Chapter 15 Event-Driven
Programming and Animations

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Motivations

Suppose you want to write a GUI =1ox]
program that lets the user enter a Annual Interest Rate: 45
loan amount, annual interest rate, f:a";b:mzztears 500:
and number of years and click the . . 1400
Compute Payment button to obtain rowieayment: §5472.84
the monthly payment and total (Calauator |

payment. How do you accomplish
the task? You have to use event-
driven programming to write the
code to respond to the button-
clicking event.

LoanCalculator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

// Process events
btCalculate.setOnAction(e -> calculateLoanPayment());

\ Lambda Expression

private void calculatelLoanPayment() {
// Get values from text fields
double interest = Double.parseDouble(tfAnnuallnterestRate.getText());
int year = Integer.parseInt(tfNumberOfYears.getText());
double loanAmount = Double.parseDouble(tfLoanAmount.getText());
// Create a loan object. Loan defined in Listing 10.2
Loan loan = new Loan(interest, year, loanAmount);
// Display monthly payment and total payment
tfMonthlyPayment.setText(String.format(“$%.2f", loan.getMonthlyPayment()));
tfTotalPayment.setText(String.format(“$%.2f", loan.getTotalPayment()));

}

// used to be in Java 7:
// Register listener
jbtComputeLoan.addActionListener(new ButtonListener());
/** Handle the Compute Payment button */
private class ButtonListener implements ActionListener {
@Override
public void actionPerformed(ActionEvent e) {
// Get values from text fields
double interest = Double.parseDouble(jtfAnnuallnterestRate.getText());
int year = Integer.parselnt(jtfNumberOfYears.getText());
double loanAmount = Double.parseDouble(jtfLoanAmount.getText());

// Create a loan object
Loan loan = new Loan(interest, year, loanAmount);

// Display monthly payment and total payment
jtfMonthlyPayment.setText(String.format(“%.2f", loan.getMonthlyPayment()));
jtfTotalPayment.setText(String.format(“%.2f", loan.getTotalPayment()));

} Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
) rights reserved.

Objectives

To get a taste of event-driven programming (§15.1).
To describe events, event sources, and event classes (§15.2).

To define handler classes, register handler objects with the source object, and write
the code to handle events (§15.3).

To define handler classes using inner classes (§15.4).

To define handler classes using anonymous inner classes (§15.5).
To simplify event handling using lambda expressions (§15.6).

To develop a GUI application for a loan calculator (§15.7).

To write programs to deal with MouseEvents (§15.8).

To write programs to deal with KeyEvents (§15.9).

To create listeners for processing a value change in an observable object (§ 1S.10).

To use the Animation, PathTransition, FadeTransition, and Timeline clas
develop animations (§15.11).

To develop an animation for simulating a bouncing ball (§15.12).

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Procedural vs. Event-Driven Programming

= Procedural programming 1s executed 1n
procedural order.

= In event-driven programming, code 1s executed
upon activation of events.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Taste of Event-Driven Programming

The example displays a button in the frame. A

message 1s displayed on the console when a
button 1s clicked.

<~ Command Prompt - java HandleEvent =]

C:\book>java HandleEvent _;_I
OK button clicked

Cancel button clicked

0K button clicked

h
HandleEvent Kl =o] x|
0K

Cancel

"_

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All *
rights reserved.

public class HandleEvent extends Application {
public void start(Stage primaryStage) {

OKHandlerClass handlerl = new OKHandlerClass();
btOK.setOnActionChandlerl);

CancelHandlerClass handler2 = new CancelHandlerClass();
btCancel.setOnActionChandler?2);

}
class OKHandlerClass implements EventHandler<ActionEvent> {
@0verride
public void handle(ActionEvent e) {
System.out.println("0K button clicked");
¥
ks

class CancelHandler(Class implements EventHandler<ActionEvent> {
@0verride

public void handle(ActionEvent e) {
System.out.println("Cancel button clicked");
}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Handling GUI Events

Source object (e.g., button)

Listener object contains a method for
processing the event.

' > ' > |
button | event | handler
Clicking a button An event is The event handler
fires an action event an object processes the event
(Event source object) (Event object) (Event handler object

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

animation ‘

Trace Execution

public class HandleEvent extends Application { ™

public void start(Stage primaryStage) { - 1. Start from the main
method to create a

window and display

1t -

OKHandlerClass handler]l = new OKHandlerClass();
btOK.setOnAction(handlerl);
CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2); £ Handle EventiM[=1Ed
OK

T Cancel
primaryStage.show();77Display the stage
h

b

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent €) {
System.out.println("OK button clicked");

j
h

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

animation ‘

Trace Execution

public class HandleEvent extends Application { o . ™

public void start(Stage primaryStage) { 2. Click OK
OKHandlerClass handler]l = new OKHandlerClass();
btOK.setOnAction(handlerl); /
CancelHandlerClass handler2 = new CancelHandlerClass();

btCancel.setOnAction(handler2);

primaryStage.show(); // Display the stage
b
h

class OKHandlerClass implements EventHandler<ActionEvent> {
@Override
public void handle(ActionEvent e) {
System.out.println("OK button clicked");

j
h

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

animation ‘

Trace Execution

public class HandleEvent extends Application { o . ™
ublic void start(Stage primaryStage 3. Click OK. The
p.,, (Sragep ystage) & JVM invokes the
OKHandlerClass handlerl = new OKHandlerClass(); listener’s handle

_

btOK.setOnAction(handlerl);
CancelHandlerClass handler2 = new CancelHandlerClass

btCancel.setOnAction(handler2);

primaryStage.show(); // Display the stage ol x|
} OK Cancel
h
class OKHandlerClass implements EventHand/A<ActionEvent> {
@Override
public void handle(ActionEvent ¢) { [+ Command Promptjavall
System.out.println("OK button clicked"); C:\book>java HandleEvent 2
b :
b

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All *
rights reserved.

Events

Q An event can be defined as a type of signal
to the program that something has happened.

Q The event 1s generated by external user
actions such as mouse movements, mouse
clicks, or keystrokes.

N\

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All B
rights reserved.

Event Classes

— ActionEventI

— KeyEvent I

: JavaFX event classes are in
LU E S the Javafx.event package

— w— —

|

|

|

|

|

|

|

|

_— |
Event |<|— InputEvent |<|— |
|

|

|

|

|

|

|

|

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Event Information

An event object contains whatever properties are
pertinent to the event. You can 1dentify the source
object of the event using the getSource() instance
method 1n the EventObject class. The subclasses of
EventObject deal with special types of events, such
as button actions, window events, component
events, mouse movements, and keystrokes. Tabl\
16.1 lists external user actions, source objects, a
event types generated.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All R
rights reserved.

One Class to Han 11 Events

» Design on Event Hand ass, and 1n the
handle method, use get ce() you can

1dentify the source object to handle 1t
differently. ——

class ButtonListener implements ActionListener {
@0verride
public void actionPerformed(ActionEvent e) {
i1f (e.getSource() == jbtNew)
System.out.println("Process New");
else 1f (e.getSource() == jbtOpen)
System.out.println("Process Open");
else if (e.getSource() == jbtSave)
System.out.println("Process Save");
else 1f (e.getSource() == jbtPrint)
System.out.println("Process Print");
¥
¥

DetectSourceDemo

15

Selected User Actions and Handlers

User Action Source Object Event Type Fired Event Registration Method
Click a button Button ActionEvent setOnAction(EventHandler<ActionEvent>)
Press Enter in a text field TextField ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck RadioButton ActionEvent setOnAction(EventHandler<ActionEvent>)
Check or uncheck CheckBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Select a new item ComboBox ActionEvent setOnAction(EventHandler<ActionEvent>)
Mouse pressed Node, Scene MouseEvent setOnMousePressed(EventHand1er<MouseEvent>)
Mouse released setOnMouseReleased(EventHandler<MouseEvent>)
Mouse clicked setOnMouseClicked(EventHandler<MouseEvent>)
Mouse entered setOnMouseEntered(EventHandler<MouseEvent>)
Mouse exited setOnMouseEx1ited(EventHand]er<MouseEvent>)
Mouse moved setOnMouseMoved (EventHand1er<MouseEvent>)
Mouse dragged setOnMouseDragged (EventHand1er<MouseEvent>)
Key pressed Node, Scene KeyEvent setOnKeyPressed(EventHandler<KeyEvent>)
Key released setOnKeyReleased(EventHand]er<KeyEvent>)
Key typed setOnKeyTyped(EventHandler<KeyEvent>)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All *

rights reserved.

The Delegation Model

. «interface»
User Irigger an event > source: SourceClass | EventHandler<T extends Event>
\ffffﬂll +setOnXEventType(listener) e EEee T

(2) Register by invoking
source.setOnXEventType(listener):

(1) A listener object is an

instance of a listener interface listener: ListenerClass
(a) A generic source object with a generic event T
«interface»
source: javafx.scene.control. Button I EventHandler<ActionEvent>
+setOnAction(listener) +handle(event: ActionEvent)

(2) Register by invoking
source.setOnAction(listener);

(1) An action event listenfzr is an instance of [istener: CustomlListenerClass
EventHandler<ActionEvent>

(b) A Button source object with an ActionEvent

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

The Delegation Model: Example

Button btOK = new Button ("OK") ;
OKHandlerClass handler = new OKHandlerClass|() ;

2

btOK.setOnAction (handler) ;

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Inner Class Listeners

A listener class 1s designed specifically to
create a listener object for a GUI

component (e.g., a button). It will not be
shared by other applications. So, 1t 1s
appropriate to define the listener class

inside the frame class as an inner class. \

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All B
rights reserved.

Inner Classes

Inner class: A class 1s a member of another class.

Advantages: In some applications, you can use an
inner class to make programs simple.

An 1mmner class can reference the data and methods
defined in the outer class in which it nests, so
you do not need to pass the reference of the outer
class to the constructor of the inner class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

A\

public class Test {

} .

public class A {

: .

(a)

Inner Classes, cont.

// OuterClass.java: inner class demo
public class OuterClass {
private int data;

/** A method in the outer class */
public void m() {
// Do something

}

// An inner class
class InnerClass {

public class Test {

// Inner class
public class A {

g B
}

/** A method 1n the inner class */
public void mi() {
// Directly reference data and method
// defined in its outer class
data++;

mQ ;

(b)

(c)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved. !!

Inner Classes (cont.)

Inner classes can make programs simple and
concise.

An 1ner class supports the work of 1ts

containing outer class and 1s compiled into a
class named QuterClassName
$InnerClassName.class. For example, the

inner class InnerClass in OuterClass 1s \

compiled into OuterClass$InnerClass.class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All z
rights reserved.

Inner Classes (cont.)

2 An nner class can be declared public,
protected, or private subject to the same
visibility rules applied to a member of the
class.

3 An 1nner class can be declared static. A
static inner class can be accessed using the
outer class name. A static inner class \
cannot access nonstatic members of the

outer class

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

Anonymous Inner Classes

An anonymous inner class must always extend a superclass or
implement an interface, but it cannot have an explicit extends or
implements clause.

An anonymous inner class must implement all the abstract
methods in the superclass or in the interface.

An anonymous inner class always uses the no-arg constructor
from its superclass to create an instance. If an anonymous inner
class implements an interface, the constructor 1s Object().

An anonymous inner class 1s compiled into a class named

OuterClassName$n.class. For example, if the outer class Test \
has two anonymous inner classes, these two classes are compil
into Test$1.class and Test$2.class.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All R
rights reserved.

Anonymous Inner Classes (cont.)

Inner class listeners can be shortened using anonymous
inner classes. An anonymous inner class 1s an inner
class without a name. It combines declaring an inner
class and creating an instance of the class 1in one step.
An anonymous 1nner class is declared as follows:

new SuperClassName/InterfaceName() {

// Implement or override methods 1n superclass or interface
// Other methods 1f necessary

h

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Anonymous Inner Classes (cont.)

public void start(Stage primaryStage) { public void start(Stage primaryStage) {
// Omitted // Omitted
btEnlarge.setOnAction(btEnlarge.setOnAction(
new EnlargeHandler()); hew elass—FEntargeHandiner
} implements EventHandler<ActionEvent>() {
‘k\i:> public void handle(ActionEvent e) {
class EnlargeHandler circlePane.enlarge();
implements EventHandler<ActionEvent> { }
public void handle(ActionEvent e) {)
circlePane.enlarge(); }
}
}
(a) Inner class EnTargelListener (b) Anonymous inner class

[AnonymousHandlerDemo i (=] p74|

New | | Open @ | Save | Print

AnonymousHandlerDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Simplifying Event Handing Using
Lambda Expressions

Lambda expression 1s a new feature 1n Java 8. Lambda
expressions can be viewed as an anonymous method with a
concise syntax. For example, the following code 1n (a) can

be greatly simplified using a lambda expression in (b) 1n
three lines.

btEnlarge.setOnAction (
new EventHandler<ActionEvent> () {
@Override 1),
public void handle (ActionEvent e) {

btEnlarge.setOnAction (e -> {

}
}
)

(a) Anonymous inner class event handler (b) Lambda expression event handler

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All ?
rights reserved.

Basic Syntax for a Lambda Expression

The basic syntax for a lambda expression is either
(typel paraml, type2 param?2, ...) -> expression

or
(typel paraml, type2 param?2, ...) -> { statements; }

The data type for a parameter may be explicitly \
declared or implicitly inferred by the compiler. Th
parentheses can be omitted 1f there 1s only one
parameter without an explicit data type.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All k
rights reserved.

Single Abstract Method Interface (SAM)

The statements 1n the lambda expression 1s all for that
method. If 1t contains multiple methods, the compiler
will not be able to compile the lambda expression. So,
for the compiler to understand lambda expressions,
the interface must contain exactly one abstract
method. Such an interface 1s known as a functional

interface, or a Single Abstract Method (SAM) \
interface.

AnonymousHandlerDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

// Create and register the handler
btNew.setOnAction(new EventHandler<ActionEvent>() {
@0verride // Override the handle method
public void handle(ActionEvent e) {
System.out.println("Process New");
¥
1);

btOpen.setOnAction(new EventHandler<ActionEvent>() {
@Jverride // Override the handle method
public void handle(ActionEvent e) {
System.out.println("Process Open");
}
1);

btSave.setOnAction(new EventHandler<ActionEvent>() {
@0verride // Override the handle method
public void handle(ActionEvent e) {
System.out.println("Process Save");
ks
3);

btPrint.setOnAction(new EventHandler<ActionEvent>() {
@Jverride // Override the handle method
public void handle(ActionEvent e) {
System.out.println("Process Print");
ks
3);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Problem: Loan Calculator

// Process events
btCalculate.setOnAction(e -> calculateLoanPayment());

private void calculateLoanPayment() {
// Get values from text fields

Lambda Expression

double interest = Double.parseDouble(tfAnnuallnterestRate.getText());

int year = Integer.parseInt(tfNumberOfYears.getText());

double loanAmount = Double.parseDouble(tfLoanAmount.getText());

// Create a loan object. Loan defined in Listing 10.2
Loan loan = new Loan(interest, year, loanAmount);
// Display monthly payment and total payment

tfMonthlyPayment.setText(String. format(“$%.2f", loan.getMonthlyPayment()));
tfTotalPayment.setText(String. format(“$%.2f", loan.getTotalPayment()));

LoanCalculator

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

rights reserved.

Jjavafx.scene.input.MouseEvent

MouseEvent

text.setOnMouseDragged(e -> {
text.setX(e.getX());
text.setY(e.getY());

s

+getButton(): MouseButton
+getClickCount(): int
+getX(): double

+getY(): double
+getSceneX(): double
+getSceneY(): double
+getScreenX(): double
+getScreenY(): double
+isAl1tDown(): boolean
+isControlDown(): boolean
+isMetaDown() : boolean
+isShiftDown(): boolean

Indicates which mouse button has been clicked.

Returns the number of mouse clicks associated with this event.
Returns the x-coordinate of the mouse point in the event source node.
Returns the y-coordinate of the mouse point in the event source node.
Returns the x-coordinate of the mouse point in the scene.

Returns the y-coordinate of the mouse point in the scene.

Returns the x-coordinate of the mouse point in the screen.

Returns the y-coordinate of the mouse point in the screen.

Returns true if the A1t key is pressed on this event.

Returns true if the Control key is pressed on this event.

Returns true if the mouse Meta button is pressed on this event.
Returns true if the Shift key is pressed on this event.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

MouseEventDemo

rights reserved.

The KeyEvent Class

text.setOnKeyPressed(e -> {
switch (e.getCode()) {
case DOWN: text.setY(text.getY() + 10); break;
case UP: text.setY(text.getY() - 10); break;
case LEFT: text.setX(text.getX() - 10); break;
case RIGHT: text.setX(text.getX() + 10); break;
default:
1f (e.getText().length() > @)
text.setText(e.getText());

}
1
Jjavafx.scene.input.KeyEvent

+getCharacter(): String Returns the character associated with the key in this event.
+getCode() : KeyCode Returns the key code associated with the key in this event.
+getText(): String Returns a string describing the key code.
+1sAltDown(): boolean Returns true if the A1t key is pressed on this event.
+isControlDown(): boolean Returns true if the Control key is pressed on this event.
+1sMetaDown(): boolean Returns true if the mouse Meta button is pressed on this event.
+i1sShiftDown(): boolean Returns true if the Shift key is pressed on this event.

MouseEventDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

The KeyCode Constants

Constant Description Constant Description

HOME The Home key CONTROL The Control key

END The End key SHIFT The Shift key

PAGE_UP The Page Up key BACK_SPACE The Backspace key
PAGE_DOWN The Page Down key CAPS The Caps Lock key

UP The up-arrow key NUM_LOCK The Num Lock key

DOWN The down-arrow key ENTER The Enter key

LEFT The left-arrow key UNDEFINED The keyCode unknown
RIGHT The right-arrow key F1to F12 The function keys from F1 to F12
ESCAPE The Esc key 0to9 The number keys from 0 to 9
TAB The Tab key AtoZ The letter keys from A to Z

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Example: First Version for
ControlCircle (no listeners)

Now let us consider to write a program that uses
two buttons to control the size of a circle.

I ControlCircleWithoutEventHandling

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Example: Second Version for ControlCircle
(with listener for Enlarge)

Now let us consider to write a program that uses two buttons to control the
size of a circle using setOnAction method. Also using mouse events using
setOnMouseClicked method, and using key events using setOnKeyPressed.

| %| ControlCircle

Enlarge Enlarge

ControlCircle

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

// Create and register the handler
btEnlarge.setOnAction(e -> circlePane.enlarge());
btShrink.setOnAction(e -> circlePane.shrink());

circlePane.setOnMouseClicked(e -> {
1f (e.getButton() == MouseButton.PRIMARY) {
circlePane.enlarge();

}
else i1f (e.getButton() == MouseButton.SECONDARY) {
circlePane.shrink();
ks
1;

scene.setOnKeyPressed(e -> {
1f (e.getCode() == KeyCode.UP) {
circlePane.enlarge();
¥
else if (e.getCode() == KeyCode.DOWN) {
circlePane.shrink();
}
1);

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Listeners for Observable Objects

You can add a listener to process a value change 1n an
observable object.

An 1nstance of Observable 1s known as an observable object,
which contains the addListener(InvalidationListener
listener) method for adding a listener. Once the value 1s
changed in the property, a listener 1s notified. The listener class
should implement the InvalidationListener interface, which
uses the invalidated(Observable 0) method to handle the

property value change. Every binding property 1s an instarn*f

Observable.

ObservablePropertyDemo

DisplayResizableClock

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

public class ObservablePropertyDemo {
public static void main(String[] args) {
DoubleProperty balance = new SimpleDoubleProperty();
balance.addListener(new InvalidationListener() {
public void invalidated(Observable ov) {

System.out.println("The new value is " +
balance.doubleValue());

}
s

balance.set(4.5);

}
}

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Animation

JavaFX provides the Animation class with the core
functionality for all animations.

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

javafx.animation.Animation /
//
-autoReverse: BooleanProperty Defines whether the animation reverses direction on alternating cycles.
-cycleCount: IntegerProperty Defines the number of cycles in this animation.
-rate: DoubleProperty Defines the speed and direction for this animation.
-status: ReadOnlyObjectProperty Read-only property to indicate the status of the animation.

<Animation.Status>

+pause(): void Pauses the animation.
+play(): void Plays the animation from the current position.
+stop(): void Stops the animation and resets the animation.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

PathTransition

-
javafx.animation.PathTransition /

The getter and setter methods for property
values and a getter for property itself are provided
in the class, but omitted in the UML diagram for brevity.

re

-duration: ObjectProperty<Duration>
-node: ObjectProperty<Node>

-orientation: ObjectProperty
<PathTransition.OrientationType>

-path: ObjectType<Shape>

+PathTransition()

+PathTransition(duration: Duration,
path: Shape)

+PathTransition(duration: Duration,
path: Shape, node: Node)

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All

The duration of this transition.
The target node of this transition.
The orientation of the node along the path.

The shape whose outline is used as a path to animate the node move.

Creates an empty PathTransition.
Creates a PathTransition with the specified duration and path.

Creates a PathTrans1ition with the specified duration, path, and node.

PathTransitionDemo

FlagRisingAnimation

rights reserved.

FadeTransition

The FadeTransition class animates the change of the
opacity 1n a node over a given time.

The getter and setter methods for property
/ values and a getter for property itself are provided

. . . in the class, but omitted in the UML diagram for brevity.
Jjavafx.animation.FadeTransition /
&,
-duration: ObjectProperty<Duration> The duration of this transition.
-node: ObjectProperty<Node> The target node of this transition.
-fromValue: DoubleProperty The start opacity for this animation.
-toValue: DoubleProperty The stop opacity for this animation.
-byValue: DoubleProperty The incremental value on the opacity for this animation.
+FadeTransition() Creates an empty FadeTransition.
+FadeTransition(duration: Duration) Creates a FadeTrans1ition with the specified duration.
+Fade'£rans1' g‘i on(duration: Duration, Creates a FadeTransition with the specified duration and node.
node: Node)

FadeTransitionDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Timeline

PathTransition and FadeTransition define specialized
animations. The Timeline class can be used to program any
animation using one or more KeyFrames. Each KeyFrame
1s executed sequentially at a specified time interval.
Timeline inherits from Animation.

A

TimelineDemo

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Clock Animation

=T

ClockAnimation

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

Case Study: Bouncing Ball

5 pouncenatcontzol N =111 [l o vouncesatcontrol WRNT=I -l 0 oouncepatcontrol SSIT=IFq

javafx.scene.layout.Pane | javafx.application.Application |

PaN PaN

BallPane H BounceBallControl |

-X: double
-y: double
-dx: double
-dy: double
-radius: double
-circle: Circle BallPane

-animation: Timeline

+Bal1Pane()
+play(): void BounceBallControl
+pause(): void
+increaseSpeed(): void
+decreaseSpeed(): void
+rateProperty(): DoubleProperty
+moveBall(): void

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All
rights reserved.

