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Lecture Learning Objectives
1. Explain what is meant by “best”, “average”, and “worst” case behavior of  

an algorithm 
2. In the context of  specific algorithms, identify the characteristics of  data 

and/or other conditions or assumptions that lead to different behaviors 
3. Determine informally the time and space complexity of  simple algorithms. 
4. Understand the formal definition of  big O 
5. Explain the use of  big omega, big theta, and little o notation to describe 

the amount of  work done by an algorithm. 
6. List and contrast standard complexity classes 
7. Use recurrence relations to determine the time complexity of  recursively 

defined algorithms 
8. Perform empirical studies to validate hypotheses about runtime stemming 

from mathematical analysis.  Run algorithms on input of  various sizes and 
compare performance
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Analysis of  algorithms
Issues: 

correctness 
time efficiency 
space efficiency 
optimality 

Approaches:  
theoretical analysis 
empirical analysis
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Theoretical Analysis of  Time Efficiency
Time efficiency is analyzed by determining the number 

of  repetitions of  the basic operation as a function of  
input size 

Basic operation: the operation that contributes most 
towards the running time of  the algorithm

running time execution time 
for basic operation

Number of  times 
basic operation is 
executed

input size

 T(n) ≈ copC(n)
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Input Size and Basic Operation Examples

Problem Input size measure Basic operation

Searching for key in a 
list of n items

Number of list’s items,  i.e. 
n Key comparison

Multiplication of two 
matrices

Matrix dimensions or total 
number of elements

Multiplication of two 
numbers

Checking primality of a 
given integer n

n’size = number of digits 
(in binary representation) Division

Typical graph problem #vertices and/or edges Visiting a vertex or 
traversing an edge



Example
If  C(n) = 1 n(n − 1)  

What if  we double the input size n?
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Empirical Analysis of  Time Efficiency

• Select a specific (typical) sample of  inputs 

• Use physical unit of  time (e.g.,  milliseconds) 
      or 
• Count actual number of  basic operation’s 

executions 

• Analyze the empirical data
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Values of  some important functions as n → ∞
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Best-case, Average-case, Worst-case
• For some algorithms efficiency depends on form of  input: 

o Worst case:    Cworst(n) – maximum over inputs of  size n 

o Best case:        Cbest(n) –  minimum over inputs of  size n 

o Average case:  Cavg(n) – “average” over inputs of  size n 

• Number of  times the basic operation will be executed on typical 
input, NOT the average of  worst and best case 

• Expected number of  basic operations considered as a random 
variable under some assumption about the probability distribution 
of  all possible inputs



Worst case 

Best case
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Example: Sequential search

Average case 

If  p = 1, Cavg = (n+1)/2
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Types of  Formulas For Basic Operation’s Count

Exact formula 
            e.g., C(n) = n(n-1)/2 

Formula indicating order of  growth with specific 
multiplicative constant 

            e.g., C(n) ≈ 0.5 n2 

Formula indicating order of  growth with unknown 
multiplicative constant 

            e.g., C(n) ≈ cn2



Sum the natural numbers 1 to n. 
Arithmetic series. 
We know that SUM = 1+2+...+n = n(n+1)/2. 

Which algorithm is faster A1 or A2?

Algorithm Execution-Time Analysis

A1 
Function SUM(n: ℕ) : ℕ 
    result := n(n+1)/2 
    return result 

A2 
Function SUM(n: ℕ) : ℕ 
    result := 0 
    for i:=1 to n do 
        result := result + i 
    end for 
    return result 



Algorithm A1 
A1 computes the result in a constant number of steps at runtime. 
What is the execution time T(A1) for A1? 

T(A1) = β1 (β1 is some constant) 
T(A1) does not depend on the input. 

If input is 1, 10, 100, etc. T(A1) will not change (significantly). 

Algorithm A2 
A2 computes the result in a variable number of steps at runtime 

depending on input size. 
What is the time T(A2) for A2? 

T(A2) = α2n + β2 (α2, β2 are some constants) 
T(A2) depends on the input size 

If input is 1, 10, 100, etc. T(A2) will change.

Algorithm Execution-Time Analysis



Which of A1 and A2 is faster? 
! T(A1) = β1 
! T(A2) = α2n + β2

Algorithm Execution-Time Analysis

When is this the case? When is this the case?



We say that A1 has a constant growth. 
Its execution time does not depend on the input value/size. 
T(A1) = β1 

We say that A2 has a linear growth in terms of the input. 
Its execution time grows as a linear function in terms of the input 

value/size. 
T(A2) = α2n + β2 

A1 is more efficient than A2. 
When input is small, A2 might be more efficient. 

Analysis of algorithms when input is small is generally not interesting, as they 
spend most of the time in these cases in start-up code. 
When input is large, A1 is more efficient. 

We are interested in the cases when input is large, also called as the difficult 
instances. 

So A1 is more efficient than A2.

Algorithm Execution-Time Analysis



Exercise
2.1.1. For each of  the following algorithms, indicate (i) a 

natural size metric for its inputs, (ii) its basic operation, 
and (iii) whether the basic operation count can be 
different for inputs of  the same size: 

a. Computing the sum of  n numbers 
b. Computing n! 
c. Finding the largest element in a list of  n numbers 
d. Euclid’s algorithm 
e. Sieve of  Eratosthenes 
f. Pen-and-pencil algorithm for multiplying two n-digit 

decimal integers
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Order of  growth 
Most important: Order of  growth within a constant 

multiple as n→∞ 

Example: 
How much faster will algorithm run on computer that is twice as 

fast? 
How much longer does it take to solve problem of  double input 

size?



Assume algorithms A1 and A2 with growth functions f and g 
respectively. 

We say that “f grows no faster than g in the limit” if: 
O(g(n)) = {f(n)|∃c∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n))} 

Written as: f(n) ∈ O(g(n)) 
Read as: f is “big Oh of” g 
Also: f is “asymptotically dominated by” g 
Also: g is an upper bound on f

Asymptotic Analysis – Big Oh



Asymptotic Analysis – Big Oh



Let f(n)=3n2+4n+5, let g(n)=n2 

Is f(n)=O(g(n))? 
i.e., is 3n2+4n+5 = O(n2) 

Let’s prove it. 
! f(n)=O(g(n)) ⇔∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n)) 

!Can we find c, n0 such that the above equivalence is correct? 
! We know that: ∀n≥1: 3n2+4n+5 ≤ 3n2+4n2+5n2 

! i.e., ∀n≥1: 3n2+4n+5 ≤ 12n2 

! i.e., n0=1, c=12 
More examples: 

3n2+4n+5 = O(n2) 
3n2+4n+5 = O(n3) 
3n2+4n+5 ≠ O(n)

Example – Big Oh



Big Oh notation 
f(n) = O(g(n)) 
f(n) is big Oh of g(n) 
f(n) grows no faster than g(n) 
f(n)= O(g(n)) ⇔∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≤c.g(n)) 

Big Omega notation 
f(n) = Ω(g(n)) 
f(n) is big Omega of g(n) 
f(n) grows no slower than g(n) 
Ω(g(n)) = {f(n)|∃c∈ℝ+, ∃n0 ∈ℕ

+·(∀n∈ℕ·n≥n0 ⇒f(n)≥c.g(n))} 

Relation 
f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)) 

More examples: 
3n2+4n+5 = Ω(n2) 
3n2+4n+5 ≠ Ω(n3) 
3n2+4n+5 = Ω(n)

Asymptotic Analysis – Big Omega



Asymptotic Analysis – Big Omega



Big Theta notation 
f(n) = Θ(g(n)) 
f(n) is big Theta of f(n) 
f(n) grows as the same rate as g(n) 
f(n)= Θ(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)=Ω(g(n))) 
Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

Asymptotic Analysis – Big Theta



Big Theta notation 
f(n) = Θ(g(n)) 
f(n) is big Theta of g(n) 
f(n) grows as the same rate as g(n) 
f(n)= Θ(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)=Ω(g(n))) 
Θ(g(n)) = O(g(n)) ∩ Ω(g(n)) 
f(n)= Θ(g(n)) ⇔∃c1∈ℝ+, ∃c2∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒ c1.g(n)≤f(n) ≤c2.g(n)) 

More examples: 
3n2+4n+5 = Θ(n2) 
3n2+4n+5 ≠ Θ(n3) 
3n2+4n+5 ≠ Θ(n)

Asymptotic Analysis – Big Theta



Asymptotic Analysis – Big Theta



Little Oh notation 
f(n) = o(g(n)) 
f(n) is little Oh of g(n) 
f(n) grows strictly slower than g(n) 
f(n)= o(g(n)) ⇔(f(n) = O(g(n)) ∧f(n)≠Θ(g(n))) 

f(n)=o(g(n)) ⇔∀c∈ℝ+, ∃n0 ∈ℕ+·(∀n∈ℕ·n≥n0 ⇒f(n)<c.g(n)) 

More examples: 
3n2+4n+5 ≠ o(n2) 
3n2+4n+5 = o(n3) 
3n2+4n+5 ≠ o(n)

Asymptotic Analysis – Little Oh



Little Omega notation 
f(n) = ω(g(n)) 
f(n) is little Omega of g(n) 
f(n) grows strictly faster than g(n) 
f(n)= ω(g(n)) ⇔(f(n) = Ω(g(n)) ∧f(n)≠Θ(g(n))) 

f(n)= ω(g(n)) ⇔∀c∈ℝ+, ∃n0 ∈ℕ
+·(∀n∈ℕ·n≥n0 ⇒f(n)> c.g(n)) 

More examples: 
3n2+4n+5 ≠ ω(n2) 
3n2+4n+5 ≠ ω(n3) 
3n2+4n+5 = ω(n)

Asymptotic Analysis – Little Omega



We have seen notation that we can use to describe the 
growth of a function. 
Big Oh 
Big Omega 
Big Theta 
Little Oh 
Little Omega 

Instead of dealing with complex functions e.g., we just 
look at the higher-order terms and drop constants. 

For example: 
5n4 + 2n3 + 3n2 + 4

Asymptotic Analysis – Summary



We have seen notation that we can use to describe the 
growth of a function. 
Big Oh 
Big Omega 
Big Theta 
Little Oh 
Little Omega 

Instead of dealing with complex functions e.g., we just 
look at the higher-order terms and drop constants. 

For example: 
5n4 + 2n3 + 3n2 + 4 = Θ(n4).

Asymptotic Analysis – Summary



30

Some properties of  asymptotic order of  growth

f(n) ∈ O(f(n)) 

f(n) ∈ O(g(n)) iff  g(n) ∈Ω(f(n))  

If  f (n) ∈ O(g (n)) and g(n) ∈ O(h(n)) , then f(n) ∈ O(h(n))  
 
Note similarity with a ≤ b 

If  f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) , then 
                	  f1(n) + f2(n) ∈ O(max{g1(n), g2(n)}) 
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Establishing order of  growth using limits

lim T(n)/g(n) = 

    0    order of  growth of  T(n)  <  order of  growth of  g(n) 

c > 0  order of  growth of  T(n) = order of  growth of  g(n) 

 ∞    order of  growth of  T(n) >  order of  growth of  g(n) 

Example: 

n→∞

t(n) ∈ O(g(n))   

t(n) ∈ Θ (g(n))

t(n) ∈ Ω (g(n))  
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L’Hôpital’s rule and Stirling’s formula
L’Hôpital’s rule:  If  limn→∞ f(n) = limn→∞ g(n) = ∞  

and the derivatives f´, g´ exist, then	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	  

Stirling’s formula:  n! ≈ (2πn)1/2 (n/e)n

f(n) 
g(n)lim 

n→∞
= 

f  ´(n) 
g ´(n)lim 

n→∞

Example:

Example:
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Orders of  growth of  some important functions

All logarithmic functions loga n belong to the same class  

Θ(log n) no matter what the logarithm’s base a > 1 is  

All polynomials of  the same degree k belong to the same class:  

aknk + ak-1nk-1 + … + a0 ∈ Θ(nk)  
 

Exponential functions an have different orders of  growth for 
different a’s  

order log n  < order nα  (α>0)  < order an  < order n! < order n	
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Basic Asymptotic Efficiency Classes
1 constant

log n logarithmic

n linear

n log n n-log-n or linearithmic

n2 quadratic

n3 cubic

2n exponential

n! Factorial

∞ Incomputable
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Time Efficiency of  Non-Recursive Algorithms

General Plan for Analysis: 
  

1.Decide on parameter n indicating input size 

2.Identify algorithm’s basic operation 

3.Determine worst, average, and best cases for input of  size n 

1.Set up a sum for the number of  times the basic operation is 
executed 

2.Simplify the sum using standard formulas and rules (see 
Appendix A)                    
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Useful summation formulas and rules
Σl≤i≤u1 = 1+1+ … +1 = u - l + 1 
In particular, Σl≤i≤n1 = n - 1 + 1 = n ∈ Θ(n)  

Σ1≤i≤n i = 1+2+ … +n = n(n+1)/2 ≈  n2/2 ∈ Θ(n2)  

Σ1≤i≤n i
2 = 12+22+ … +n2 = n(n+1)(2n+1)/6 ≈ n3/3 ∈ Θ(n3)  

Σ0≤i≤n a
i  = 1 + a  + … + an  = (an+1 - 1)/(a - 1)  for any a ≠ 1 

In particular, Σ0≤i≤n 2
i  = 20 + 21+…+ 2n  = 2n+1 - 1 ∈ Θ(2n )  

Σ(ai ± bi ) = Σai ± Σbi         

 Σcai  = cΣai       

 Σl≤i≤uai  = Σl≤i≤mai + Σm+1≤i≤uai 
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Example 1: Maximum Element
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Example 2: Element Uniqueness
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Example 3: Matrix multiplication
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Example 4: Counting Binary Digits  

It cannot be investigated the way the previous 
examples are. 

O( )
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Plan for Analysis of  Recursive Algorithms
• Decide on  a parameter indicating an input’s size. 

• Identify the algorithm’s basic operation.  

• Check whether the number of  times the basic op. is 
executed may vary on different inputs of  the same size.  (If  
it may, the worst, average, and best cases must be 
investigated separately.) 

• Set up a recurrence relation with an appropriate initial 
condition expressing the number of  times the basic op. is 
executed.  

• Solve the recurrence (or, at the very least, establish its 
solution’s order of  growth) by backward substitutions or 
another method.
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Example 1: Recursive evaluation of  n!
Definition: n ! = 1 ⋅ 2 ⋅ … ⋅ (n-1) ⋅ n  for n ≥ 1  and  0! = 1 

Recursive definition of  n!:  F(n) = F(n-1) ⋅ n  for n ≥ 1  and   
                                          F(0) = 1 

Size: 
Basic operation: 
Recurrence relation:
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Solving the recurrence for M(n)

M(n) = M(n-1) + 1,  M(0) = 0
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Example 2: The Tower of  Hanoi Puzzle

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

1

2

3

Recurrence for number of  moves: 



Tower of  Hanoi Solution
Step 1: Move disks 4 and smaller from peg A (source) to peg C 

(spare), using peg B (dest) as a spare. How do we do this? By 
recursively using the same procedure. After finishing this, we'll 
have all the disks smaller than disk 4 on peg C. 

Step 2: Now, with all the smaller disks on the spare peg, we can 
move disk 5 from peg A (source) to peg B (dest). 

Step 3: Finally, we want disks 4 and smaller moved from peg C 
(spare) to peg B (dest). We do this recursively using the same 
procedure again. After we finish, we'll have disks 5 and smaller 
all on dest.



Tower of  Hanoi Recursive Algorithm

FUNCTION MoveTower(disk, source, dest, spare): 
IF disk == 0, THEN: 
    move disk from source to dest 
ELSE: 
    MoveTower(disk - 1, source, spare, dest)   // Step 1 above 
    move disk from source to dest                 // Step 2 above 
    MoveTower(disk - 1, spare, dest, source) // Step 3 above 
END IF
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Tree of  Calls for the Tower of  Hanoi Puzzle
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Solving Recurrence for Number of  Moves

M(n) = 2M(n-1) + 1,  M(1) = 1 

… 

…


