
Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 1

Chapter 15 Event-Driven
Programming and Animations

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 2

Motivations
Suppose you want to write a GUI
program that lets the user enter a
loan amount, annual interest rate,
and number of years and click the
Compute Payment button to obtain
the monthly payment and total
payment. How do you accomplish
the task? You have to use event-
driven programming to write the
code to respond to the button-
clicking event.

LoanCalculator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 3

// Process events
 btCalculate.setOnAction(e -> calculateLoanPayment());
.
.
private void calculateLoanPayment() {
 // Get values from text fields
 double interest = Double.parseDouble(tfAnnualInterestRate.getText());
 int year = Integer.parseInt(tfNumberOfYears.getText());
 double loanAmount = Double.parseDouble(tfLoanAmount.getText());
 // Create a loan object. Loan defined in Listing 10.2
 Loan loan = new Loan(interest, year, loanAmount);
 // Display monthly payment and total payment
 tfMonthlyPayment.setText(String.format(“$%.2f", loan.getMonthlyPayment()));
 tfTotalPayment.setText(String.format(“$%.2f", loan.getTotalPayment()));
 }

// used to be in Java 7:
// Register listener
 jbtComputeLoan.addActionListener(new ButtonListener());
 /** Handle the Compute Payment button */
 private class ButtonListener implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 // Get values from text fields
 double interest = Double.parseDouble(jtfAnnualInterestRate.getText());
 int year = Integer.parseInt(jtfNumberOfYears.getText());
 double loanAmount = Double.parseDouble(jtfLoanAmount.getText());

 // Create a loan object
 Loan loan = new Loan(interest, year, loanAmount);

 // Display monthly payment and total payment
 jtfMonthlyPayment.setText(String.format(“%.2f", loan.getMonthlyPayment()));
 jtfTotalPayment.setText(String.format(“%.2f", loan.getTotalPayment()));
 }
 }

Lambda Expression

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 4

Objectives
▪ To get a taste of event-driven programming (§15.1).
▪ To describe events, event sources, and event classes (§15.2).
▪ To define handler classes, register handler objects with the source object, and write

the code to handle events (§15.3).
▪ To define handler classes using inner classes (§15.4).
▪ To define handler classes using anonymous inner classes (§15.5).
▪ To simplify event handling using lambda expressions (§15.6).
▪ To develop a GUI application for a loan calculator (§15.7).
▪ To write programs to deal with MouseEvents (§15.8).
▪ To write programs to deal with KeyEvents (§15.9).
▪ To create listeners for processing a value change in an observable object (§15.10).
▪ To use the Animation, PathTransition, FadeTransition, and Timeline classes to

develop animations (§15.11).
▪ To develop an animation for simulating a bouncing ball (§15.12).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 5

Procedural vs. Event-Driven Programming

▪ Procedural programming is executed in
procedural order.

▪ In event-driven programming, code is executed
upon activation of events.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 6

Taste of Event-Driven Programming

The example displays a button in the frame. A
message is displayed on the console when a
button is clicked.

HandleEvent

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 7

public class HandleEvent extends Application {
 public void start(Stage primaryStage) {

.

.
 OKHandlerClass handler1 = new OKHandlerClass();
 btOK.setOnAction(handler1);
 CancelHandlerClass handler2 = new CancelHandlerClass();
 btCancel.setOnAction(handler2);

.
}
.
.

}
class OKHandlerClass implements EventHandler<ActionEvent> {
 @Override
 public void handle(ActionEvent e) {
 System.out.println("OK button clicked");
 }
}

class CancelHandlerClass implements EventHandler<ActionEvent> {
 @Override
 public void handle(ActionEvent e) {
 System.out.println("Cancel button clicked");
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 86

Handling GUI Events

Source object (e.g., button)
Listener object contains a method for

processing the event.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 97

Trace Execution
public class HandleEvent extends Application {
 public void start(Stage primaryStage) {
 …
 OKHandlerClass handler1 = new OKHandlerClass();
 btOK.setOnAction(handler1);
 CancelHandlerClass handler2 = new CancelHandlerClass();
 btCancel.setOnAction(handler2);
 …
 primaryStage.show(); // Display the stage
 }
}

class OKHandlerClass implements EventHandler<ActionEvent> {
 @Override
 public void handle(ActionEvent e) {
 System.out.println("OK button clicked");
 }
}

1. Start from the main
method to create a

window and display
it

animation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 108

Trace Execution
public class HandleEvent extends Application {
 public void start(Stage primaryStage) {
 …
 OKHandlerClass handler1 = new OKHandlerClass();
 btOK.setOnAction(handler1);
 CancelHandlerClass handler2 = new CancelHandlerClass();
 btCancel.setOnAction(handler2);
 …
 primaryStage.show(); // Display the stage
 }
}

class OKHandlerClass implements EventHandler<ActionEvent> {
 @Override
 public void handle(ActionEvent e) {
 System.out.println("OK button clicked");
 }
}

animation

2. Click OK

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 119

Trace Execution
public class HandleEvent extends Application {
 public void start(Stage primaryStage) {
 …
 OKHandlerClass handler1 = new OKHandlerClass();
 btOK.setOnAction(handler1);
 CancelHandlerClass handler2 = new CancelHandlerClass();
 btCancel.setOnAction(handler2);
 …
 primaryStage.show(); // Display the stage
 }
}

class OKHandlerClass implements EventHandler<ActionEvent> {
 @Override
 public void handle(ActionEvent e) {
 System.out.println("OK button clicked");
 }
}

animation

3. Click OK. The
JVM invokes the
listener’s handle

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 12

Events
❑ An event can be defined as a type of signal

to the program that something has happened.

❑ The event is generated by external user
actions such as mouse movements, mouse
clicks, or keystrokes.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 13

Event Classes

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 14

Event Information
An event object contains whatever properties are
pertinent to the event. You can identify the source
object of the event using the getSource() instance
method in the EventObject class. The subclasses of
EventObject deal with special types of events, such
as button actions, window events, component
events, mouse movements, and keystrokes. Table
16.1 lists external user actions, source objects, and
event types generated.

One Class to Handle All Events

• Design on Event Handling class, and in the
handle method, use getSource() you can
identify the source object to handle it
differently.

15DetectSourceDemo

 class ButtonListener implements ActionListener {
 @Override
 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == jbtNew)
 System.out.println("Process New");
 else if (e.getSource() == jbtOpen)
 System.out.println("Process Open");
 else if (e.getSource() == jbtSave)
 System.out.println("Process Save");
 else if (e.getSource() == jbtPrint)
 System.out.println("Process Print");
 }
 }

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 16

Selected User Actions and Handlers

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 17

The Delegation Model

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 18

The Delegation Model: Example

Button btOK = new Button("OK");

OKHandlerClass handler = new OKHandlerClass();

btOK.setOnAction(handler);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 19

Inner Class Listeners

A listener class is designed specifically to
create a listener object for a GUI
component (e.g., a button). It will not be
shared by other applications. So, it is
appropriate to define the listener class
inside the frame class as an inner class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 20

Inner Classes
Inner class: A class is a member of another class.

Advantages: In some applications, you can use an
inner class to make programs simple.

An inner class can reference the data and methods
defined in the outer class in which it nests, so
you do not need to pass the reference of the outer
class to the constructor of the inner class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 21

Inner Classes, cont.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 22

Inner Classes (cont.)
Inner classes can make programs simple and
concise.

An inner class supports the work of its
containing outer class and is compiled into a
class named OuterClassName
$InnerClassName.class. For example, the
inner class InnerClass in OuterClass is
compiled into OuterClass$InnerClass.class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 23

Inner Classes (cont.)
❑ An inner class can be declared public,

protected, or private subject to the same
visibility rules applied to a member of the
class.

❑ An inner class can be declared static. A
static inner class can be accessed using the
outer class name. A static inner class
cannot access nonstatic members of the
outer class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 24

Anonymous Inner Classes
❑ An anonymous inner class must always extend a superclass or

implement an interface, but it cannot have an explicit extends or
implements clause.

❑ An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

❑ An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor is Object().

❑ An anonymous inner class is compiled into a class named
OuterClassName$n.class. For example, if the outer class Test
has two anonymous inner classes, these two classes are compiled
into Test$1.class and Test$2.class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 25

Anonymous Inner Classes (cont.)
 Inner class listeners can be shortened using anonymous

inner classes. An anonymous inner class is an inner
class without a name. It combines declaring an inner
class and creating an instance of the class in one step.
An anonymous inner class is declared as follows:

new SuperClassName/InterfaceName() {
 // Implement or override methods in superclass or interface
 // Other methods if necessary
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 26

Anonymous Inner Classes (cont.)

AnonymousHandlerDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 27

Simplifying Event Handing Using
Lambda Expressions

Lambda expression is a new feature in Java 8. Lambda
expressions can be viewed as an anonymous method with a
concise syntax. For example, the following code in (a) can
be greatly simplified using a lambda expression in (b) in
three lines.

btEnlarge.setOnAction(
 new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent e) {
 // Code for processing event e
 }
 }
});

(a) Anonymous inner class event handler

btEnlarge.setOnAction(e -> {
 // Code for processing event e
});

(b) Lambda expression event handler

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 28

Basic Syntax for a Lambda Expression

The basic syntax for a lambda expression is either
 (type1 param1, type2 param2, ...) -> expression
or
 (type1 param1, type2 param2, ...) -> { statements; }

The data type for a parameter may be explicitly
declared or implicitly inferred by the compiler. The
parentheses can be omitted if there is only one
parameter without an explicit data type.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 29

Single Abstract Method Interface (SAM)

The statements in the lambda expression is all for that
method. If it contains multiple methods, the compiler
will not be able to compile the lambda expression. So,
for the compiler to understand lambda expressions,
the interface must contain exactly one abstract
method. Such an interface is known as a functional
interface, or a Single Abstract Method (SAM)
interface.

AnonymousHandlerDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 30

// Create and register the handler
 btNew.setOnAction(new EventHandler<ActionEvent>() {
 @Override // Override the handle method
 public void handle(ActionEvent e) {
 System.out.println("Process New");
 }
 });

 btOpen.setOnAction(new EventHandler<ActionEvent>() {
 @Override // Override the handle method
 public void handle(ActionEvent e) {
 System.out.println("Process Open");
 }
 });

 btSave.setOnAction(new EventHandler<ActionEvent>() {
 @Override // Override the handle method
 public void handle(ActionEvent e) {
 System.out.println("Process Save");
 }
 });

 btPrint.setOnAction(new EventHandler<ActionEvent>() {
 @Override // Override the handle method
 public void handle(ActionEvent e) {
 System.out.println("Process Print");
 }
 });

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 31

Problem: Loan Calculator

LoanCalculator

// Process events
 btCalculate.setOnAction(e -> calculateLoanPayment());
.
.
private void calculateLoanPayment() {
 // Get values from text fields
 double interest = Double.parseDouble(tfAnnualInterestRate.getText());
 int year = Integer.parseInt(tfNumberOfYears.getText());
 double loanAmount = Double.parseDouble(tfLoanAmount.getText());
 // Create a loan object. Loan defined in Listing 10.2
 Loan loan = new Loan(interest, year, loanAmount);
 // Display monthly payment and total payment
 tfMonthlyPayment.setText(String.format(“$%.2f", loan.getMonthlyPayment()));
 tfTotalPayment.setText(String.format(“$%.2f", loan.getTotalPayment()));
 }

Lambda Expression

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 32

MouseEvent

MouseEventDemo

text.setOnMouseDragged(e -> {
 text.setX(e.getX());
 text.setY(e.getY());
 });

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 33

The KeyEvent Class

MouseEventDemo

text.setOnKeyPressed(e -> {
 switch (e.getCode()) {
 case DOWN: text.setY(text.getY() + 10); break;
 case UP: text.setY(text.getY() - 10); break;
 case LEFT: text.setX(text.getX() - 10); break;
 case RIGHT: text.setX(text.getX() + 10); break;
 default:
 if (e.getText().length() > 0)
 text.setText(e.getText());
 }
 });

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 34

The KeyCode Constants

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 35

Example: First Version for
ControlCircle (no listeners)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

ControlCircleWithoutEventHandling

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 36

Example: Second Version for ControlCircle
(with listener for Enlarge)

Now let us consider to write a program that uses two buttons to control the
size of a circle using setOnAction method. Also using mouse events using
setOnMouseClicked method, and using key events using setOnKeyPressed.

ControlCircle

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 37

.

.

.
 // Create and register the handler
 btEnlarge.setOnAction(e -> circlePane.enlarge());
 btShrink.setOnAction(e -> circlePane.shrink());

.

.

.
 circlePane.setOnMouseClicked(e -> {
 if (e.getButton() == MouseButton.PRIMARY) {
 circlePane.enlarge();
 }
 else if (e.getButton() == MouseButton.SECONDARY) {
 circlePane.shrink();
 }
 });

 scene.setOnKeyPressed(e -> {
 if (e.getCode() == KeyCode.UP) {
 circlePane.enlarge();
 }
 else if (e.getCode() == KeyCode.DOWN) {
 circlePane.shrink();
 }
 });

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 38

Listeners for Observable Objects
You can add a listener to process a value change in an
observable object.
An instance of Observable is known as an observable object,
which contains the addListener(InvalidationListener
listener) method for adding a listener. Once the value is
changed in the property, a listener is notified. The listener class
should implement the InvalidationListener interface, which
uses the invalidated(Observable o) method to handle the
property value change. Every binding property is an instance of
Observable.

ObservablePropertyDemo

DisplayResizableClock

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 39

public class ObservablePropertyDemo {
 public static void main(String[] args) {
 DoubleProperty balance = new SimpleDoubleProperty();
 balance.addListener(new InvalidationListener() {
 public void invalidated(Observable ov) {
 System.out.println("The new value is " +
 balance.doubleValue());
 }
 });

 balance.set(4.5);
 }
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 40

Animation
JavaFX provides the Animation class with the core
functionality for all animations.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 41

PathTransition

PathTransitionDemo

FlagRisingAnimation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 42

FadeTransition

FadeTransitionDemo

The FadeTransition class animates the change of the
opacity in a node over a given time.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 43

Timeline

TimelineDemo

PathTransition and FadeTransition define specialized
animations. The Timeline class can be used to program any
animation using one or more KeyFrames. Each KeyFrame
is executed sequentially at a specified time interval.
Timeline inherits from Animation.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 44

Clock Animation

ClockAnimation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved. 45

Case Study: Bouncing Ball

BallPane

BounceBallControl

