
Computer Algorithms

Lecture 1: Introduction – Ch 1

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Course Description
This course introduces students to the analysis and design of computer
algorithms. Topics covered include problem types, algorithm performance
analysis and limitations, algorithm design techniques such as: brute force,
decrease and conquer, divide and conquer, Transform and conquer, dynamic
programming, greedy techniques, and iterative techniques.

2

Course learning objectives
1	 Analysis: The ability to analyse algorithmic efficiency
via different Design Techniques
2	 Design: The ability to create algorithms via different
design techniques

3

Course Outline
1. Introduction – Ch 1
2. Fundamentals of the Analysis of Algorithm Efficiency – Ch2
3. Brute Force and Exhaustive Search – Ch3
4. Decrease-and-Conquer – Ch4
5. Divide-and-Conquer – Ch5
6. Transform-and-Conquer – Ch6
7. Midterm
8. Space and Time Trade-Offs – Ch7
9. Dynamic Programming – Ch8
10. Greedy Technique – Ch9
11. Iterative Improvement – Ch10
12. Limitations of Algorithm Power – Ch11
13. Coping with the Limitations of Algorithm Power – Ch12
14. Revision
15. Presentations

4

Grading Scheme
20% - Midterm Exam – Week 7
15% - Lecture & Lab Quizzes

5% Section Submissions
10% - Assignments

10% - Case Study– Week 12
40% - Final Exam – will be announced

Grading scale
  
A+ = 95%, ∝) A = [90%, 95%)  
A- = [85%, 90%) B+ = [80%, 85%)  
B = [75%, 80%) B- = [70%, 75%) 
C= [65%, 70%) C = [60%, 65%) 
C-= [55%, 60%) D = [50%, 55%) 

5

Textbook & References

Anany Levitin, Introduction to the Design and
Analysis of Algoritms, 3rd Edition, Pearson, 2012.

References
Steven S. Skiena. The Algorithm Design Manual. Springer-Verlag, 1998

6

Rules
All communications through: http://moodle.manalhelal.com/course/view.php?id=6, please subscribe
today!

Attendance

	 Attendance is a must in all CCIT courses. A consecutive 3 absences will result in course forced
withdrawal. 2 sections/labs count for 1 lecture. For example, a student absent for 2 lectures & 3 labs will
be withdrawn. Medical and other excuses should be submitted to the department.

Submissions

	 Assignments and all graded activities are given codes, such as: ass1, ass2, proj1, exer1, … etc, and
announced allowed submission file extensions, and due dates. All submissions should be done
electronically using moodle website. Files submitted should be named “code_StudentID.ext”, where code
is the graded activity code, StudentID is your numerical AASTMT student ID, and ext is the announced
allowed extension for each graded activity. If assignment 1 is coded as “ass1” and the allowed file
extension is pdf, and your ID is 111238090, then the submitted file name should be:
“ass1_111238090.pdf ”. Due dates are final and there is a 10% reduction in the earned grade for each
late day after the due date. After 5 days of the due date, no submissions are accepted, and model answer
will be published on the website.

Academic Honesty

	 First academic honesty preaching will result in a disciplinary action ranging from zero mark in the
graded activity and up to forced course withdrawal or forced academy dismissal, as regulated by
AASTMT policies. This includes copied assignments/projects, exam cheating of all types, inadequate
individual participation in teamwork – more on course Description Document, and College and
Academy Hand-Books.

7

Studying Plan & Teaching Method
•Every lecture is followed with exercise problems to be attempted in the Section and uploaded on moodle.
5% of the total course marks are for these section submissions. The section exercises will help deepen
your understanding and students are expected to do their best to attempt them independently.

•There are 4 assignments that will vary from analysis, design and programming requirements.

•Asking questions are encouraged in this preference order:
•In Moodle to have the question and the answer available to everyone in written form to get back to
while studying.
•In office hours,
•then finally in lecture and section times to avoid lengthy interruptions and delay in course contents.
•Please don’t accumulate material without full understanding and use the lecturer and the TA as much
as you can to do your best.

•Understanding theoretical concepts in lectures, attempting and submitting all section problems, doing all
assignments, and engaging in a good case study, are the methods to study for the lecture/lab quizzes,
midterm and final exams.

8

Lecture Learning Objectives

1. Define What “Algorithm” means.

2. Understand the Fundamentals of Algorithmic
Problem Solving.

3. Know Important Problem Types

4. Revise Fundamental Data Structures.

9

What is an algorithm?
An algorithm is a sequence of unambiguous instructions
for solving a problem, i.e., for obtaining a required
output for any legitimate input in a finite amount of
time.  
 

“computer”

problem

algorithm

input output

10

Greatest Common Divisor Algorithms
We will study 3 algorithms for GCD computation to
illustrate the following:
•The non-ambiguity requirement for each step of an
algorithm cannot be com- promised.
•The range of inputs for which an algorithm works has to
be specified carefully.
•The same algorithm can be represented in several different
ways.
•There may exist several algorithms for solving the same
problem.
•Algorithms for the same problem can be based on very
different ideas and can solve the problem with dramatically
different speeds.

11

Alg 1: Euclid’s Algorithm
Problem: Find gcd(m,n), the greatest common divisor of two
nonnegative, not both zero integers m and n
Examples: gcd(60,24) = 12, gcd(60,0) = 60, gcd(0,0) = ?

Euclid’s algorithm is based on repeated application of
equality

gcd(m,n) = gcd(n, m mod n)
until the second number becomes 0, which makes the
problem
trivial.

Example: gcd(60,24) = gcd(24,12) = gcd(12,0) = 12

12

Two descriptions of Euclid’s algorithm

Step 1 If n = 0, return m and stop; otherwise go to Step 2
Step 2 Divide m by n and assign the value of the remainder to r
Step 3 Assign the value of n to m and the value of r to n. Go to
Step 1.
	
ALGORITHM Euclid(m, n)
//Computes gcd(m, n) by Euclid’s algorithm
//Input: Two nonnegative, not-both-zero integers m and n
//Output: Greatest common divisor of m and n
while n ≠ 0 do
	 r ← m mod n
 m← n
 n ← r
return m

13

Alg 2: Minimum Iterating down to Zero

Consecutive integer checking algorithm
Step 1 Assign the value of min{m,n} to t
Step 2 Divide m by t. If the remainder is 0, go to
Step 3; otherwise, go to Step 4
Step 3 Divide n by t. If the remainder is 0, return t
and stop; otherwise, go to Step 4
Step 4 Decrease t by 1 and go to Step 2

14

Alg 3: Using Primes
Middle-school procedure:
Step 1 Find the prime factorization of m
Step 2 Find the prime factorization of n
Step 3 Find all the common prime factors
Step 4 Compute the product of all the common
prime factors and return it as gcd(m,n)

Is this an algorithm?

15

60 = 2 . 2 . 3 . 5

24 = 2 . 2 . 2 . 3
 gcd(60, 24) = 2 . 2 . 3 = 12.

Sieve of Eratosthenes
n = 25

p.p < n
P <= √n

16

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 2 3 5 7 9 11 13 15 17 19 21 23 25

3 2 3 5 7 11 13 17 19 23 25

5 2 3 5 7 11 13 17 19 23

Sieve of Eratosthenes
Input: Integer n ≥ 2
Output: List of primes less than or equal to n
for p ← 2 to n do A[p] ← p
for p ← 2 to ⎣√n⎦ do
	 if A[p] ≠ 0 	 //p hasn’t been previously eliminated from the list 
 	 j ← p* p
 while j ≤ n do
 A[j] ← 0 //mark element as eliminated 	
 j ← j + p
//copy the remaining elements of A to array L of the primes
i←0
for p ← 2 to n do
	 if A[p] ≠ 0
	 	 L[i]←A[p]
	 	 i←i+1
 return L
Example: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

17

Exercises 1.1:

1. Do some research on al-Khorezmi (also al-
Khwarizmi), the man from whose name the word
“algorithm” is derived. In particular, you should
learn what the origins of the words “algorithm” and
“algebra” have in common.

EXCERCISE

18

Why study algorithms?
• We can consider algorithms to be procedural

solutions to problems.
• These solutions are not answers but specific

instructions for getting answers.
• Theoretical importance
• the core of computer science

• Practical importance
• A practitioner’s toolkit of known algorithms
• Framework for designing and analyzing algorithms for new

problems
19

Algorithm
Design &
Analysis

Steps
Prove that gcd(m, n) = gcd(n, m mod n)

Design Technique,
Data Structures

Time Efficiency & Space Efficiency,
simplicity, generality

20

Two main issues related to algorithms

1. How to design algorithms

2. How to analyze algorithm efficiency
o How good is the algorithm?
		 	 * time efficiency & space efficiency
o Does there exist a better algorithm?
		 	 * lower bounds & optimality

21

Algorithm Design Techniques/Strategies

22

Brute force Greedy approach

Divide and conquer Dynamic programming

Decrease and conquer Iterative improvement

Transform and conquer  Backtracking  

Space and time trade-offs Branch and bound

EXCERCISE
Exercises 1.2:

2. New World puzzle There are four people who want to cross a
rickety bridge; they all begin on the same side. You have 17
minutes to get them all across to the other side. It is night, and
they have one flashlight. A maximum of two people can cross the
bridge at one time. Any party that crosses, either one or two
people, must have the flashlight with them. The flashlight must be
walked back and forth; it cannot be thrown, for example. Person 1
takes 1 minute to cross the bridge, person 2 takes 2 minutes,
person 3 takes 5 minutes, and person 4 takes 10 minutes. A pair
must walk together at the rate of the slower person’s pace.

23

Important Problem Types - I
• Sorting

o Key, numeric or alphabetical
o Stable and in-place algorithms
o Best Algorithm is using n log2 n comparisons

• Searching
o Search Key
o Sequential or Binary search algorithms

• String Processing
o String matching

• Graph Problems
o Traveling Salesman Problem (TSP), Graph-Colouring Problem
o Applications: transportation, communication, social and economic

networks, project scheduling, and games

24

Important Problem Types - II
• Combinatorial Problems

o Grow fast with problem size.
o No known algorithms as believe, with no proof.
o The shortest-path problem is an exception combinatorial problem with known

algorithms.
• Geometric Problems

o Points, Lines, and Polygons.
o Applications: Computer Graphics, Robotics, and Tomography.
o Problems: closest-pair, convex-hull

• Numerical Problems
o Mathematical objects of continuous nature: solving equations and systems of

equations, computing definite integrals, evaluating functions, … etc.
o Approximation because of real numbers causing an accumulation of round-off

error.
o Applications domains: Scientific and Engineering applications, and now business

applications.

25

EXCERCISEExercises 1.3:

1.Consider the algorithm for the sorting problem that sorts an array by counting, for each of its elements, the
number of smaller elements and then uses this information to put the element in its appropriate position in the
sorted array:

ALGORITHM ComparisonCountingSort(A[0..n − 1])
//Sorts an array by comparison counting
//Input: Array A[0..n − 1] of orderable values
//Output: Array S[0..n − 1] of A’s elements sorted
// in nondecreasing order 

for i ← 0 to n − 1 do
	 	 Count[i]←0
	 for i ← 0 to n − 2 do
	 	 for j ← i + 1 to n − 1 do
	 	 	 if A[i] < A[j]
	 	 	 	 Count[j]←Count[j]+1
	 	 	 else
	 	 	 	 Count[i] ← Count[i] + 1
	 for i ← 0 to n − 1 do
	 	 S[Count[i]]←A[i]
	 return S

a. Apply this algorithm to sorting the list:  
 60, 35, 81, 98, 14, 47. 

b. Is this algorithm stable?
c. Is it in-place?

26

Fundamental Data Structures

27

Linear Data Structures List, Array, String, Linked List

Linear Abstract Data
Structures

Stack, Queue, Priority Queue,
Sets

Non-Linear Data
Structures

Graph, Tree, Dictionary or
Tuples

Graphs

V ={a,b,c,d,e,f}
E={(a,c),(a,d),(b,c),(b,f),(c,e),(d,e),(e,f)}

V ={a,b,c,d,e,f}
E={(a,c),(b,c),(b,f),(c,e),(d,a),(d,e),(e,c),(e,f)}

FIGURE 1.7 (a) Adjacency matrix and (b) adjacency lists of the graph in Figure 1.6a.

FIGURE 1.8 (a) Weighted graph. (b) Its weight matrix. (c) Its adjacency lists.
Graph that is not connected.

28

Trees (Connected Acyclic Graph)

Tree Forest Free tree transformation into a rooted tree.

Binary tree. Binary search tree

|E|=|V|−1 ⌊log
2

n⌋ ≤ h ≤ n−1

29

Tree Representation

First child–next sibling representation of the tree

Standard implementation of the binary search tree

30

Sets
• Notation: A={x|x ∈ N, x mod 3 = 1}
	 	N = {1,2,3,...}
• Union: A∪B
• Intersection: A∩B
• Complement: Ā
• Cardinality: |A|
• Cartesian Product:
	 	A×B = { (x,y) | x∈A and y∈B}
• Set Representation: bit vector
Ex: U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and S ⊂ U = {2, 3, 5, 7}, then

S is represented by bit String = 011010100

Any order, and repetition is
alright in sets, but not in
sequences or tuples

31

Sets Examples

• L<6 = { x | x ∈ N , x<6 }
• Lprime = {x| x ∈ N, x is prime}
• L<6 ∩ Lprime = {2,3,5}
• ∑ = {0,1}
• ∑×∑= {(0,0), (0,1), (1,0), (1,1)}
• Formal: A∩B = { x | x∈A and x∈B}

32

Power Set

• “Set of all subsets”
• Formal: P (A) = { S | S⊆ A}
• Example: A = {x,y}
• P (A) = { {} , {x} , {y} , {x,y} }
• Power set
• Note the different sizes: for finite sets
• |P (A)| = 2|A|

• |A×A| = |A|2

33

Dictionaries
• A set that implement the functions: search/add/

delete items and require balance between the
efficiency of the three operations.

• Represented as arrays, linked lists, hash tables, and
balanced search trees.

• Set union problem is partitioning n-element set into
a collection of disjoint subsets.

34

Next
Read Chapter 2 “Fundamentals of the Analysis of

Algorithm Efficiency” to prepare for the discussions
in lecture.

35

