linked with the server process
– Under the covers, procedure/function call is

converted into a message exchange with remote
server process

CS-502 Fall 2007

Remote Procedure Call 26

Ordinary procedure/function call

count = read(fd, buf, bytes)

CS-502 Fall 2007

Remote Procedure Call 27

Remote Procedure Call

• Would like to do the same if called procedure or
function is on a remote server

CS-502 Fall 2007

Remote Procedure Call 28

Solution — a pair of Stubs

• A client-side stub is a function that looks to the client as if
it were a callable servicefunction
– I.e., same API as the service’s implementation of the function

• A service-side stub looks like a caller to the service
– I.e., like a hunk of code invoking the service function

• The client program thinks it’s invoking the service
– but it’s calling into the client-side stub

• The service program thinks it’s called by the client
– but it’s really called by the service-side stub

• The stubs send messages to each other to make the RPC
happen transparently (almost!)

CS-502 Fall 2007

Remote Procedure Call 29

RPC Stubs

Tanenbaum & Van Steen, Fig 4-7

CS-502 Fall 2007

Remote Procedure Call 30

RPC Stubs – Summary

• Client-side stub
– Looks like local server

function
– Same interface as local

function
– Bundles arguments into a

message, sends to server-
side stub

– Waits for reply, un-
bundles results

– returns

• Server-side stub
– Looks like local client

function to server
– Listens on a socket for

message from client stub
– Un-bundles arguments to

local variables
– Makes a local function

call to server
– Bundles result into reply

message to client stub

CS-502 Fall 2007

Remote Procedure Call 31

Result – a very useful Abstraction

• The hard work of building messages,
formatting, uniform representation, etc., is
buried in the stubs

• Where it can be automated!

• Designers of client and server can
concentrate on semantics of application

• Programs behave in familiar way

CS-502 Fall 2007

Remote Procedure Call 32

RPC – Issues

• Transparency: to be or not to be?
• How to make the “remote” part of RPC

invisible to the programmer?
• What are semantics of parameter passing?

– E.g., pass by reference?
• How to bind (locate & connect) to servers?
• How to handle heterogeneity?

– OS, language, architecture, …
• How to make it go fast?
CS-502 Fall 2007

Remote Procedure Call 33

RPC Model

• A server defines the service interface using
an interface definition language (IDL)
– the IDL specifies the names, parameters, and

types for all client-callable server procedures

• A stub compiler reads the IDL declarations
and produces two stub functions for each
server function
– Server-side and client-side

CS-502 Fall 2007

Remote Procedure Call 34

RPC Model (continued)

• Linking:–
– Server programmer implements the service’s

functions and links with the server-side stubs
– Client programmer implements the client

program and links it with client-side stubs
• Operation:–

– Stubs manage all of the details of remote
communication between client and server

CS-502 Fall 2007

Transparency

● General distributed systems issue: does a
remote service look identical to a local service

● Transparency allows programmers to ignore the
network

● But, transparency can impose poor performance
and complexity

● In practice
○ File systems try for transparency
○ RPC systems do not

Remote Procedure Call 36

Marshalling Arguments

• Marshalling is the packing of function parameters into a
message packet: the task of converting programming
language types into a byte stream
○ How many bits are in an integer?
○ How are floating point numbers represented?
○ Is the architecture big-endian or little-endian?
– the RPC stubs call type-specific functions to marshal or

unmarshal the parameters of an RPC
• Client stub marshals the arguments into a message
• Server stub unmarshals the arguments and uses them to invoke the service

function
– on return:

• the server stub marshals return values
• the client stub unmarshals return values, and returns to the client program

CS-502 Fall 2007

Complex Types

● Object-oriented languages allow
programmer-defined types

● Two basic strategies:
○ Push the type definition into the IDL (CORBA)
○ Add implicit support to the language

● Java Serialization

● Instances of Serializable can
automatically converted into a byte stream
○ Thus, RMI allows serializable arguments

Java Serialization

public class Person implements Serializable {
 private int age;
 private String name;
 private float salary;
 private transient boolean gender;
}

transient turns off serialization

Remote Procedure Call 39

Issue #1 — representation of data

• Big endian vs. little endian

Sent by Pentium Rec’d by SPARC After inversion

CS-502 Fall 2007

Remote Procedure Call 40

Representation of Data (continued)

• IDL must also define representation of data on
network
– Multi-byte integers
– Strings, character codes
– Floating point, complex, …
– …

• example: Sun’s XDR (external data representation)

• Each stub converts machine representation to/from
network representation

• Clients and servers must not try to cast data!

CS-502 Fall 2007

Remote Procedure Call 41

Issue #2 — Pointers and References

read(int fd, char* buf, int nbytes)

• Pointers are only valid within one address
space

• Cannot be interpreted by another process
• Even on same machine!

• Pointers and references are ubiquitous in C,
C++

• Even in Java implementations!

CS-502 Fall 2007

Remote Procedure Call 42

Pointers and References —  
Restricted Semantics

• Option: call by value
– Sending stub dereferences pointer, copies result

to message
– Receiving stub conjures up a new pointer

• Option: call by result
– Sending stub provides buffer, called function

puts data into it
– Receiving stub copies data to caller’s buffer as

specified by pointer

CS-502 Fall 2007

Remote Procedure Call 43

Pointers and References —  
Restricted Semantics (continued)

• Option: call by value-result
– Caller’s stub copies data to message, then copies

result back to client buffer
– Server stub keeps data in own buffer, server

updates it; server sends data back in reply

• Not allowed:–
– Call by reference
– Aliased arguments

CS-502 Fall 2007

Remote Procedure Call 44

Transport of Remote Procedure Call

• Option — TCP
• Connection-based, reliable transmission
• Useful but heavyweight, less efficient
• Necessary if repeating a call produces different result

• Alternative — UDP
• If message fails to arrive within a reasonable time,

caller’s stub simply sends it again
• Okay if repeating a call produces same result

CS-502 Fall 2007

Remote Procedure Call 45

Asynchronous RPC

• Analogous to spawning a thread
• Caller must eventually wait for result

– Analogous to join

CS-502 Fall 2007

Remote Procedure Call 46

Asynchronous RPC (continued)

• Analogous to spawning a thread
• Caller must eventually wait for result

– Analogous to join
– Or be interrupted (software interrupt)

CS-502 Fall 2007

Remote Procedure Call 47

RPC Binding

• Binding is the process of connecting the client to
the server
– the server, when it starts up, exports its interface

• identifies itself to a network name server
• tells RPC runtime that it is alive and ready to accept calls

– the client, before issuing any calls, imports the server
• RPC runtime uses the name server to find the location of the

server and establish a connection

• The import and export operations are explicit in the
server and client programs

CS-502 Fall 2007

Remote Procedure Call 48

Remote Procedure Call is used …

• Between processes on different machines
– E.g., client-server model

• Between processes on the same machine
– More structured than simple message passing

• Between subsystems of an operating system
– Windows XP (called Local Procedure Call)

CS-502 Fall 2007

Remote Procedure Call 49

Practical RPC Systems (continued)

• Java RMI (Remote Method Invocation)
• java.rmi standard package
• Java-oriented approach — objects and methods

• CORBA (Common Object Request Broker Architecture)
• Standard, multi-language, multi-platform middleware
• Object-oriented
• Heavyweight

• Web services
• Allow arbitrary clients and servers to communicate

using XML-based exchange formats
• Distributed file systems

• e.g., NFS (network file system)
• Multiplayer network games
• Many other distributed systems
CS-502 Fall 2007

Remote Procedure Call 50

Practical RPC Systems

• DCE (Distributed Computing Environment)
• Open Software Foundation
• Basis for Microsoft DCOM
• Tanenbaum & Van Steen, §4.2.4

• Sun’s ONC (Open Network Computing)
• Very similar to DCE
• Widely used
• rpcgen
• http://h30097.www3.hp.com/docs/base_doc/

DOCUMENTATION/HTML/AA-Q0R5B-TET1_html/
TITLE.html

CS-502 Fall 2007

Remote Procedure Call 51

Implementation Model for ONC
program & version #program & version #

rpcgen

XDR

CS-502 Fall 2007

Remote Procedure Call 52

Validating a Remote Service

• Purpose
• Avoid binding to wrong service or wrong version

• DCE
• Globally unique ID

– Generated in template of IDL file

• Sun ONC
• Program numbers registered with Sun
• Version # and procedure # administered locally

CS-502 Fall 2007

Remote Procedure Call 53

RPC Binding — Sun ONC

• Service registers with portmapper service
on server OS

• Program # and version #
• Optional static port #

• Client
• Must know host name or IP address
• clnt_create(host, prog, vers, proto)

– I.e., RPC to portmapper of host requesting to bind to
prog, vers using protocol proto (tcp or udp)

• (Additional functions for authentication, etc.)
• Invokes remote functions by name

CS-502 Fall 2007

Remote Procedure Call 54

Sun ONC (continued)

• #include <rpc/rpc.h>
• Header file for client and server

• rpcgen
• The stub compiler

– Compiles interface.x
– Produces .h files for client and service; also stubs

• See also
• rpcinfo
• RPC Programming Guide

CS-502 Fall 2007

Remote Procedure Call 55

Note on XDR 
(the Interface Definition Language for ONC)

• Much like C header file
• Exceptions

– string type – maps to char *
– bool type – maps to bool_t

CS-502 Fall 2007

Remote Procedure Call 56

Sun ONC

• Online tutorial
• http://h30097.www3.hp.com/docs/base_doc/

DOCUMENTATION/HTML/AA-Q0R5B-TET1_html/
TITLE.html

• Code samples
• http://web.cs.wpi.edu/~rek/DCS/D04/SunRPC.html
• http://web.cs.wpi.edu/~goos/Teach/cs4513-d05/
• http://web.cs.wpi.edu/~cs4513/b05/week4-sunrpc.pdf

• ONC RPCGEN :
• https://www.cs.cf.ac.uk/Dave/C/

node33.html
CS-502 Fall 2007

57

#include <rpc/rpc.h>
#include "rls.h"

main()
{
 extern bool_t xdr_dir();
 extern char * read_dir();

 registerrpc(DIRPROG, DIRVERS, READDIR,
 read_dir, xdr_dir, xdr_dir);

 svc_run();
}

/*
 * rls.c: remote directory listing client
 */
#include <stdio.h>
#include <strings.h>
#include <rpc/rpc.h>
#include "rls.h"

main (int argc, char *argv[] {
 char dir[DIR_SIZE];

 /* call the remote procedure if
 registered */
 strcpy(dir, argv[2]);
 read_dir(argv[1], dir);

 /* spew-out the results and bail out
 of here! */
 printf("%s\n", dir);
 exit(0);
}

read_dir(char *dir, *host) {
 extern bool_t xdr_dir();
 enum clnt_stat clnt_stat;

 clnt_stat = callrpc (host, DIRPROG,
 DIRVERS, READDIR,
 xdr_dir, dir, xdr_dir, dir);
 if (clnt_stat != 0) clnt_perrno
 (clnt_stat);
}

58

The easiest way to define and generate the protocol is to use a protocol complier such as rpcgen

For the protocol you must identify the name of the service procedures, and data types of parameters and return
arguments.
The protocol compiler reads a definitio and automatically generates client and server stubs.
rpcgen uses its own language (RPC language or RPCL) which looks very similar to preprocessor directives.
rpcgen exists as a standalone executable compiler that reads special files denoted by a .x prefix.
So to compile a RPCL file you simply do
rpcgen rpcprog.x
This will generate possibly four files:

• rpcprog_clnt.c -- the client stub
• rpcprog_svc.c -- the server stub
• rpcprog_xdr.c -- If necessary XDR (external data representation) filters
• rpcprog.h -- the header file needed for any XDR filters.

The external data representation (XDR) is an data abstraction needed for machine independent
communication. The client and server need not be machines of the same type.

