
Lecture 9: Programming Using the Message Passing Paradigm 
 
 
Slides by: Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”, Addison Wesley, 2003.
With some edits from other sources  

CC755: Distributed and Parallel
Systems

Dr. Manal Helal, Spring 2016
moodle.manalhelal.com

Topic Overview

• Motivation
• Principles of Message-Passing Programming
• The Building Blocks: Send and Receive Operations
• MPI: the Message Passing Interface

Motivation

» Synchronisation
» Load balancing
» Resource management
» ...in all cases communication between nodes is required.

MPI: the Message Passing Interface

• MPI defines a standard library for message-passing that
can be used to develop portable message-passing
programs using either C or Fortran.

• The MPI standard defines both the syntax as well as the
semantics of a core set of library routines.

• It is possible to write fully-functional message-passing
programs by using only six basic routines.

Principles of  
Message-Passing Programming

• The logical view of a machine supporting the message-
passing paradigm consists of p processes, each with its
own exclusive address space.

• Each data element must belong to one of the partitions of
the space; hence, data must be explicitly partitioned and
placed.

• All interactions (read-only or read/write) require
cooperation of two processes - the process that has the
data and the process that wants to access the data.

• These two constraints, while onerous, make underlying
costs very explicit to the programmer.

Principles of  
Message-Passing Programming

• Message-passing programs are often written using the
asynchronous or loosely synchronous paradigms.

• In the asynchronous paradigm, all concurrent tasks
execute asynchronously.

• In the loosely synchronous model, tasks or subsets of
tasks synchronise to perform interactions. Between these
interactions, tasks execute completely asynchronously.

• Most message-passing programs are written using the
single program multiple data (SPMD) model.

MPI Implementations

• MPICH: www-unix.mcs.anl.gov/mpi/mpich/
• LAM/MPI: www.lam-mpi.org
• Open MPI: www.open-mpi.org
• MVAPICH2: mvapich.cse.ohio-state.edu/overview/

mvapich2/
» The MPI interface is standard, so programming in all is

identical: http://www-unix.mcs.anl.gov/mpi/
» Booting and terminating nodes, and running jobs on the

system, differs slightly.

MPI Commands

» MPI is simple, but complex; or is it complex, but simple?
» How many MPI commands are there?

» Basic Commands: 6+1
» 128+

» 52 Point-to-Point Communication
» 16 Collective Communication
» 30 Groups, Contexts, and Communicators
» 16 Process Topologies
» 13 Environmental Inquiry
» 1 Profiling

Six Basic MPI commands via three
fingers

Pointer Finger – Setup: starting & terminating the MPI Library

• 1) MPI_Init is called prior to any calls to other MPI routines. Its
purpose is to initialize the MPI environment.

• 2) MPI_Finalize is called at the end of the computation, and it
performs various clean-up tasks to terminate the MPI environment.

• The prototypes of these two functions are:
 int MPI_Init(int *argc, char ***argv)

 int MPI_Finalize()

• MPI_Init also strips off any MPI related command-line arguments.
• All MPI routines, data-types, and constants are prefixed by “MPI_”.

The return code for successful completion is MPI_SUCCESS.

Six Basic MPI commands via three
fingers

Rule of Thumb – Know thy self : Querying Information

• The 3) MPI_Comm_size and 4) MPI_Comm_rank functions are used to
determine the number of processes and the label of the calling process,
respectively.

• The calling sequences of these routines are as follows:
 int MPI_Comm_size(MPI_Comm comm, int *size)
 int MPI_Comm_rank(MPI_Comm comm, int *rank)

• The rank of a process is an integer that ranges from zero up to the size
of the communicator minus one.

• + 1) MPI_Get_processor_name(char * name, int *length)– External
processor name

Hello MPI Program

#include <stdio.h> 
#include <mpi.h>
 
int main(int argc, char ** argv) {

int size,rank, length;
char name[80];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Get_processor_name(name,&length);
printf("Hello MPI! Process %d of %d on %s\n”,rank, size,name);
MPI_Finalize(); 
return 0;

}

$ mpicc hello.c -o hello
$ mpiexec -n 2 ./hello
Hello MPI! Process 0 of 2 on Manals-MacBook-Pro.local
Hello MPI! Process 1 of 2 on Manals-MacBook-Pro.local

Six Basic MPI commands via three
fingers

Middle Finger – Message Passing

» 5) MPI Send()
» 6) MPI Recv()

MPI: the Message Passing Interface

The minimal set of MPI routines.

1 MPI_Init Initializes MPI.

2 MPI_Finalize Terminates MPI.
3 MPI_Comm_size Determines the number of processes.
4 MPI_Comm_rank Determines the label of calling process.
5 MPI_Send Sends a message.

6 MPI_Recv Receives a message.

The Building Blocks:  
Send and Receive Operations

• The prototypes of these operations are as follows:
 send(void *sendbuf, int nelems, int dest)
 receive(void *recvbuf, int nelems, int source)

• Consider the following code segments:
 P0 P1
 a = 100; receive(&a, 1, 0)
 send(&a, 1, 1); printf("%d\n", a);
 a = 0;

• The semantics of the send operation require that the
value received by process P1 must be 100 as opposed to
0.

• This motivates the design of the send and receive
protocols.

Non-Buffered Blocking  
Message Passing Operations

• A simple method for forcing send/receive semantics is for the send
operation to return only when it is safe to do so.

• In the non-buffered blocking send, the operation does not return until
the matching receive has been encountered at the receiving process.

• Idling and deadlocks are major issues with non-buffered blocking
sends.

• In buffered blocking sends, the sender simply copies the data into the
designated buffer and returns after the copy operation has been
completed. The data is copied at a buffer at the receiving end as
well.

• Buffering alleviates idling at the expense of copying overheads.

Non-Buffered Blocking  
Message Passing Operations

Handshake for a blocking non-buffered send/receive operation.
It is easy to see that in cases where sender and receiver do not

reach communication point at similar times, there can be
considerable idling overheads.

Buffered Blocking  
Message Passing Operations

• A simple solution to the idling and deadlocking problem
outlined above is to rely on buffers at the sending and
receiving ends.

• The sender simply copies the data into the designated
buffer and returns after the copy operation has been
completed.

• The data must be buffered at the receiving end as well.
• Buffering trades off idling overhead for buffer copying

overhead.

Buffered Blocking  
Message Passing Operations

Blocking buffered transfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends;

and (b) in the absence of communication hardware, sender
interrupts receiver and deposits data in buffer at receiver end.

Buffered Blocking  
Message Passing Operations

Bounded buffer sizes can have significant impact on
performance.

What if consumer was much slower than producer?

P0
for (i = 0; i < 1000; i++){

produce_data(&a);
send(&a, 1, 1);

}

P1
for (i = 0; i < 1000; i++){

receive(&a, 1, 0);
consume_data(&a);

}

Buffered Blocking  
Message Passing Operations

Deadlocks are still possible with buffering since receive
operations block.

P0
receive(&a, 1, 1);
send(&b, 1, 1);

P1
receive(&a, 1, 0);
send(&b, 1, 0);

Non-Blocking  
Message Passing Operations

• The programmer must ensure semantics of the send and
receive.

• This class of non-blocking protocols returns from the
send or receive operation before it is semantically safe to
do so.

• Non-blocking operations are generally accompanied by a
check-status operation.

• When used correctly, these primitives are capable of
overlapping communication overheads with useful
computations.

• Message passing libraries typically provide both blocking
and non-blocking primitives.

Non-Blocking  
Message Passing Operations

Non-blocking non-buffered send and receive operations (a) in
absence of communication hardware; (b) in presence of

communication hardware.

Send and Receive Protocols

Space of possible protocols for send and receive operations.

Blocking Send Modes

■ Synchronous – Stoplight Intersection
■ No buffer, but both sides wait for other

■ Buffered – The roundabout You construct
■ Explicit user buffer, alls well as long as within buffer

■ Ready – Fire truck Stoplight Override
■ No buffer, no handshake, Send is the firetruck

■ Standard – The Roundabout
■ Not so standard blend of Synchronous and Buffered
■ Internal buffer?

Send/Receive in Different modes

» Synchronous communication
» MPI_Send - Performs a blocking send
» MPI_Ssend - Blocking synchronous send
» MPI_Rsend - Blocking ready send
» MPI_Recv - Blocking receive for a message

» Asynchronous communication
» MPI_Isend - Begins a nonblocking send
» MPI_Irecv - Begins a nonblocking receive

» Buffered
» MPI_Bsend - Basic send with user-provided buffering

» Collective communication
» MPI_Broadcast, MPI_Gather, MPI_Reduce

