
Computer Algorithms

Lecture 2: Fundamentals of the Analysis of
Algorithm Efficiency – Ch 2

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Explain what is meant by “best”, “average”, and “worst” case behavior of

an algorithm
2. In the context of specific algorithms, identify the characteristics of data

and/or other conditions or assumptions that lead to different behaviors
3. Determine informally the time and space complexity of simple algorithms.
4. Understand the formal definition of big O
5. Explain the use of big omega, big theta, and little o notation to describe

the amount of work done by an algorithm.
6. List and contrast standard complexity classes
7. Use recurrence relations to determine the time complexity of recursively

defined algorithms
8. Perform empirical studies to validate hypotheses about runtime stemming

from mathematical analysis. Run algorithms on input of various sizes and
compare performance

2

3

Analysis of algorithms
Issues:

correctness
time efficiency
space efficiency
optimality

Approaches:
theoretical analysis
empirical analysis

4

Theoretical Analysis of Time Efficiency
Time efficiency is analyzed by determining the number

of repetitions of the basic operation as a function of
input size

Basic operation: the operation that contributes most
towards the running time of the algorithm

running time execution time
for basic operation

Number of times
basic operation is
executed

input size

 T(n) ≈ copC(n)

5

Input Size and Basic Operation Examples

Problem Input size measure Basic operation

Searching for key in a
list of n items

Number of list’s items, i.e.
n Key comparison

Multiplication of two
matrices

Matrix dimensions or total
number of elements

Multiplication of two
numbers

Checking primality of a
given integer n

n’size = number of digits
(in binary representation) Division

Typical graph problem #vertices and/or edges Visiting a vertex or
traversing an edge

Example
If C(n) = 1 n(n − 1)

What if we double the input size n?

7

Empirical Analysis of Time Efficiency

• Select a specific (typical) sample of inputs

• Use physical unit of time (e.g., milliseconds)
 or
• Count actual number of basic operation’s

executions

• Analyze the empirical data

8

Values of some important functions as n → ∞

9

Best-case, Average-case, Worst-case
• For some algorithms efficiency depends on form of input:

o Worst case: Cworst(n) – maximum over inputs of size n

o Best case: Cbest(n) – minimum over inputs of size n

o Average case: Cavg(n) – “average” over inputs of size n

• Number of times the basic operation will be executed on typical
input, NOT the average of worst and best case

• Expected number of basic operations considered as a random
variable under some assumption about the probability distribution
of all possible inputs

Worst case

Best case

10

Example: Sequential search

Average case

If p = 1, Cavg = (n+1)/2

11

Types of Formulas For Basic Operation’s Count

Exact formula
 e.g., C(n) = n(n-1)/2

Formula indicating order of growth with specific
multiplicative constant

 e.g., C(n) ≈ 0.5 n2

Formula indicating order of growth with unknown
multiplicative constant

 e.g., C(n) ≈ cn2

Sum the natural numbers 1 to n.
Arithmetic series.
We know that SUM = 1+2+...+n = n(n+1)/2.

Which algorithm is faster A1 or A2?

Algorithm Execution-Time Analysis

A1
Function SUM(n: ℕ) : ℕ
 result := n(n+1)/2
 return result

A2
Function SUM(n: ℕ) : ℕ
 result := 0
 for i:=1 to n do
 result := result + i
 end for
 return result

Algorithm A1
A1 computes the result in a constant number of steps at runtime.
What is the execution time T(A1) for A1?

T(A1) = β1 (β1 is some constant)
T(A1) does not depend on the input.

If input is 1, 10, 100, etc. T(A1) will not change (significantly).

Algorithm A2
A2 computes the result in a variable number of steps at runtime

depending on input size.
What is the time T(A2) for A2?

T(A2) = α2n + β2 (α2, β2 are some constants)
T(A2) depends on the input size

If input is 1, 10, 100, etc. T(A2) will change.

Algorithm Execution-Time Analysis

Which of A1 and A2 is faster?
! T(A1) = β1
! T(A2) = α2n + β2

Algorithm Execution-Time Analysis

When is this the case? When is this the case?

We say that A1 has a constant growth.
Its execution time does not depend on the input value/size.
T(A1) = β1

We say that A2 has a linear growth in terms of the input.
Its execution time grows as a linear function in terms of the input

value/size.
T(A2) = α2n + β2

A1 is more efficient than A2.
When input is small, A2 might be more efficient.

Analysis of algorithms when input is small is generally not interesting, as they
spend most of the time in these cases in start-up code.
When input is large, A1 is more efficient.

We are interested in the cases when input is large, also called as the difficult
instances.

So A1 is more efficient than A2.

Algorithm Execution-Time Analysis

Exercise
2.1.1. For each of the following algorithms, indicate (i) a

natural size metric for its inputs, (ii) its basic operation,
and (iii) whether the basic operation count can be
different for inputs of the same size:

a. Computing the sum of n numbers
b. Computing n!
c. Finding the largest element in a list of n numbers
d. Euclid’s algorithm
e. Sieve of Eratosthenes
f. Pen-and-pencil algorithm for multiplying two n-digit

decimal integers

17

Order of growth
Most important: Order of growth within a constant

multiple as n→∞

Example:
How much faster will algorithm run on computer that is twice as

fast?
How much longer does it take to solve problem of double input

size?

Assume algorithms A1 and A2 with growth functions f and g
respectively.

We say that “f grows no faster than g in the limit” if:
O(g(n)) = {f(n)|∃c∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n))}

Written as: f(n) ∈ O(g(n))
Read as: f is “big Oh of” g
Also: f is “asymptotically dominated by” g
Also: g is an upper bound on f

Asymptotic Analysis – Big Oh

Asymptotic Analysis – Big Oh

Let f(n)=3n2+4n+5, let g(n)=n2

Is f(n)=O(g(n))?
i.e., is 3n2+4n+5 = O(n2)

Let’s prove it.
! f(n)=O(g(n)) ⇔∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n))

!Can we find c, n0 such that the above equivalence is correct?
! We know that: ∀n≥1: 3n2+4n+5 ≤ 3n2+4n2+5n2

! i.e., ∀n≥1: 3n2+4n+5 ≤ 12n2

! i.e., n0=1, c=12
More examples:

3n2+4n+5 = O(n2)
3n2+4n+5 = O(n3)
3n2+4n+5 ≠ O(n)

Example – Big Oh

Big Oh notation
f(n) = O(g(n))
f(n) is big Oh of g(n)
f(n) grows no faster than g(n)
f(n)= O(g(n)) ⇔∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n))

Big Omega notation
f(n) = Ω(g(n))
f(n) is big Omega of g(n)
f(n) grows no slower than g(n)
Ω(g(n)) = {f(n)|∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≥c.g(n))}

Relation
f(n) = O(g(n)) ⇔ g(n) = Ω(f(n))

More examples:
3n2+4n+5 = Ω(n2)
3n2+4n+5 ≠ Ω(n3)
3n2+4n+5 = Ω(n)

Asymptotic Analysis – Big Omega

Asymptotic Analysis – Big Omega

Big Theta notation
f(n) = Θ(g(n))
f(n) is big Theta of f(n)
f(n) grows as the same rate as g(n)
f(n)= Θ(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)=Ω(g(n)))
Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

Asymptotic Analysis – Big Theta

Big Theta notation
f(n) = Θ(g(n))
f(n) is big Theta of g(n)
f(n) grows as the same rate as g(n)
f(n)= Θ(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)=Ω(g(n)))
Θ(g(n)) = O(g(n)) ∩ Ω(g(n))
f(n)= Θ(g(n)) ⇔∃c1∈ℝ+, ∃c2∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒ c1.g(n)≤f(n) ≤c2.g(n))

More examples:
3n2+4n+5 = Θ(n2)
3n2+4n+5 ≠ Θ(n3)
3n2+4n+5 ≠ Θ(n)

Asymptotic Analysis – Big Theta

Asymptotic Analysis – Big Theta

Little Oh notation
f(n) = o(g(n))
f(n) is little Oh of g(n)
f(n) grows strictly slower than g(n)
f(n)= o(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)≠Θ(g(n)))

f(n)=o(g(n)) ⇔∀c∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒f(n)<c.g(n))

More examples:
3n2+4n+5 ≠ o(n2)
3n2+4n+5 = o(n3)
3n2+4n+5 ≠ o(n)

Asymptotic Analysis – Little Oh

Little Omega notation
f(n) = ω(g(n))
f(n) is little Omega of g(n)
f(n) grows strictly faster than g(n)
f(n)= ω(g(n)) ⇔(f(n) = Ω(g(n)) ∧f(n)≠Θ(g(n)))

f(n)= ω(g(n)) ⇔∀c∈ℝ+, ∃n0 ∈ℕ
+·(∀n∈ℕ·n≥n0 ⇒f(n)> c.g(n))

More examples:
3n2+4n+5 ≠ ω(n2)
3n2+4n+5 ≠ ω(n3)
3n2+4n+5 = ω(n)

Asymptotic Analysis – Little Omega

We have seen notation that we can use to describe the
growth of a function.
Big Oh
Big Omega
Big Theta
Little Oh
Little Omega

Instead of dealing with complex functions e.g., we just
look at the higher-order terms and drop constants.

For example:
5n4 + 2n3 + 3n2 + 4

Asymptotic Analysis – Summary

We have seen notation that we can use to describe the
growth of a function.
Big Oh
Big Omega
Big Theta
Little Oh
Little Omega

Instead of dealing with complex functions e.g., we just
look at the higher-order terms and drop constants.

For example:
5n4 + 2n3 + 3n2 + 4 = Θ(n4).

Asymptotic Analysis – Summary

30

Some properties of asymptotic order of growth

f(n) ∈ O(f(n)) 

f(n) ∈ O(g(n)) iff g(n) ∈Ω(f(n))  

If f (n) ∈ O(g (n)) and g(n) ∈ O(h(n)) , then f(n) ∈ O(h(n))  
 
Note similarity with a ≤ b 

If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) , then
 	 f1(n) + f2(n) ∈ O(max{g1(n), g2(n)})

31

Establishing order of growth using limits

lim T(n)/g(n) =

 0 order of growth of T(n) < order of growth of g(n)

c > 0 order of growth of T(n) = order of growth of g(n)

 ∞ order of growth of T(n) > order of growth of g(n)

Example:

n→∞

t(n) ∈ O(g(n))

t(n) ∈ Θ (g(n))

t(n) ∈ Ω (g(n))

32

L’Hôpital’s rule and Stirling’s formula
L’Hôpital’s rule: If limn→∞ f(n) = limn→∞ g(n) = ∞

and the derivatives f´, g´ exist, then	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

Stirling’s formula: n! ≈ (2πn)1/2 (n/e)n

f(n)
g(n)lim

n→∞
=

f ´(n)
g ´(n)lim

n→∞

Example:

Example:

33

Orders of growth of some important functions

All logarithmic functions loga n belong to the same class  

Θ(log n) no matter what the logarithm’s base a > 1 is  

All polynomials of the same degree k belong to the same class:

aknk + ak-1nk-1 + … + a0 ∈ Θ(nk)  
 

Exponential functions an have different orders of growth for
different a’s  

order log n < order nα (α>0) < order an < order n! < order n	

34

Basic Asymptotic Efficiency Classes
1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! Factorial

∞ Incomputable

35

Time Efficiency of Non-Recursive Algorithms

General Plan for Analysis:

1.Decide on parameter n indicating input size

2.Identify algorithm’s basic operation

3.Determine worst, average, and best cases for input of size n

1.Set up a sum for the number of times the basic operation is
executed

2.Simplify the sum using standard formulas and rules (see
Appendix A)

36

Useful summation formulas and rules
Σl≤i≤u1 = 1+1+ … +1 = u - l + 1
In particular, Σl≤i≤n1 = n - 1 + 1 = n ∈ Θ(n)

Σ1≤i≤n i = 1+2+ … +n = n(n+1)/2 ≈ n2/2 ∈ Θ(n2)

Σ1≤i≤n i
2 = 12+22+ … +n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)

Σ0≤i≤n a
i = 1 + a + … + an = (an+1 - 1)/(a - 1) for any a ≠ 1

In particular, Σ0≤i≤n 2
i = 20 + 21+…+ 2n = 2n+1 - 1 ∈ Θ(2n)

Σ(ai ± bi) = Σai ± Σbi

 Σcai = cΣai

 Σl≤i≤uai = Σl≤i≤mai + Σm+1≤i≤uai

37

Example 1: Maximum Element

38

Example 2: Element Uniqueness

39

Example 3: Matrix multiplication

40

Example 4: Counting Binary Digits

It cannot be investigated the way the previous
examples are.

O()

41

Plan for Analysis of Recursive Algorithms
• Decide on a parameter indicating an input’s size. 

• Identify the algorithm’s basic operation.  

• Check whether the number of times the basic op. is
executed may vary on different inputs of the same size. (If
it may, the worst, average, and best cases must be
investigated separately.) 

• Set up a recurrence relation with an appropriate initial
condition expressing the number of times the basic op. is
executed.  

• Solve the recurrence (or, at the very least, establish its
solution’s order of growth) by backward substitutions or
another method.

42

Example 1: Recursive evaluation of n!
Definition: n ! = 1 ⋅ 2 ⋅ … ⋅ (n-1) ⋅ n for n ≥ 1 and 0! = 1

Recursive definition of n!: F(n) = F(n-1) ⋅ n for n ≥ 1 and
 F(0) = 1

Size:
Basic operation:
Recurrence relation:

43

Solving the recurrence for M(n)

M(n) = M(n-1) + 1, M(0) = 0

44

Example 2: The Tower of Hanoi Puzzle

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

1

2

3

Recurrence for number of moves:

Tower of Hanoi Solution
Step 1: Move disks 4 and smaller from peg A (source) to peg C

(spare), using peg B (dest) as a spare. How do we do this? By
recursively using the same procedure. After finishing this, we'll
have all the disks smaller than disk 4 on peg C.

Step 2: Now, with all the smaller disks on the spare peg, we can
move disk 5 from peg A (source) to peg B (dest).

Step 3: Finally, we want disks 4 and smaller moved from peg C
(spare) to peg B (dest). We do this recursively using the same
procedure again. After we finish, we'll have disks 5 and smaller
all on dest.

Tower of Hanoi Recursive Algorithm

FUNCTION MoveTower(disk, source, dest, spare):
IF disk == 0, THEN:
 move disk from source to dest
ELSE:
 MoveTower(disk - 1, source, spare, dest) // Step 1 above
 move disk from source to dest // Step 2 above
 MoveTower(disk - 1, spare, dest, source) // Step 3 above
END IF

47

Tree of Calls for the Tower of Hanoi Puzzle

48

Solving Recurrence for Number of Moves

M(n) = 2M(n-1) + 1, M(1) = 1

…

…

