
ISBN 0-321—49362-1

Chapter 6

Data Types

Copyright © 2015 Pearson. All rights reserved. 2

Chapter 6 Topics
• Introduction
• Primitive Data Types
• Character String Types
• Enumeration Types
• Array Types
• Associative Arrays
• Record Types
• Tuple Types
• List Types
• Union Types
• Pointer and Reference Types
• Type Checking
• Strong Typing
• Type Equivalence
• Theory and Data Types

Copyright © 2015 Pearson. All rights reserved. 3

Introduction

• A data type defines a collection of data
objects and a set of predefined operations
on those objects

• A descriptor is the collection of the attributes
of a variable

• An object represents an instance of a user-
defined (abstract data) type

• One design issue for all data types: What
operations are defined and how are they
specified?

Copyright © 2015 Pearson. All rights reserved. 4

Primitive Data Types

• Almost all programming languages provide a
set of primitive data types

• Primitive data types: Those not defined in
terms of other data types

• Some primitive data types are merely
reflections of the hardware

• Others require only a little non-hardware
support for their implementation

Copyright © 2015 Pearson. All rights reserved. 5

Primitive Data Types: Integer

• Almost always an exact reflection of the
hardware so the mapping is trivial

• There may be as many as eight different
integer types in a language

• Java’s signed integer sizes: byte, short,
int, long

Copyright © 2015 Pearson. All rights reserved.

Primitive Data Types: Floating Point

• Model real numbers, but only as
approximations

• Languages for scientific use support at least
two floating-point types (e.g., float and
double; sometimes more

• Usually exactly like the hardware, but not
always

• IEEE Floating-Point
 Standard 754

http://www.exploringbinary.com/why-0-point-1-does-not-exist-in-floating-point/

Copyright © 2015 Pearson. All rights reserved. 7

Primitive Data Types: Complex

• Some languages support a complex type,
e.g., C99, Fortran, and Python

• Each value consists of two floats, the real
part and the imaginary part

• Literal form (in Python):
 (7 + 3j), where 7 is the real part and 3 is
the imaginary part

Copyright © 2015 Pearson. All rights reserved. 8

Primitive Data Types: Decimal

• For business applications (money)
– Essential to COBOL
– C# offers a decimal data type

• Store a fixed number of decimal digits, in
coded form (BCD)

• Advantage: accuracy
• Disadvantages: limited range, wastes
memory

Copyright © 2015 Pearson. All rights reserved. 9

Primitive Data Types: Boolean

• Simplest of all
• Range of values: two elements, one for
“true” and one for “false”

• Could be implemented as bits, but often as
bytes
– Advantage: readability

Copyright © 2015 Pearson. All rights reserved. 10

Primitive Data Types: Character

• Stored as numeric codings
• Most commonly used coding: ASCII
• An alternative, 16-bit coding: Unicode
(UCS-2)
– Includes characters from most natural languages
– Originally used in Java
– C# and JavaScript also support Unicode

• 32-bit Unicode (UCS-4)
– Supported by Fortran, starting with 2003

Copyright © 2015 Pearson. All rights reserved. 11

Character String Types

• Values are sequences of characters
• Design issues:

– Is it a primitive type or just a special kind of
array?

– Should the length of strings be static or
dynamic?

Copyright © 2015 Pearson. All rights reserved. 12

Character String Types Operations

• Typical operations:
– Assignment and copying
– Comparison (=, >, etc.)
– Catenation
– Substring reference
– Pattern matching

Copyright © 2015 Pearson. All rights reserved. 13

Character String Type in Certain Languages

• C and C++
– Not primitive
– Use char arrays and a library of functions that provide operations

• SNOBOL4 (a string manipulation language)
– Primitive
– Many operations, including elaborate pattern matching

• Fortran and Python
– Primitive type with assignment and several operations

• Java
– Primitive via the String class

• Perl, JavaScript, Ruby, and PHP
 - Provide built-in pattern matching, using regular
 expressions

Copyright © 2015 Pearson. All rights reserved. 14

Character String Length Options

• Static: COBOL, Java’s String class
• Limited Dynamic Length: C and C++

– In these languages, a special character is used
to indicate the end of a string’s characters,
rather than maintaining the length

• Dynamic (no maximum): SNOBOL4, Perl,
JavaScript

Copyright © 2015 Pearson. All rights reserved. 15

Character String Type Evaluation

• Aid to writability
• As a primitive type with static length, they
are inexpensive to provide--why not have
them?

• Dynamic length is nice, but is it worth the
expense?

Copyright © 2015 Pearson. All rights reserved. 16

Character String Implementation

• Static length: compile-time descriptor
• Limited dynamic length: may need a run-
time descriptor for length (but not in C and
C++)

• Dynamic length: need run-time descriptor;
allocation/deallocation is the biggest
implementation problem

Copyright © 2015 Pearson. All rights reserved. 17

Compile- and Run-Time Descriptors

Compile-time
descriptor for
static strings

Run-time
descriptor for
limited dynamic
strings

Copyright © 2015 Pearson. All rights reserved. 18

User-Defined Ordinal Types

• An ordinal type is one in which the range of
possible values can be easily associated
with the set of positive integers

• Examples of primitive ordinal types in Java
– integer
– char
– boolean

Copyright © 2015 Pearson. All rights reserved. 19

Enumeration Types

• All possible values, which are named
constants, are provided in the definition

• C# example
enum days {mon, tue, wed, thu, fri, sat, sun};

• Design issues
– Is an enumeration constant allowed to appear in
more than one type definition, and if so, how is
the type of an occurrence of that constant
checked?

– Are enumeration values coerced to integer?
– Any other type coerced to an enumeration type?

Copyright © 2015 Pearson. All rights reserved. 20

Evaluation of Enumerated Type

• Aid to readability, e.g., no need to code a
color as a number

• Aid to reliability, e.g., compiler can check:
– operations (don’t allow colors to be added)
– No enumeration variable can be assigned a
value outside its defined range

– C# and Java 5.0 provide better support for
enumeration than C++ because enumeration type
variables in these languages are not coerced
into integer types

Copyright © 2015 Pearson. All rights reserved. 21

Array Types

• An array is a homogeneous aggregate of
data elements in which an individual
element is identified by its position in the
aggregate, relative to the first element.

Copyright © 2015 Pearson. All rights reserved. 22

Array Design Issues

• What types are legal for subscripts?
• Are subscripting expressions in element references

range checked?
• When are subscript ranges bound?
• When does allocation take place?
• Are ragged or rectangular multidimensional arrays

allowed, or both?
• What is the maximum number of subscripts?
• Can array objects be initialized?
• Are any kind of slices supported?

Copyright © 2015 Pearson. All rights reserved. 23

Array Indexing

• Indexing (or subscripting) is a mapping from
indices to elements

 array_name (index_value_list) → an element

• Index Syntax
– Fortran and Ada use parentheses

• Ada explicitly uses parentheses to show uniformity
between array references and function calls because
both are mappings

– Most other languages use brackets

Copyright © 2015 Pearson. All rights reserved. 24

Arrays Index (Subscript) Types

• FORTRAN, C: integer only
• Java: integer types only
• Index range checking
 - C, C++, Perl, and Fortran do not specify
 range checking
 - Java, ML, C# specify range checking

Copyright © 2015 Pearson. All rights reserved. 25

Subscript Binding and Array Categories

• Static: subscript ranges are statically bound
and storage allocation is static (before run-
time)
– Advantage: efficiency (no dynamic allocation)

• Fixed stack-dynamic: subscript ranges are
statically bound, but the allocation is done
at declaration time
– Advantage: space efficiency

Copyright © 2015 Pearson. All rights reserved. 26

Subscript Binding and Array Categories
(continued)

• Fixed heap-dynamic: similar to fixed stack-
dynamic: storage binding is dynamic but
fixed after allocation (i.e., binding is done
when requested and storage is allocated
from heap, not stack)

Copyright © 2015 Pearson. All rights reserved. 27

Subscript Binding and Array Categories
(continued)

• Heap-dynamic: binding of subscript ranges
and storage allocation is dynamic and can
change any number of times
– Advantage: flexibility (arrays can grow or shrink
during program execution)

Copyright © 2015 Pearson. All rights reserved. 28

Subscript Binding and Array Categories
(continued)

• C and C++ arrays that include static modifier
are static

• C and C++ arrays without static modifier are
fixed stack-dynamic

• C and C++ provide fixed heap-dynamic arrays
• C# includes a second array class ArrayList
that provides fixed heap-dynamic

• Perl, JavaScript, Python, and Ruby support
heap-dynamic arrays

Copyright © 2015 Pearson. All rights reserved. 29

Array Initialization

• Some language allow initialization at the
time of storage allocation
– C, C++, Java, C# example
int list [] = {4, 5, 7, 83}

– Character strings in C and C++
char name [] = ″freddie″;

– Arrays of strings in C and C++
char *names [] = {″Bob″, ″Jake″, ″Joe″];

– Java initialization of String objects
String[] names = {″Bob″, ″Jake″, ″Joe″};

Array Initialization

• C-based languages
– int list [] = {1, 3, 5, 7}
– char *names [] = {″Mike″, ″Fred″, ″Mary Lou″};

• Python
– List comprehensions
 list = [x ** 2 for x in range(12) if x % 3 == 0]
 puts [0, 9, 36, 81] in list

Copyright © 2015 Pearson. All rights reserved. 30

Copyright © 2015 Pearson. All rights reserved. 31

Heterogeneous Arrays

• A heterogeneous array is one in which the
elements need not be of the same type

• Supported by Perl, Python, JavaScript, and
Ruby

Copyright © 2015 Pearson. All rights reserved. 32

Arrays Operations

• APL provides the most powerful array processing
operations for vectors and matrixes as well as
unary operators (for example, to reverse column
elements)

• Python’s array assignments, but they are only
reference changes. Python also supports array
catenation and element membership operations

• Ruby also provides array catenation

Copyright © 2015 Pearson. All rights reserved. 33

Rectangular and Jagged Arrays

• A rectangular array is a multi-dimensioned array
in which all of the rows have the same number of
elements and all columns have the same number
of elements

• A jagged matrix has rows with varying number of
elements
– Possible when multi-dimensioned arrays actually appear
as arrays of arrays

• C, C++, and Java support jagged arrays
• F# and C# support rectangular arrays and
jagged arrays

Copyright © 2015 Pearson. All rights reserved. 34

Slices

• A slice is some substructure of an array;
nothing more than a referencing mechanism

• Slices are only useful in languages that
have array operations

Copyright © 2015 Pearson. All rights reserved. 35

Slice Examples

• Python
vector = [2, 4, 6, 8, 10, 12, 14, 16]
mat = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

vector (3:6) is a three-element array
mat[0][0:2] is the first and second element of the
first row of mat

• Ruby supports slices with the slice method
list.slice(2, 2) returns the third and fourth
elements of list

Copyright © 2015 Pearson. All rights reserved. 36

Implementation of Arrays

• Access function maps subscript expressions
to an address in the array

• Access function for single-dimensioned arrays:
 address(list[k]) = address (list[lower_bound])
 + ((k-lower_bound) * element_size)

Copyright © 2015 Pearson. All rights reserved. 37

Accessing Multi-dimensioned Arrays

• Two common ways:
– Row major order (by rows) – used in most
languages

– Column major order (by columns) – used in
Fortran

– A compile-time descriptor
 for a multidimensional
 array

Copyright © 2015 Pearson. All rights reserved. 38

Locating an Element in a Multi-
dimensioned Array
•General format

Location (a[I,j]) = address of a [row_lb,col_lb] +
(((I - row_lb) * n) + (j - col_lb)) * element_size

Copyright © 2015 Pearson. All rights reserved. 39

Compile-Time Descriptors

Single-dimensioned array Multidimensional array

Copyright © 2015 Pearson. All rights reserved. 40

Associative Arrays

• An associative array is an unordered
collection of data elements that are indexed
by an equal number of values called keys
– User-defined keys must be stored

• Design issues:
 - What is the form of references to elements?
 - Is the size static or dynamic?

• Built-in type in Perl, Python, Ruby, and Lua
– In Lua, they are supported by tables

Copyright © 2015 Pearson. All rights reserved. 41

Associative Arrays in Perl

• Names begin with %; literals are delimited
by parentheses
%hi_temps = ("Mon" => 77, "Tue" => 79, "Wed" =>
65, …);

• Subscripting is done using braces and keys
$hi_temps{"Wed"} = 83;

– Elements can be removed with delete
 delete $hi_temps{"Tue"};

Copyright © 2015 Pearson. All rights reserved. 42

Record Types

• A record is a possibly heterogeneous
aggregate of data elements in which the
individual elements are identified by names

• Design issues:
– What is the syntactic form of references to the
field?

– Are elliptical references allowed

Copyright © 2015 Pearson. All rights reserved. 43

Definition of Records in COBOL

• COBOL uses level numbers to show nested
records; others use recursive definition
01 EMP-REC.
 02 EMP-NAME.
 05 FIRST PIC X(20).
 05 MID PIC X(10).
 05 LAST PIC X(20).
 02 HOURLY-RATE PIC 99V99.

Copyright © 2015 Pearson. All rights reserved. 44

References to Records
• Record field references

1. COBOL
field_name OF record_name_1 OF ... OF record_name_n
2. Others (dot notation)
record_name_1.record_name_2. ... record_name_n.field_name

• Fully qualified references must include all record names

• Elliptical references allow leaving out record names as long as
the reference is unambiguous, for example in COBOL

 FIRST, FIRST OF EMP-NAME, and FIRST of EMP-REC are
elliptical references to the employee’s first name

Copyright © 2015 Pearson. All rights reserved. 45

Evaluation and Comparison to Arrays

• Records are used when collection of data
values is heterogeneous

• Access to array elements is much slower
than access to record fields, because
subscripts are dynamic (field names are
static)

• Dynamic subscripts could be used with
record field access, but it would disallow
type checking and it would be much slower

Copyright © 2015 Pearson. All rights reserved. 46

Implementation of Record Type

Offset address relative to
the beginning of the records
is associated with each field

Tuple Types

• A tuple is a data type that is similar to a
record, except that the elements are not named

• Used in Python, ML, and F# to allow functions
to return multiple values
– Python

• Closely related to its lists, but immutable
• Create with a tuple literal
 myTuple = (3, 5.8, ′apple′)
 Referenced with subscripts (begin at 1)
Catenation with + and deleted with del

Copyright © 2015 Pearson. All rights reserved. 47

Tuple Types (continued)

• ML
 val myTuple = (3, 5.8, ′apple′);
 - Access as follows:
 #1(myTuple) is the first element
 - A new tuple type can be defined
 type intReal = int * real;
• F#
 let tup = (3, 5, 7)
 let a, b, c = tup This assigns a tuple to a tuple

pattern (a, b, c)

Copyright © 2015 Pearson. All rights reserved. 48

List Types
• Lists in Lisp and Scheme are delimited by
parentheses and use no commas

 (A B C D) and (A (B C) D)
• Data and code have the same form
 As data, (A B C) is literally what it is
 As code, (A B C) is the function A applied to the
 parameters B and C

• The interpreter needs to know which a list is,
so if it is data, we quote it with an apostrophe

 ′(A B C) is data
Copyright © 2015 Pearson. All rights reserved. 49

List Types (continued)

• List Operations in Scheme
– CAR returns the first element of its list parameter
 (CAR ′(A B C)) returns A
– CDR returns the remainder of its list parameter
after the first element has been removed

 (CDR ′(A B C)) returns (B C)
 - CONS puts its first parameter into its second
parameter, a list, to make a new list

 (CONS ′A (B C)) returns (A B C)
- LIST returns a new list of its parameters
 (LIST ′A ′B ′(C D)) returns (A B (C D))

Copyright © 2015 Pearson. All rights reserved. 50

List Types (continued)

• List Operations in ML
– Lists are written in brackets and the elements
are separated by commas

– List elements must be of the same type
– The Scheme CONS function is a binary operator in
ML, ::

 3 :: [5, 7, 9] evaluates to [3, 5, 7, 9]
– The Scheme CAR and CDR functions are named hd
and tl, respectively

Copyright © 2015 Pearson. All rights reserved. 51

List Types (continued)

• F# Lists
– Like those of ML, except elements are separated
by semicolons and hd and tl are methods of
the List class

• Python Lists
– The list data type also serves as Python’s arrays
– Unlike Scheme, Common Lisp, ML, and F#,
Python’s lists are mutable

– Elements can be of any type
– Create a list with an assignment
 myList = [3, 5.8, "grape"]

Copyright © 2015 Pearson. All rights reserved. 52

List Types (continued)

• Python Lists (continued)
– List elements are referenced with subscripting,
with indices beginning at zero

 x = myList[1] Sets x to 5.8
– List elements can be deleted with del
 del myList[1]
– List Comprehensions – derived from set notation
 [x * x for x in range(6) if x % 3 == 0]
 range(6) creates [0, 1, 2, 3, 4, 5, 6]
 Constructed list: [0, 9, 36]

Copyright © 2015 Pearson. All rights reserved. 53

List Types (continued)

• Haskell’s List Comprehensions
– The original
 [n * n | n <- [1..10]]

• F#’s List Comprehensions
 let myArray = [|for i in 1 .. 5 -> [i * i) |]
• Both C# and Java supports lists through
their generic heap-dynamic collection
classes, List and ArrayList, respectively

Copyright © 2015 Pearson. All rights reserved. 54

Copyright © 2015 Pearson. All rights reserved. 55

Unions Types

• A union is a type whose variables are
allowed to store different type values at
different times during execution

• Contrast to records that contain all the
variables at the same time in memory, a
union store only one of them in memory and
can change which one of them dynamically.

• Design issue
– Should type checking be required?

Copyright © 2015 Pearson. All rights reserved.

Discriminated vs. Free Unions

• C and C++ provide union
constructs in which there is no
language support for type
checking; the union in these
languages is called free union

• Type checking of unions
require that each union include
a type indicator called a
discriminant
– Supported by ML, Haskell, and F#

union flexType {  
int intEl;  
float floatEl;

};

union flexType el1;

float x;  
…

el1.intEl = 27;  

x = el1.floatEl;

not type checked

Unions in F#

• Defined with a type statement using OR
 type intReal =
 | IntValue of int
 | RealValue of float;;

 intReal is the new type
 IntValue and RealValue are constructors

 To create a value of type intReal:
 let ir1 = IntValue 17;;
 let ir2 = RealValue 3.4;;

Copyright © 2015 Pearson. All rights reserved. 57

Unions in F# (continued)

• Accessing the value of a union is done with
 pattern matching
 match pattern with
 | expression_list1 -> expression1

 | …
 | expression_listn -> expressionn

 - Pattern can be any data type
 - The expression list can have wild cards (_)

Copyright © 2015 Pearson. All rights reserved. 58

Unions in F# (continued)

 Example:
 let a = 7;;
 let b = ″grape″;;
 let x = match (a, b) with
 | 4, ″apple″ -> apple
 | _, ″grape″ -> grape
 | _ -> fruit;;

Copyright © 2015 Pearson. All rights reserved. 59

Unions in F# (continued)

To display the type of the intReal union:
 let printType value =
 match value with
 | IntVale value -> printfn ″int″
 | RealValue value -> printfn ″float″;;

If ir1 and ir2 are defined as previously,
 printType ir1 returns int
 printType ir2 returns float

Copyright © 2015 Pearson. All rights reserved. 60

Ada Union Example:

 6.11 Pointer and Reference Types 289

6.10.6 Implementation of Union Types

Unions are implemented by simply using the same address for every possible
variant. Sufficient storage for the largest variant is allocated. The tag of a dis-
criminated union is stored with the variant in a recordlike structure.

At compile time, the complete description of each variant must be stored.
This can be done by associating a case table with the tag entry in the descriptor.
The case table has an entry for each variant, which points to a descriptor for
that particular variant. To illustrate this arrangement, consider the following
Ada example:

type Node (Tag : Boolean) is
 record
 case Tag is
 when True => Count : Integer;
 when False => Sum : Float;
 end case;
 end record;

The descriptor for this type could have the form shown in Figure 6.9.

Figure 6.9

A compile-time
descriptor for a
discriminated union

Address

Offset

BOOLEANTag

Discriminated union

Case table
Name

Type

Name

Type

True

False

Count

Integer

Sum

Float

6.11 Pointer and Reference Types
A pointer type is one in which the variables have a range of values that consists
of memory addresses and a special value, nil. The value nil is not a valid address
and is used to indicate that a pointer cannot currently be used to reference a
memory cell.

Pointers are designed for two distinct kinds of uses. First, pointers provide
some of the power of indirect addressing, which is frequently used in assembly
language programming. Second, pointers provide a way to manage dynamic
storage. A pointer can be used to access a location in an area where storage is
dynamically allocated called a heap.

type Node (Tag : Boolean) is

record

case Tag is

when True => Count : Integer;  
when False => Sum : Float;

end case;

end record;

Copyright © 2015 Pearson. All rights reserved. 62

Evaluation of Unions

• Free unions are unsafe
– Do not allow type checking

• Java and C# do not support unions
– Reflective of growing concerns for safety in
programming language

Copyright © 2015 Pearson. All rights reserved. 63

Pointer and Reference Types

• A pointer type variable has a range of
values that consists of memory addresses
and a special value, nil

• Provide the power of indirect addressing
• Provide a way to manage dynamic memory
• A pointer can be used to access a location
in the area where storage is dynamically
created (usually called a heap)

Copyright © 2015 Pearson. All rights reserved. 64

Design Issues of Pointers

• What are the scope of and lifetime of a
pointer variable?

• What is the lifetime of a heap-dynamic
variable?

• Are pointers restricted as to the type of value
to which they can point?

• Are pointers used for dynamic storage
management, indirect addressing, or both?

• Should the language support pointer types,
reference types, or both?

Copyright © 2015 Pearson. All rights reserved. 65

Pointer Operations

• Two fundamental operations: assignment
and dereferencing

• Assignment is used to set a pointer
variable’s value to some useful address

• Dereferencing yields the value stored at the
location represented by the pointer’s value
– Dereferencing can be explicit or implicit
– C++ uses an explicit operation via *
 j = *ptr
 sets j to the value located at ptr

Copyright © 2015 Pearson. All rights reserved. 66

Pointer Assignment Illustrated

The assignment operation j = *ptr

Copyright © 2015 Pearson. All rights reserved. 67

Problems with Pointers - dangling

• Dangling pointers (dangerous)
– A pointer points to a heap-dynamic

variable that has been deallocated
• A new heap-dynamic variable is
created and pointer p1 is set to point
at it.

• Pointer p2 is assigned p1’s value.
• The heap-dynamic variable pointed to
by p1 is explicitly deallocated (possibly
setting p1 to nil), but p2 is not
changed by the operation. p2 is now a
dangling pointer. If the deallocation
operation did not change p1, both p1
and p2 would be dangling. (Of course,
this is a problem of aliasing—p1 and
p2 are aliases.)

int * arrayPtr1;  
int * arrayPtr2 = new int[100];  
arrayPtr1 = arrayPtr2;  
delete [] arrayPtr2;  
/* Now, arrayPtr1 is dangling,
because the heap storage to
which it was pointing has been
deallocated. */

Copyright © 2015 Pearson. All rights reserved. 68

Problems with Pointers - leak

• Lost heap-dynamic variable
– An allocated heap-dynamic variable that is no longer

accessible to the user program (often called garbage)
• Pointer p1 is set to point to a newly created heap-
dynamic variable

• Pointer p1 is later set to point to another newly created
heap-dynamic variable

• The process of losing heap-dynamic variables is called
memory leakage

Copyright © 2015 Pearson. All rights reserved. 69

Pointers in C and C++

• Extremely flexible but must be used with care
• Pointers can point at any variable regardless of

when or where it was allocated
• Used for dynamic storage management and

addressing
• Pointer arithmetic is possible
• Explicit dereferencing and address-of operators
• Domain type need not be fixed (void *)
 void * can point to any type and can be type
 checked (cannot be de-referenced)

Copyright © 2015 Pearson. All rights reserved. 70

Pointer Arithmetic in C and C++

float stuff[100];
float *p;
p = stuff;

*(p+5) is equivalent to stuff[5] and p[5]
*(p+i) is equivalent to stuff[i] and p[i]

Copyright © 2015 Pearson. All rights reserved. 71

Reference Types 

• C++ includes a special kind of pointer type
called a reference type that is used primarily for
formal parameters
– Advantages of both pass-by-reference and pass-by-
value

• Java extends C++’s reference variables and
allows them to replace pointers entirely
– References are references to objects, rather than
being addresses

• C# includes both the references of Java and
the pointers of C++

Copyright © 2015 Pearson. All rights reserved. 72

Evaluation of Pointers

• Dangling pointers and dangling objects are
problems as is heap management

• Pointers are like goto's--they widen the
range of cells that can be accessed by a
variable

• Pointers or references are necessary for
dynamic data structures--so we can't design
a language without them

Copyright © 2015 Pearson. All rights reserved. 73

Representations of Pointers

• Large computers use single values
• Intel microprocessors use segment and
offset

Copyright © 2015 Pearson. All rights reserved. 74

Dangling Pointer Problem

• Tombstone: extra heap cell that is a pointer to the
heap-dynamic variable
– The actual pointer variable points only at tombstones
– When heap-dynamic variable de-allocated, tombstone

remains but set to nil
– Costly in time and space

. Locks-and-keys: Pointer values are represented as
(key, address) pairs
– Heap-dynamic variables are represented as variable plus cell

for integer lock value
– When heap-dynamic variable allocated, lock value is created

and placed in lock cell and key cell of pointer

Copyright © 2015 Pearson. All rights reserved. 75

Heap Management

• A very complex run-time process
• Single-size cells vs. variable-size cells
• Two approaches to reclaim garbage

– Reference counters (eager approach):
reclamation is gradual

– Mark-sweep (lazy approach): reclamation occurs
when the list of variable space becomes empty

Copyright © 2015 Pearson. All rights reserved. 76

Reference Counter

• Reference counters: maintain a counter in
every cell that store the number of pointers
currently pointing at the cell
– Disadvantages: space required, execution time
required, complications for cells connected
circularly

– Advantage: it is intrinsically incremental, so
significant delays in the application execution are
avoided

Copyright © 2015 Pearson. All rights reserved. 77

Mark-Sweep

• The run-time system allocates storage cells as
requested and disconnects pointers from cells as
necessary; mark-sweep then begins
– Every heap cell has an extra bit used by collection

algorithm
– All cells initially set to garbage
– All pointers traced into heap, and reachable cells marked

as not garbage
– All garbage cells returned to list of available cells
– Disadvantages: in its original form, it was done too

infrequently. When done, it caused significant delays in
application execution. Contemporary mark-sweep
algorithms avoid this by doing it more often—called
incremental mark-sweep

Copyright © 2015 Pearson. All rights reserved. 78

Variable-Size Cells

• All the difficulties of single-size cells plus
more

• Required by most programming languages
• If mark-sweep is used, additional problems
occur
– The initial setting of the indicators of all cells in
the heap is difficult

– The marking process in nontrivial
– Maintaining the list of available space is another
source of overhead

Type Checking

• Generalize the concept of operands and operators to include
subprograms and assignments

• Type checking is the activity of ensuring that the operands of an
operator are of compatible types

• A compatible type is one that is either legal for the operator, or is
allowed under language rules to be implicitly converted, by
compiler- generated code, to a legal type
– This automatic conversion is called a coercion.

• A type error is the application of an operator to an operand of an
inappropriate type

Copyright © 2015 Pearson. All rights reserved. 79

Type Checking (continued)

• If all type bindings are static, nearly all type
checking can be static

• If type bindings are dynamic, type checking
must be dynamic

• A programming language is strongly typed if
type errors are always detected

• Advantage of strong typing: allows the
detection of the misuses of variables that
result in type errors

Copyright © 2015 Pearson. All rights reserved. 80

Strong Typing

Language examples:
– C and C++ are not: parameter type checking can
be avoided; unions are not type checked

– Java and C# are, almost (because of explicit
type casting)

- ML and F# are

Copyright © 2015 Pearson. All rights reserved. 81

Strong Typing (continued)

• Coercion rules strongly affect strong typing--
they can weaken it considerably (C++ versus
ML and F#)

• Although Java has just half the assignment
coercions of C++, its strong typing is still
far less effective than that of Ada

Copyright © 2015 Pearson. All rights reserved. 82

Name Type Equivalence

• Name type equivalence means the two
variables have equivalent types if they are in
either the same declaration or in
declarations that use the same type name

• Easy to implement but highly restrictive:
– Subranges of integer types are not equivalent
with integer types

– Formal parameters must be the same type as
their corresponding actual parameters

Copyright © 2015 Pearson. All rights reserved. 83

type Indextype is 1..100;

count : Integer;  
index : Indextype;

Structure Type Equivalence

• Structure type equivalence means that two
variables have equivalent types if their types
have identical structures

• More flexible, but harder to implement

Copyright © 2015 Pearson. All rights reserved. 84

Type Equivalence (continued)

• Consider the problem of two structured types:
– Are two record types equivalent if they are
structurally the same but use different field
names?

– Are two array types equivalent if they are the
same except that the subscripts are different?

 (e.g. [1..10] and [0..9])
– Are two enumeration types equivalent if their
components are spelled differently?

– With structural type equivalence, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

Copyright © 2015 Pearson. All rights reserved. 85

Theory and Data Types

• Type theory is a broad area of study in
mathematics, logic, computer science, and
philosophy (combinators, the metatheory of
bounded quantification, existential types, and
higher-order polymorphism)

• Two branches of type theory in computer science:
– Practical – data types in commercial languages
– Abstract – typed lambda calculus

• A type system is a set of types and the rules
that govern their use in programs

Copyright © 2015 Pearson. All rights reserved. 86

Theory and Data Types (continued)

• Formal model of a type system is a set of
types and a collection of functions that
define the type rules
– Either an attribute grammar or a type map could
be used for the functions

– Finite mappings – model arrays and functions
– Cartesian products – model tuples and records
– Set unions – model union types
– Subsets – model subtypes

Copyright © 2015 Pearson. All rights reserved. 87

Copyright © 2015 Pearson. All rights reserved. 88

Summary

• The data types of a language are a large part of
what determines that language’s style and usefulness

• The primitive data types of most imperative
languages include numeric, character, and Boolean
types

• The user-defined enumeration and subrange types
are convenient and add to the readability and
reliability of programs

• Arrays and records are included in most languages
• Pointers are used for addressing flexibility and to

control dynamic storage management

