
1

CC755: Distributed and Parallel
Systems

Dr. Manal Helal, Spring 2016
moodle.manalhelal.com

Lecture 7: Remote Method Invocation (RMI)

RMI
● Y Daniel Liang, Introduction to JAVA Programming, 9th

Edition, Prentice Hall, 2013. (http://
www.cs.armstrong.edu/liang/intro9e/)

o Chapter 46 in the 9th Edition

3

Shared Memory Architectures

4

Distributed Memory Architecture

5
6

RMI Basics
RMI is the Java Distributed Object Model for facilitating
communications among distributed objects. RMI is a
higher-level API built on top of sockets. Socket-level
programming allows you to pass data through sockets
among computers. RMI enables you not only to pass data
among objects on different systems, but also to invoke
methods in a remote object.

6
9

The Differences between RMI and RPC
RMI is similar to Remote Procedure Calls (RPC) in the
sense that both RMI and RPC enable you to invoke
methods, but there are some important differences. With
RPC, you call a standalone procedure. With RMI, you
invoke a method within a specific object. RMI can be
viewed as object-oriented RPC.

7
10

The Differences between RMI and
Traditional Client/Server Approach

● A RMI component can act as both a client and a server,
depending on the scenario in question.

● A RMI system can pass functionality from a server to a
client and vice versa. A client/server system typically only
passes data back and fourth between server and client.

8
11

How does RMI work?

 Client Host

Server
Stub Client

Program

RMI Registry Host

RMI
Registry

Server Host

Server
Skeleton Server

Object

(1) Register Server Object

(2) Look for Server Object

(3) Return
Server Stub

(4) Data
Communication

Server Object
Interface

Server Object
Interface

A subinterface of
java.rmi.Remote that
defines the methods for
the server object.

A utility that
registers remote
objects and provides
naming services for
locating objects.

An instance of the
server object
interface.

A program that
invokes the methods
in the remote server
object.

An object that
resides on the client
host and serves as a
surrogate for the
remote server object.

An object that
resides on the server
host, communicates
with the stub and the
actual server object.

RMI works as follows: (1) A server object is registered with the
RMI registry; (2) A client looks through the RMI registry for the
remote object; (3) Once the remote object is located, its stub is
returned in the client; (4) The remote object can be used in the
same way as a local object. The communication between the
client and the server is handled through the stub and skeleton.

9
12

Passing Parameters
When a client invokes a remote method with
parameters, passing parameters are handled
under the cover by the stub and the skeleton.
Let us consider three types of parameters:
1. Primitive data type. A parameter of primitive
type such as char, int, double, and boolean is
passed by value like a local call.

10
13

Passing Parameters, cont.

Local object type. A parameter of local object type such
as java.lang.String is also passed by value. This is
completely different from passing object parameter in a
local call. In a local call, an object parameter is passed by
reference, which corresponds to the memory address of
the object. In a remote call, there is no way to pass the
object reference because the address on one machine is
meaningless to a different Java VM. Any object can be
used as a parameter in a remote call as long as the object
is serializable. The stub serializes the object parameter
and sends it in a stream across the network. The skeleton
deserializes stream into an object.

11
14

Passing Parameters, cont.
Remote object type. Remote objects are passed
differently from the local objects. When a client
invokes a remote method with a parameter of
some remote object type, the stub of the remote
object is passed. The server receives the stub and
manipulates the parameter through the stub.

12
15

RMI Registry

How does a client locate the remote object? RMI registry provides the registry
services for the server to register the object and for the client to locate the object.

You can use several overloaded static getRegistry() methods in the LocateRegistry
class to return a reference to a Registry. Once a Registry is obtained, you can bind an
object with a unique name in the registry using the bind or rebind method or locate
an object using the lookup method.

 java.rmi.registry.LocateRegistry

+getRegistry(): Registry

+getRegistry(port: int): Registry

+getRegistry(host: String): Registry

+getRegistry(host:String, port: int): Registry

Returns a reference to the remote object Registry for the
local host on the default registry port of 1099.

Returns a reference to the remote object Registry for the
local host on the specified port.

Returns a reference to the remote object Registry on the
specified host on the default registry port of 1099.

 Returns a reference to the remote object Registry on the
specified host and port.

13
16

RMI Registry: Binding Objects

 java.rmi.registry.Registry

+bind(name: String, obj: Remote): void
+rebind(name: String, obj: Remote): void

+unbind(name: String): void

+list(name: String): String[]
+lookup(name: String): Remote

Binds the specified name with the remote object.
Binds the specified name with the remote object. Any

existing binding for the name is replaced.
Destroys the binding for the specified name that is

associated with a remote object.
Returns an array of the names bound in the registry.
Returns a reference, a stub, for the remote object

associated with the specified name.

14
17

Developing RMI Applications

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

15
18

Step 1: Define Server Object Interface
1. Define a server object interface that serves as the contract between the server and its clients, as shown
in the following outline:

public interface ServerInterface extends Remote {
 public void service1(...) throws RemoteException;
 // Other methods
}

A server object interface must extend the java.rmi.Remote interface.

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

16
19

Step 2: Define Server Implementation Object
2. Define a class that implements the server object interface, as shown in the following outline:

public class ServerInterfaceImpl extends UnicastRemoteObject
 implements ServerInterface {
 public void service1(...) throws RemoteException {
// Implement it
 }
 // Implement other methods
}

The server implementation class must extend the java.rmi.server.UnicastRemoteObject class. The UnicastRemoteObject
class provides support for point-to-point active object references using TCP streams.

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

17
20

Step 3: Create and Register Server Object
3. Create a server object from the server implementation class and register it with an RMI
registry:

ServerInterface server = new ServerInterfaceImpl(...);
Registry registry = LocateRegistry.getRegistry();
registry.rebind("RemoteObjectName", server);

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

18
21

Step 4: Develop Client Program
4. Develop a client that locates a remote object and invokes its methods, as shown in the
following outline:

Registry registry = LocateRegistry.getRegistry(host);
ServerInterface server = (ServerInterfaceImpl)
 registry.lookup("RemoteObjectName");
server.service1(...);

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

19
22

Example: Retrieving Student Scores from an
RMI Server
● Problem: This example creates a client that

retrieves student scores from an RMI server.

20
23

Step 1: Define Server Object Interface
1. Create a server interface named StudentServerInterface. The interface tells the client
how to invoke the server's findScore method to retrieve a student score.

StudentServerInterface

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

21
24

Step 2: Define Server Implementation Object
2. Create server implementation named StudentServerInterfaceImpl that implements
StudentServerInterface. The findScore method returns the score for a specified student. This
method returns -1 if the score is not found.

StudentServerInterfaceImp

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

22
25

Step 3: Create and Register Server
Object

3. Create a server object from the server implementation class and register it with an RMI
registry.

RegisterWithRMIServer

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

23
26

Step 4: Develop Client Program
4. Create a client as an applet named StudentServerInterfaceClient. The client locates the
server object from the RMI registry, uses it to find the scores.

StudentServerInterfaceClient

Develop Client
Program

4 Define Server
Implementation Class

2

Define Server
Object Interface

1

Create and Register
Server Object

3

24
27

Run Example
1. Start RMI Registry by typing "start rmiregistry" at a DOS prompt from the
book directory. By default, the port number 1099 is used by rmiregistry. To use a
different port number, simply type the command "start rmiregistry portnumber"
at a DOS prompt. On Unix based systems, using a terminal type “rmiregistry &”.

Start RMI

2. Start RegisterWithRMIServer using the following command at C:\book
directory:
C:\book>java RegisterWithRMIServer

Register Object
with RMI Registry

3. Run StudentServerInterfaceClient as an application. Run

There might be some security setting that need to be fixed. For example:

java -Djava.security.manager -Djava.security.policy=/some/path/my.policy RegisterWithRMIServer

25
28

RMI vs. Socket-Level Programming

RMI enables you to program at a higher level of abstraction. It hides the details of
socket server, socket, connection, and sending or receiving data. It even implements a
multithreading server under the hood, whereas with socket-level programming you
have to explicitly implement threads for handling multiple clients.

RMI applications are scalable and easy to maintain. You can change the RMI server
or move it to another machine without modifying the client program except for
resetting the URL to locate the server. (To avoid resetting the URL, you can modify
the client to pass the URL as a command-line parameter.) In socket-level
programming, a client operation to send data requires a server operation to read it.
The implementation of client and server at the socket-level is tightly synchronized.

RMI clients can directly invoke the server method, whereas socket-level programming
is limited to passing values. Socket-level programming is very primitive. Avoid using it
to develop client/server applications. As an analogy, socket-level programming is like
programming in assembly language, while RMI programming is like programming in
a high-level language.

26
29

Developing Three-Tier Applications Using RMI

Three-tier applications have gained considerable attention in recent years, largely
because of the demand for more scalable and load-balanced systems to replace
traditional two-tier client/server database systems. A centralized database system
not only handles data access but also processes the business rules on data. Thus, a
centralized database is usually heavily loaded because it requires extensive data
manipulation and processing. In some situations, data processing is handled by the
client and business rules are stored on the client side. It is preferable to use a
middle tier as a buffer between a client and the database. The middle tier can be
used to apply business logic and rules, and to process data to reduce the load on
the database.

A three-tier architecture does more than just reduce the processing load on the
server. It also provides access to multiple network sites. This is especially useful to
Java applets that need to access multiple databases on different servers, since an
applet can only connect with the server from which it is downloaded.

27
30

Example: Retrieving Student Scores on a
Database Using RMI
Problem: This example rewrites the preceding example to find
scores stored in a database rather than a hash map. In addition,
the system is capable of blocking a client from accessing a
student who has not given the university permission to publish
his/her score. An RMI component is developed to serve as a
middle tier between client and database; it sends a search request
to the database, processes the result, and returns an appropriate
value to the client.

28
31

RMI Call Backs
In a traditional client/server system, a client sends a request to a
server, and the server processes the request and returns the result
to the client. The server cannot invoke the methods on a client.
One of the important benefits of RMI is that it supports callbacks,
which enable the server to invoke the methods on the client. With
the RMI callback feature, you can develop interactive distributed
applications.

29
32

Example: Distributed TicTacToe Using RMI
Example 32.7, “Distributed TicTacToe Game,” was developed
using stream socket programming. Write a new distributed
TicTacToe game using the RMI.

30
33

Example: Distributed TicTacToe Using RMI

TicTacToeInterface

CallBack

TicTacToeImpl

CallBackImpl

TicTacToeClientRMI

31

Assignment
● Implement an RMI distributed application for a Math

server for two methods:

● The greatest common divisor (GCD) of two integers using the
following code. The greatest common divisor is the largest
number which divides both a and b without remainder.

public int GCD(int a, int b) { return b==0 ? a : GCD(b, a%b); }

● The least common multiple (LCM) of two integers. The least
common multiple is the smallest integer which both a and b can
divide without remainder, and is given by a*b/gcd(a,b).

● Submit the source .java files in a zip or jar file (preferably
executable jar) as ass4_YourStudentID.jar

