
1

***This is a bonus Web chapter

CHAPTER 45

Web Services
Objectives

To describe what a Web service is (§45.1).
To create a Web service class (§45.2).
To publish and test a Web service (§45.3).
To create a Web service client reference (§45.4).
To explain the role of WSDL (§45.4).
To pass arguments of object type in a Web service (§45.5).
To discover how a client communicates with a Web service
(§45.5).
To describe what SOAP requests and SOAP responses are (§45.5).
To track a session in Web services (§45.6).

2

45.1 Introduction
<Side Remark: platform independent>
<Side Remark: language independent>

Web service is a technology that enables programs to communicate
through HTTP on the Internet. Web services enable a program on one
system to invoke a method in an object on another system. You can
develop and use Web services using any languages on any platform.
Web services are simple and easy to develop.

<Side Remark: SOAP>
<Side Remark: publishing Web services>
<Side Remark: consuming Web services>

Web services run on the Web using HTTP. There are several APIs for
Web services. A popular standard is the Simple Object Access
Protocol (SOAP), which is based on XML. The computer on which a
Web service resides is referred to as a server. The server needs
to make the service available to the client, known as publishing a
Web service. Using a Web service from a client is known as
consuming a Web service.

<Side Remark: proxy object>
A client interacts with a Web service through a proxy object. The
proxy object facilitates the communication between the client and
the Web service. The client passes arguments to invoke methods on
the proxy object. The proxy object sends the request to the server
and receives the result back from the server, as shown in Figure
45.1.

Client

Web
service
proxy
object

Server

Web
serviceInternet

Figure 45.1
A proxy object serves as a facilitator between a client and a Web
service.

45.2 Creating Web Services

<Side Remark: Web service tool>
There are many tools for creating Web services. This book
demonstrates creating Web services using NetBeans.

<Side Remark: install GlashFish 3>
NOTE:
Apache Tomcat Server does not work well with Web services. To
develop and deploy Web services using NetBeans, you need to
install GlassFish 3. For information on how to install GlassFish 3
on NetBeans 7, see Supplement II.I.

***END NOTE

We now create a Web service for obtaining student scores. A Web
service is a class that contains the methods for the client to
invoke. Name the class ScoreService with a method named
findScore(String name) that returns the score for a student.

<Side Remark: NetBeans Web project>
First you need to create a Web project using the following steps:

Choose File › New Project to display the New Project dialog box.

3

In the New Project dialog box, choose Java Web in the Categories
pane and choose Web Application in the Projects pane. Click Next
to display the New Web Application dialog box.
Enter WebServiceProject as the project name, specify the location
where you want the project to be stored, and click Next to display
the Server and Setting dialog.
Select GlassFish 3 as the server and Java EE 6 Web as the Java EE
version. Click Finish to create the project.

<Side Remark: create Web service class>
Now you can create the ScoreService class in the project as
follows:

Right-click the WebServiceProject in the Project pane to display a
context menu. Choose New › Web Service to display the New Web
Service dialog box.
Enter ScoreService in the Web Service Name field and enter
chapter45 in the Package field. Click Finish to create
ScoreService.
Complete the source code as shown in Listing 45.1.

Listing 45.1 ScoreService.java

<Side Remark line 4: import for @WebService>
<Side Remark line 5: import for @WebMethod>
<Side Remark line 7: define WebService>
<Side Remark line 19: define WebMethod>

package chapter45;

import java.util.HashMap;
import javax.jws.WebService; // For annotation @WebService
import javax.jws.WebMethod; // For annotation @WebMethod

@WebService(name = "ScoreService", serviceName = "ScoreWebService")
public class ScoreService {
 // Stores scores in a map indexed by name
 private HashMap<String, Double> scores =
 new HashMap<String, Double>();

 public ScoreService() {
 scores.put("John", 90.5);
 scores.put("Michael", 100.0);
 scores.put("Michelle", 98.5);
 }

 @WebMethod(operationName = "findScore")
 public double findScore(String name) {
 Double d = scores.get(name);

 if (d == null) {
 System.out.println("Student " + name + " is not found ");
 return -1;
 }
 else {
 System.out.println("Student " + name + "\'s score is "
 + d.doubleValue());
 return d.doubleValue();
 }
 }

4

}
<Side Remark: what is annotation?>
<Side Remark: boilerplate code>

Lines 4-5 import the annotations used in the program in lines 7
and 19. Annotation is a new feature in Java, which enables you to
simplify coding. The compiler will automatically generate the code
for the annotated directives. So, it frees the programmer from
writing the detailed boilerplate code that could be generated
mechanically. The annotation (line 7)

@WebService(name = "ScoreService", serviceName = "ScoreWebService")

tells the compiler that the class ScoreService is associated with
the Web service named ScoreWebService.

The annotation (line 19)

 @WebMethod(operationName = "findScore")

indicates that findScore is a method that can be invoked from a
client.

The findScore method returns a score if the name is in the hash
map. Otherwise, it returns -1.0.

You can manually type the code for the service, or create it from
the Design tab, as shown in Figure 45.2.

Figure 45.2
The services can also be created from the Design pane.

45.3 Deploying and Testing Web Services

<Side Remark: publishing Web services>
After a Web service is created, you need to deploy it for clients
to use. Deploying Web services is also known as publishing Web
services. To deploy it, right-click the WebServiceProject in the
Project to display a context menu and choose Deploy. This command
will first undeploy the service if it was deployed and then
redeploy it.

Now you can test the Web service by entering the follow URL in a
browser, as shown in Figure 45.3.

5

http://localhost:8080/WebServiceProject/ScoreWebService?Tester

Figure 45.3
The test page enables you to test Web services.

Note that ScoreWebService is the name you specified in line 7 in
Listing 45.1. This Web service has only one remote method named
findScore. You can define an unlimited number of remote methods in
a Web service class. If so, all these methods will be displayed in
the test page.

To test the findScore method, enter Michael and click findScore.
You will see that the method returns 100.0, as shown in Figure
45.4.

Figure 45.4
The method returns a test value.

<Side Remark: testing from another machine>
NOTE: If your computer is connected to the Internet, you
can test Web services from another computer by entering
the following URL:

http://host:8080/WebServiceProject/ScoreWebService?Tester

<Side Remark: ipconfig>

6

Where host is the host name or IP address of the server
on which the Web service is running. On Windows, you can
find your IP address by typing the command ipconfig.

***END NOTE

<Side Remark: Windows firewall>
NOTE: If you are running the server on Windows, the
firewall may prevent remote clients from accessing the
service. To enable it, do the following:

1. In the Windows control panel, click Windows Firewall
to display the Windows Firewall dialog box.

2. In the Advanced tab, double-click Local Area
Connection to display the Advanced Settings dialog
box. Check Web Server(HTTP) to enable HTTP access to
the server.

3. Click OK to close the dialog box.
***END NOTE

45.4 Consuming Web Services

<Side Remark: consuming Web services>
After a Web service is published, you can write a client program
to use it. A client can be any program (standalone application,
applet, servlet/JSP/JSF application, or another Web service) and
written in any language.

We will use NetBeans to create a Web service client. Our client is
a Java applet with a main method, so you can also run it
standalone. The applet simply lets the user enter a name and
displays the score, as shown in Figure 45.5.

Figure 45.5
The applet client uses the Web service to find scores.

Let us create a project for the client. The project named
ScoreWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Project dialog box.
In the New Project dialog box, choose Java in the Categories pane
and choose Java Application in the Projects pane. Click Next to
display the New Java Application dialog box.
Enter ScoreWebServiceClientProject as the project name, specify
the location where you want the project to be stored, and uncheck
the Create Main Class check box. Click Finish to create the
project.

<Side Remark: Web service reference>
You need to create a Web service reference to this project. The
reference will enable you to create a proxy object to interact
with the Web service. Here are the steps to create a Web service
reference:

7

Right-click the ScoreWebServiceClientProject in the Project pane
to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box, as shown in Figure
45.6.

Check the WSDL URL radio button and enter
http://localhost:8080/WebServiceProject/ScoreWebService?WSDL

in the WSDL URL field.

Enter myWebservice in the package name field and choose JAX-WS as
the JAX version. Click Finish to generate the Web service
reference.

Figure 45.6
The New Web Service Client dialog box creates a Web service
reference.

Now you will see ScoreWebService created in the Web Service
References folder in the Projects tab. The IDE has generated many
supporting files for the reference. You can view all the generated
.java files from the Files tab in the project pane, as shown in
Figure 45.7. These files will be used by the proxy object to
interact with the Web service.

Figure 45.7
You can see the automatically generated boilerplate code for Web
services in the Generated Sources folder in the client’s project.

8

<Side Remark: what is WSDL?>
NOTE: When you created a Web service reference, you entered a WSDL
URL, as shown in Figure 45.6. This creates a .wsdl file. In this
case, it is named ScoreWebService.wsdl under the Web Service
References folder, as shown in Figure 45.8. So what is WSDL? WSDL
stands for Web Service Description Language. A .wsdl file is an
XML file that describes the available Web service to the client—
i.e., the remote methods, their parameters and return value types,
and so on.

Figure 45.8
The .wsdl file describes Web services to clients.

<Side Remark: refresh reference>
NOTE: If the Web service is modified, you need to refresh the
reference for the client. To do so, right-click the Web service
node under Web Service References to display a context menu and
choose Refresh Client.

Now you are ready to create an applet client for the Web service.
Right-click the ScoreWebServiceClientProject node in the Project
pane to display a context menu, and choose New › JApplet to create
a Java applet named FindScoreApplet in package chapter45, as shown
in Listing 45.2.

Listing 45.2 FindScoreApplet.java

<Side Remark line 11: create a service object>
<Side Remark line 12: create a proxy object>
<Side Remark line 39: invoke remote method>
<Side Remark line 51: main method omitted>

package chapter45;

import myWebservice.ScoreWebService;
import myWebservice.ScoreService;
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class FindScoreApplet extends JApplet {
 // Declare a service object and a proxy object
 private ScoreWebService scoreWebService = new ScoreWebService();
 private ScoreService proxy = scoreWebService.getScoreServicePort();

 private JButton jbtGetScore = new JButton("Get Score");

9

 private JTextField jtfName = new JTextField();
 private JTextField jtfScore = new JTextField();

 public void init() {
 JPanel jPanel1 = new JPanel();
 jPanel1.setLayout(new GridLayout(2, 2));
 jPanel1.add(new JLabel("Name"));
 jPanel1.add(jtfName);
 jPanel1.add(new JLabel("Score"));
 jPanel1.add(jtfScore);

 add(jbtGetScore, BorderLayout.SOUTH);
 add(jPanel1, BorderLayout.CENTER);

 jbtGetScore.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent evt) {
 getScore();
 }
 });
 }

 private void getScore() {
 try {
 // Get student score
 double score = proxy.findScore(jtfName.getText().trim());

 // Display the result
 if (score < 0)
 jtfScore.setText("Not found");
 else
 jtfScore.setText(new Double(score).toString());
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

The program creates a Web service object (line 11) and creates a
proxy object (line 12) to interact with the Web service.

To find a score for a student, the program invokes the remote
method findScore on the proxy object (line 39).

45.5 Passing and Returning Arguments

<Side Remark: SOAP>
In the preceding example, a Web service client that you created
invokes the findScore method with a string argument, and the Web
service executes the method and returns a score as a double value.
How does this work? It is the Simple Object Access Protocol (SOAP)
that facilitates communications between the client and server.

<Side Remark: SOAP request>
<Side Remark: SOAP response>

SOAP is based on XML. The message between the client and server is
described in XML. Figure 45.9 shows the SOAP request and SOAP
response for the findScore method.

10

Figure 45.9
The client request and server response are described in XML.

When invoking the findScore method, a SOAP request is sent to the
server. The request contains the information about the method and
the argument. As shown in Figure 45.9, the XML text

<ns1:findScore>
 <arg0>Michael</arg0>
</ns1:findScore>

specifies that the method findScore is called with argument
Michael.

Upon receiving the SOAP request, the Web service parses it. After
parsing it, the Web service invokes an appropriate method with

11

specified arguments (if any) and sends the response back in a SOAP
response. As shown in Figure 45.9, the XML text

<ns1:findScoreResponse>
 <return>100.0</return>
</ns1:findScoreResponse>

specifies that the method returns 100.0.

The proxy object receives the SOAP response from the Web service
and parses it. This process is illustrated in Figure 45.10.

Client

Web
service
proxy
object

Server

Web
service

SOAP Response

SOAP Request

Figure 45.10
A proxy object sends SOAP requests and receives SOAP responses.

<Side Remark: XML serialization>
<Side Remark: XML deserialization>

Can you pass an argument of any type between a client and a Web
service? No. SOAP supports only primitive types, wrapper types,
arrays, String, Date, Time, List, and several other types. It also
supports certain custom classes. An object that is sent to or from
a server is serialized into XML. The process of
serializing/deserializing objects, called XML
serialization/deserialization, is performed automatically. For a
custom class to be used with Web methods, the class must meet the
following requirements:

<Side Remark: no-arg constructor>
The class must have a no-arg constructor.

<Side Remark: get and set methods>
Instance variables that should be serialized must have public get
and set methods. The classes of these variables must be supported
by SOAP.

To demonstrate how to pass an object argument of a custom class,
Listing 45.3 defines a Web service class named AddressService with
two remote methods:

getAddress(String firstName, String lastName) that returns an
Address object for the specified firstName and lastName.
storeAddress(Address address) that stores a Student object to the
database.

Address information is stored in a table named Address in the
database. The Address class was defined in Listing 42.12,
Address.java. An Address object can be passed to or returned from
a remote method, since the Address class has a no-arg constructor
with get and set methods for all its properties.

Here are the steps to create a Web service named AddressService
and the Address class in the project.

Right-click the WebServiceProject node in the project pane to
display a context menu. Choose New › Web Service to display the
New Web Service dialog box.
In the Web Service Name field, enter AddressService. In the
Package field, enter chapter45. Click Finish to create the service
class.

12

Right-click the WebServiceProject node in the project pane to
display a context menu. Choose New › Java Class to display the New
Java Class dialog box.
In the Class Name field, enter Address. In the Package field,
enter chapter42. Click Finish to create the class.

The Address class is the same as shown in Listing 42.12. Complete
the AddressService class as shown in Listing 45.3.

Listing 45.3 AddressService.java

<Side Remark line 8: define service name>
<Side Remark line 12: prepared statement>
<Side Remark line 15: prepared statement>
<Side Remark line 18: initialize database>
<Side Remark line 21: define remote method>
<Side Remark line 22: getAddress>
<Side Remark line 49: define remote method>
<Side Remark line 50: storeAddress>
<Side Remark line 68: initialize database>

package chapter45;

import chapter42.Address;
import java.sql.*;
import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService(name = "AddressService",
 serviceName = "AddressWebService")
public class AddressService {
 // statement1 for retrieving an address and statement2 for storing
 private PreparedStatement statement1;

 // statement2 for storing an address
 private PreparedStatement statement2;

 public AddressService() {
 initializeJdbc();
 }

 @WebMethod(operationName = "getAddress")
 public Address getAddress(String firstName, String lastName) {
 try {
 statement1.setString(1, firstName);
 statement1.setString(2, lastName);
 ResultSet resultSet = statement1.executeQuery();

 if (resultSet.next()) {
 Address address = new Address();
 address.setFirstName(resultSet.getString("firstName"));
 address.setLastName(resultSet.getString("lastName"));
 address.setMi(resultSet.getString("mi"));
 address.setTelephone(resultSet.getString("telephone"));
 address.setFirstName(resultSet.getString("email"));
 address.setCity(resultSet.getString("telephone"));
 address.setState(resultSet.getString("state"));
 address.setZip(resultSet.getString("zip"));

13

 return address;
 }
 else
 return null;
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 return null;
 }

 @WebMethod(operationName = "storeAddress")
 public void storeAddress(Address address) {
 try {
 statement2.setString(1, address.getLastName());
 statement2.setString(2, address.getFirstName());
 statement2.setString(3, address.getMi());
 statement2.setString(4, address.getTelephone());
 statement2.setString(5, address.getEmail());
 statement2.setString(6, address.getStreet());
 statement2.setString(7, address.getCity());
 statement2.setString(8, address.getState());
 statement2.setString(9, address.getZip());
 statement2.executeUpdate();
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 /** Initialize database connection */
 public void initializeJdbc() {
 try {
 Class.forName("com.mysql.jdbc.Driver");

 // Connect to the sample database
 Connection connection = DriverManager.getConnection(
 "jdbc:mysql://localhost/javabook", "scott", "tiger");

 statement1 = connection.prepareStatement(
 "select * from Address where firstName = ? and lastName = ?");
 statement2 = connection.prepareStatement(
 "insert into Address " +
 "(lastName, firstName, mi, telephone, email, street, city, "
 + "state, zip) values (?, ?, ?, ?, ?, ?, ?, ?, ?)");
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

The new Web service is named AddressWebService (line 9) for the
AddressService class.

When the service is deployed, the constructor (lines 17-19) of
AddressWebService is invoked to initialize a database connection
and create prepared statement1 and statement2 (lines 68-85).

14

The findAddress method searches the address in the Address table
for the specified firstName and lastName. If found, the address
information is returned in an Address object (lines 29-38).
Otherwise, the method returns null (line 41).

The storeAddress method stores the address information from the
Address object into the database (lines 52-61).

NOTE:
<Side Remark: database driver>

Don’t forget that you have to add the MySQL library to
the WebServiceProject for this example to run.

Before you can use the service, deploy it. Right-click the
WebServiceProject node in the Project to display a context menu
and choose Deploy.

Now you are ready to develop a Web client that uses the
AddressWebService. The client is a JSP program, as shown in Figure
45.11. The program has two functions. First, the user can enter
the last name and first name and click the Search button to search
for a record, as shown in Figure 45.12. Second, the user can enter
the complete address information and click the Store button to
store the information to the database, as shown in Figure 45.13.

Figure 45.11
The TestAddressWebService page allows the user to search and
store addresses.

Figure 45.12
The Search button finds and displays an address.

15

Figure 45.13
The Store button stores the address to the database.

Let us create a project for the client. The project named
AddressWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Web Application
dialog box.
In the New Web Application dialog box, choose Java Web in the
Categories pane and choose Web Application in the Projects pane.
Click Next to display the Name and Location dialog box.
Enter AddressWebServiceClientProject as the project name, specify
the location where you want the project to be stored, and uncheck
the Set as Main Project check box. Click Next to display the
Server and Settings dialog box.
Choose GlassFish Server 3 in the Server field, and Java EE 6 Web
as in the Java EE Version field, and click Finish to create the
project.

<Side Remark: Web service reference>
You need to create a Web service reference to this project. The
reference will enable you to create a proxy object to interact
with the Web service. Here are the steps to create a Web service
reference:

Right-click the AddressWebServiceClientProject node in the Project
pane to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box.
Check the WSDL URL radio button and enter

http://localhost:8080/WebServiceProject/AddressWebService?WSDL

in the WSDL URL field.

3. Enter myWebservice in the package name field and choose JAX-WS
as the JAX version. Click Finish to generate the Web service
reference.

Now a reference to AddressWebService is created. Note that this
process also copies Address.java to the client project, as shown
in Figure 45.14.

16

Figure 45.14
The Address.java is automatically copied to the Web service
client reference package.

Create a JSP named TestAddressWebService in the
AddressWebServiceClientProject project, as shown in Listing 45.4.

Listing 45.4 TestAddressWebService.jsp

<Side Remark line 2: import Address>
<Side Remark line 3: import AddressWebServices>
<Side Remark line 4: import AddressServices>
<Side Remark line 14: invoke the same page>
<Side Remark line 82: create Web service>
<Side Remark line 83: get proxy object>
<Side Remark line 85: process Store button>
<Side Remark line 86: invoke remote method>
<Side Remark line 90: process Search button>
<Side Remark line 91: invoke remote method>

<!-- TestAddressWebService.jsp -->
<%@ page import = "myWebservice.Address" %>
<%@ page import = "myWebservice.AddressWebService" %>
<%@ page import = "myWebservice.AddressService" %>
<jsp:useBean id = "addressId"
class = "myWebservice.Address" scope = "session"></jsp:useBean>

<jsp:setProperty name = "addressId" property = "*" />
<html>
<head>
<title>Address Information</title>

</head>
<body>
 <form method = "post" action = "TestAddressWebService.jsp">

17

 Last Name *
<input type = "text" name = "lastName"
<%if (addressId.getLastName() != null) {

 out.print("value = \"" + addressId.getLastName() + "\"");}%>
size = "20" />

 First Name *
<input type = "text" name = "firstName"
<%if (addressId.getFirstName() != null) {

 out.print("value = \"" + addressId.getFirstName() + "\"");}%>
size = "20" />

 MI
<input type = "text" name = "mi"
<%if (addressId.getMi() != null) {

 out.print("value = \"" + addressId.getMi() + "\" "); } %>
size = "3" />
<p>Telephone
<input type = "text" name = "telephone"
<%if (addressId.getTelephone() != null) {

 out.print("value = \"" + addressId.getTelephone() + "\" ");}%>
size = "20" />

 Email
<input type = "text" name = "email"
<%if (addressId.getEmail() != null) {

 out.print("value = \"" + addressId.getEmail() + "\" ");}%>
size = "28" />
</p>

 <p>Street
<input type = "text" name = "street"
<%if (addressId.getStreet() != null) {

 out.print("value = \"" + addressId.getStreet() + "\" ");}%>
size = "50" />
</p>
<p>City
<input type = "text" name = "city"
<%if (addressId.getCity() != null) {

 out.print("value = \"" + addressId.getCity() + "\" ");}%>
size = "23" />

 State
<select size = "1" name = "state">
<option value = "GA">Georgia-GA</option>
<option value = "OK">Oklahoma-OK</option>
<option value = "IN">Indiana-IN</option>

</select>
 Zip
<input type = "text" name = "zip"
<%if (addressId.getZip() != null) {

 out.print("value = \"" + addressId.getZip() + "\" "); } %>
size = "9" />

18

 </p>

<p><input type = "submit" name = "Submit" value = "Search">
<input type = "submit" name = "Submit" value = "Store">
<input type = "reset" value = "Reset">

</p>
 </form>
 <p>* required fields</p>
<%

 if (request.getParameter("Submit") != null) {
 AddressWebService addressWebService = new AddressWebService();
 AddressService proxy = addressWebService.getAddressServicePort();

if (request.getParameter("Submit").equals("Store")) {
 proxy.storeAddress(addressId);
 out.println(addressId.getFirstName() + " " +
 addressId.getLastName() + " has been added to the database");
 }

else if (request.getParameter("Submit").equals("Search")) {
 Address address = proxy.getAddress(addressId.getFirstName(),
 addressId.getLastName());

if (address == null)
 out.print(addressId.getFirstName() + " " +
 addressId.getLastName() + " is not in the database");

else
 addressId = address;
 }
 }
 %>
</body>
</html>

Lines 2-4 import the classes for the JSP page. The Address class
(line 2) was created in the WebServiceProject and was
automatically copied to the AddressWebServiceClientProjec project
when a Web service reference for AddressWebService was created. A
JavaBeans object for Address was created and associated with input
parameters in lines 5-7.

The UI interface was laid in the form (lines 14-77). The action
for the two buttons Search and Store invokes the same page
TestAddressWebService.jsp (line 14).

When a button is clicked, a proxy object for AddressWebService is
obtained (lines 82-83). For the Store button, the proxy object
invokes the storeAddress method to add an address to the database
(line 86). For the Search button, the proxy object invokes the
getAddress method to return an address (lines 91-92). If no
address is found for the specified first and last names, the
returned address is null (line 93).

45.6 Web Service Session Tracking

<Side Remark: HttpSession>
§42.8.3, “Session Tracking Using the Servlet API,” introduced
session tracking for servlets using the
javax.servlet.http.HttpSession interface. You can use HttpSession
to implement session tracking for Web services. To demonstrate
this, consider an example that generates random True/False

19

questions for the client and grades the answers on these questions
for the client.

The Web client consists of two JSP pages: DisplayQuiz.jsp and
GradeQuiz.jsp. The DisplayQuiz page invokes the service method
getQuestion() to display the questions, as shown in Figure 45.15.
When you click the Submit button, the program invokes the service
method gradeQuiz to grade the answers. The result is displayed in
the GradeQuiz page, as shown in Figure 45.16.

Figure 45.15
The Submit button submits the answers for grading.

Figure 45.16
The answers are graded and displayed.

Why is session tracking needed for this project? Each time a
client displays a quiz, it creates a randomly reorder the quiz for
the client. Each client gets a different quiz every time the
DisplayQuiz page is refreshed. When the client submits the answer,
the Web service checks the answer against the previously generated
quiz. So the quiz has to be stored in the session.

For convenience, let us create the Web service class named
QuizService in the WebServiceProject in package chapter45. Listing
45.5 gives the program.

Listing 45.5 QuizService.java

<Side Remark line 9: enable session tracking>
<Side Remark line 10: define service name>
<Side Remark line 12: quiz>
<Side Remark line 16: initialize quiz>
<Side Remark line 28: shuffle>
<Side Remark line 31: define service method>
<Side Remark line 32: getQuestions>
<Side Remark line 42: define service method>
<Side Remark line 43: gradeQuiz>
<Side Remark line 46: check answers>

package chapter45;

import javax.jws.WebMethod;
import javax.jws.WebService;

20

import java.util.List;
import java.util.ArrayList;
import com.sun.xml.ws.developer.servlet.HttpSessionScope;

@HttpSessionScope
@WebService(name = "QuizService", serviceName = "QuizWebService")
public class QuizService {
 private ArrayList<Object[]> quiz = new ArrayList<Object[]>();

 public QuizService() {
 // Initialize questions and answers
 quiz.add(new Object[]{
 "Is Atlanta the capital of Georgia?", true});
 quiz.add(new Object[]{
 "Is Columbia the capital of South Carolina?", true});
 quiz.add(new Object[]{
 "Is Fort Wayne the capital of Indiana?", false});
 quiz.add(new Object[]{
 "Is New Orleans the capital of Louisiana?", false});
 quiz.add(new Object[]{
 "Is Chicago the capital of Illinois?", false});

 // Shuffle to generate a random quiz for a client
 java.util.Collections.shuffle(quiz);
 }

 @WebMethod(operationName = "getQuestions")
 public java.util.List<String> getQuestions() {
 // Extract questions from quiz
 List<String> questions = new ArrayList<String>();
 for (int i = 0; i < quiz.size(); i++) {
 questions.add((String)(quiz.get(i)[0]));
 }

 return questions; // Return questions in the quiz
 }

 @WebMethod(operationName = "gradeQuiz")
 public List<Boolean> gradeQuiz(List<Boolean> answers) {
 List<Boolean> result = new ArrayList<Boolean>();
 for (int i = 0; i < quiz.size(); i++)
 result.add(quiz.get(i)[1] == answers.get(i));

 return result;
 }
}

The Web service class named QuizService contains two methods
getQuestions and gradeQuiz. The new Web service is named
QuizWebService (line 10).

The annotation @HttpSessionScope (line 9) is new in JAX-WS 2.2,
which enables the Web service automatically maintains a separate
instance for each client session. To use this annotation, you have
add JAX-WS 2.2 into your project’s library. This can be done by
clicking the Library node in the project and select Add Library.

<Side Remark: creating a quiz>

21

Assume that five True/False questions are available from the
service. The quiz is stored in an ArrayList (lines 16-25).
Each element in the list is an array with two values. The first
value is a string that describes the question and the second is a
Boolean value indicating whether the answer should be true or
false.

<Side Remark: randomly shuffling>
A new quiz is generated in the constructor and the quiz is
shuffled using the shuffle method in the Collections class (line
28).

<Side Remark: getQuestions>
The getQuestions method (lines 31-40) returns questions in a list.
The questions are extracted from the quiz (lines 34-37) and are
returned (line 39).

<Side Remark: gradeQuiz>
The gradeQuiz method (lines 42-49) checks the answers from the
client with the answers in the quiz. The client’s answers are
compared with the key, and the result of the grading is stored in
a list. Each element in the list is a boolean value that indicates
whether the answer is correct or incorrect (lines 44-46).

<Side Remark: create Web service client>
After creating and publishing the Web service, let us create a
project for the client. The project named
QuizWebServiceClientProject can be created as follows:

Choose File › New Project to display the New Web Application
dialog box.
In the New Web Application dialog box, choose Java Web in the
Categories pane and choose Web Application in the Projects pane.
Click Next to display the Name and Location dialog box.
Enter QuizWebServiceClientProject as the project name, specify the
location where you want the project to be stored, and uncheck the
Set as Main Project check box. Click Next to display the Server
and Settings dialog box.
Choose GlassFish Server 3 in the Server field, and Java EE 6 Web
as in the Java EE Version field, and click Finish to create the
project.

<Side Remark: Web service reference>
To use QuizWebService, you need to create a Web service client as
follows:

Right-click the QuizWebServiceClientProject project in the Project
pane to display a context menu. Choose New › Web Service Client to
display the New Web Service Client dialog box.
Check the WSDL URL radio button and enter

http://localhost:8080/WebServiceProject/QuizWebService?WSDL

in the WSDL URL field.

Enter myWebservice in the Package field.

Click Finish to create the reference for QuizWebService.

Now a reference to QuizWebService is created. You can create a
proxy object to access the remote methods in QuizService. Listings
45.6 and 45.7 show DisplayQuiz.jsp and GradeQuiz.jsp.

Listing 45.6 DisplayQuiz.jsp

<Side Remark line 2: import QuizWebService>
<Side Remark line 3: import QuizServices>

22

<Side Remark line 4: create QuizWebServices>
<Side Remark line 11: get proxy object>
<Side Remark line 12: get questions>
<Side Remark line 20: display questions>

<!-- DisplayQuiz.jsp -->
<%@ page import = "myWebservice.QuizWebService" %>
<%@ page import = "myWebservice.QuizService" %>
<jsp:useBean id = "quizWebService" scope = "session"
class = "myWebservice.QuizWebService">

</jsp:useBean>
<html>
<body>
 <%
 QuizService proxy = quizWebService.getQuizServicePort();
 java.util.List<String> questions =
 (java.util.ArrayList<String>)(proxy.getQuestions());
 %>
<form method = "post" action = "GradeQuiz.jsp">
<table>
<% for (int i = 0; i < questions.size(); i++) {%>

 <tr>
 <td>
 <label><%= questions.get(i) %></label>
 </td>
 <td>

<input type = "radio" name = <%= "question" + i%>
value = "True" /> True

 </td>
 <td>

<input type = "radio" name = <%= "question" + i%>
value = "False" /> False

 </td>
 </tr>
 <%}%>
 </table>
<p><input type = "submit" name = "Submit" value = "Submit">
<input type = "reset" value = "Reset">

 </p>
 </form>
</body>
</html>

This page generates a quiz by invoking the getQuestions() in lines
12-13. The questions are displayed in a table with radio buttons
(lines 16-32). Clicking Submit invokes GradeQuiz.jsp.

Listing 45.7 GradeQuiz.jsp

<Side Remark line 2: import QuizWebService>
<Side Remark line 3: import QuizServices>
<Side Remark line 4: create QuizWebServices>
<Side Remark line 11: get proxy object>
<Side Remark line 12: get questions>
<Side Remark line 15: get client’s answers>
<Side Remark line 25: grade answers>

23

<Side Remark line 28: analyze result>

<!-- GradeQuiz.jsp -->
<%@ page import = "myWebservice.QuizWebService" %>
<%@ page import = "myWebservice.QuizService" %>
<jsp:useBean id = "quizWebService" scope = "session"
class = "myWebservice.QuizWebService">

</jsp:useBean>
<html>
<body>
<%
QuizService proxy = quizWebService.getQuizServicePort();
java.util.List<String> quiz = proxy.getQuestions();

// Get the answer from the DisplayQuiz page
java.util.List<Boolean> answers = new java.util.ArrayList<Boolean>();
for (int i = 0; i < quiz.size(); i++) {
 String trueOrFalse = request.getParameter("question" + i);
if (trueOrFalse.equals("True"))

 answers.add(true); // Answered true
else if (trueOrFalse.equals("False"))

 answers.add(false); // Answered false
}

// Grade answers
java.util.List<Boolean> result = proxy.gradeQuiz(answers);

// Find the correct count
int correctCount = 0;
for (int i = 0; i < result.size(); i++) {
if (result.get(i))

 correctCount++;
}
%>
Out of <%= result.size() %> questions, <%= correctCount %> correct.
</body>
</html>

This page collects the answers passed from the HTML form from the
DisplayQuiz page (lines 15-21), invokes the gradeQuiz method to
grade the quiz (line 25), finds the correct count (lines 28-31),
and displays the result (line 35).

NOTE:
You need to answer all five questions before clicking the Submit
button. A runtime error will occur if a radio button is not
checked. You can fix this problem in Exercise 45.5.

Key Terms
@WebService
@WebMethod
consuming a Web service
proxy object
publishing a Web service

24

Web service
Web service client reference
WSDL

Chapter Summary
1. Web services enable a Java program on one system to invoke a

method in an object on another system.
2. Web services are platform and language independent. You can

develop and use Web services using any language.
3. Web services run on the Web using HTTP. SOAP is a popular protocol

for implementing Web services.
4. The server needs to make the service available to the client,

known as publishing a Web service. Using a Web service from a
client is known as consuming a Web service.

5. A client interacts with a Web service through a proxy object. The
proxy object facilitates the communication between the client and
the Web service.

6. You need to use Java annotation @WebService to annotate a Web
service and use annotation @WebMethod to annotate a remote
method.

7. A Web service class may have an unlimited number of remote
methods.

8. After a Web service is published, you can write a client program
to use it. You have to first create a Web client reference. From
the reference, you create a proxy object for facilitating
communication between a server and a client.

9. WSDL stands for Web Service Description Language. A .wsdl file is
an XML file that describes the available Web service to the
client—i.e., the remote methods, their parameters and return value
types, and so on.

10. The message between the client and server is described in
XML. A SOAP request describes the information that is sent to the
Web service and a SOAP response describes the information that is
received from the Web service.

11. The objects passed between client and Web service are
serialized in XML. Not all object types are supported by SOAP.

12. You can track sessions in Web services using the HttpSession
in the same way as in servlets.

Test Questions
Do the test questions for this chapter online at
www.cs.armstrong.edu/liang/intro9e/test.html.

Review Questions
Section 45.1
45.1 What is a Web service?

45.2 Can you invoke a Web service from a language other than Java?

45.3 Do Web services support callback? That is, can a Web service call
a method from a client’s program?

45.4 What is SOAP? What is it to publish a Web service? What is it to
consume a Web service? What is the role of a proxy object?

Sections 45.2-45.6
45.5 What is the annotation to specify a Web service? What is the
annotation to specify a Web method?

45.6 How do you deploy a Web service in NetBeans?

25

45.7 Can you test a Web service from a client?

45.8 How do you create a Web service reference for a client?

45.9 What is WSDL? What is SOAP? What is a SOAP request? What is a SOAP
response?

45.10 Can you pass primitive type arguments to a remote method? Can you
pass any object type to a remote method? Can you pass an argument of a
custom type to a remote method?

45.11 How do you obtain an HttpSession object for tracking a Web
session?

45.12 Can you create two Web service references in one package in the
same project in NetBeans?

45.13 What happens if you don’t clone the quiz in lines 40-41 in
Listing 45.5, QuizService.java?

Programming Exercises
45.1*
(Get a score from a database table) Suppose that the scores are stored
in the Scores table. The table was created as follows:

create table Scores (name varchar(20),
 score number, permission boolean);
insert into Scores values ('John', 90.5, 1);
insert into Scores values ('Michael', 100, 1);
insert into Scores values ('Michelle', 100, 0);

Revise the findScore method in Listing 45.1, ScoreService.java, to
obtain a score for the specified name. Note that your program does not
need the permission column; ignore it. The next exercise will need the
permission column.

45.2*
(Permission to find scores) Revise the preceding exercise so that the
findScore method returns -1 if permission is false. Add a another
method named getPermission(String name) that returns 1, 0, or -1. The
method returns 1 if the student is in the Scores table and permission
is true, 0 if the student is in the Scores table and permission is
false, and -1 if the student is not in the Scores table.

45.3*
(Compute loan) You can compute a loan payment for a loan with the
specified amount, number of years, and annual interest rate. Write a
Web service with two remote methods for computing monthly payment and
total payment. Write a client program that prompts the user to enter
loan amount, number of years, and annual interest rate.

45.4*
(Web service visit count) Write a Web service with a method named
getCount() that returns the number of the times this method has been
invoked from a client. Use a session to store the count variable.

26

45.5*
(Quiz) The user needs to answer all five questions before clicking the
Submit button in the Quiz application in §45.6, Web Service Session
Tracking. A runtime error will occur if a radio button is not checked.
Fix this problem.

