
Computer Algorithms

Lecture 3: Brute Force &Exhaustive Search – Ch 3

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Brute Force algorithm design strategy to

solve an appropriate problem such as sorting,
searching, string matching, closest-pair, and/or
convex-hull.

Brute Force
A straightforward approach, usually based directly on

the problem’s statement and definitions of the
concepts involved

Examples:
1. Computing an (a > 0, n a nonnegative integer)
2. Computing n!
3. Multiplying two matrices
4. Searching for a key of a given value in a list

3

Brute-Force Sorting Algorithm
Selection Sort Scan the array to find its smallest element and

swap it with the first element. Then, starting with the
second element, scan the elements to the right of it to find
the smallest among them and swap it with the second
elements. Generally, on pass i (0 ≤ i ≤ n-2), find the
smallest element in A[i..n-1] and swap it with A[i]:  
 
 A[0] ≤ . . . ≤ A[i-1] | A[i], . . . , A[min], . . ., A[n-1]

 	 	 	 	 	 	 	 in their final positions

Example: 7 3 2 5

4

Analysis of Selection Sort

5

Time efficiency:

Space efficiency:

Stability:

Bubble Sort

6

Sequential Search Improvement

Brute-Force String Matching
pattern: a string of m characters to search for
text: a (longer) string of n characters to search in
problem: find a substring in the text that matches the pattern

Brute-force algorithm
Step 1: Align pattern at beginning of text
Step 2: Moving from left to right, compare each character of

pattern to the corresponding character in text until all characters
are found to match (successful search); or a mismatch is detected

Step 3: While pattern is not found and the text is not yet
exhausted, realign pattern one position to the right and repeat
Step 2

8

Examples of Brute-Force String Matching

Find i—the index of the leftmost character of the first
matching substring in the text, such that: 
 ti =p0,...,ti+j =pj,...,ti+m−1=pm−1.

Pattern: 001011
Text: 10010101101001100101111010

Pattern: happy
Text: It is never too late to have a happy childhood.

9

Pseudocode and Efficiency

10

Efficiency:

Brute-Force Polynomial Evaluation
Problem: Find the value of polynomial

 p(x) = anx
n + an-1x

n-1 +… + a1x
1 + a0

 at a point x = x0

Brute-force algorithm

Efficiency:
11

p ← 0.0
for i ← n downto 0 do
 power ← 1

 for j ← 1 to i do //compute xi
 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

Polynomial Evaluation: Improvement

We can do better by evaluating from right to left:

Better brute-force algorithm

Efficiency:

12

p ← a[0]
power ← 1
for i ← 1 to n do

 power ← power ∗ x
 p ← p + a[i] ∗ power
return p

Closest-Pair Problem
Find the two closest points in a set of n points (in the

two-dimensional Cartesian plane).

Brute-force algorithm
 Compute the distance between every pair of

distinct points and return the indexes of the points
for which the distance is the smallest.

13

Closest-Pair Brute-Force Algorithm (cont.)

14

 Efficiency:  

 How to make it faster?

Convex Hull Problem
DEFINITION A set of points (finite or infinite) in

the plane is called convex if for any two points p
and q in the set, the entire line segment with the
endpoints at p and q belongs to the set.

Convex Hull Problem – Cont’d
DEFINITION The convex hull of a set S of points

is the smallest convex set containing S. (The
“smallest” requirement means that the convex hull
of S must be a subset of any convex set containing
S.)

Convex Hull Problem – Cont’d
DEFINITION The convex hull of a set S of points

is the smallest convex set containing S. (The
“smallest” requirement means that the convex hull
of S must be a subset of any convex set containing
S.)

Convex Hull Brute Force Solution Plan
• Notice that a line segment connecting two points pi

and pj of a set of n points is a part of the convex hull’s
boundary if and only if all the other points of the set
lie on the same side of the straight line through these
two points:

1. a straight line through two points (x1, y1), (x2, y2) in the
coordinate plane can be defined by the equation : ax +
by = c, where a = y2 − y1, b = x1 − x2, c = x1y2 − y1x2.

2. a lines cuts the plane in 2 halves: ax +by >c for all
pionts in one half, and ax +by <c for the other.
Choose the points with line equation of the same sign

Brute-Force Strengths and Weaknesses

Strengths
• wide applicability
• simplicity
• yields reasonable algorithms for some important problems  

(e.g., matrix multiplication, sorting, searching, string matching)  

Weaknesses
• rarely yields efficient algorithms
• some brute-force algorithms are unacceptably slow
• not as constructive as some other design techniques  

19

Exhaustive Search
A brute force solution to a problem involving search

for an element with a special property, usually among
combinatorial objects such as permutations,
combinations, or subsets of a set.

Method:
• generate a list of all potential solutions to the problem in a

systematic manner (see algorithms in Sec. 5.4)  

• evaluate potential solutions one by one, disqualifying infeasible
ones and, for an optimization problem, keeping track of the
best one found so far when search ends, announce the
solution(s) found

20

Example 1: Traveling Salesman Problem

• Given n cities with known distances between each
pair, find the shortest tour that passes through all
the cities exactly once before returning to the
starting city

• Alternatively: Find shortest Hamiltonian circuit in a
weighted connected graph

• Example:

21

a b

c d

8

2

7

5 3
4

TSP by Exhaustive Search
 Tour Cost
a→b→c→d→a 2+3+7+5 = 17
a→b→d→c→a 2+4+7+8 = 21
a→c→b→d→a 8+3+4+5 = 20
a→c→d→b→a 8+7+4+2 = 21
a→d→b→c→a 5+4+3+8 = 20
a→d→c→b→a 5+7+3+2 = 17

More tours?
Less tours?
Efficiency:

22

a b

c d

8

2

7

5 3
4

Example 2: Knapsack Problem
Given n items:

weights: w1 w2 … wn
values: v1 v2 … vn
a knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack

Example: Knapsack capacity W=16
item weight value
• 2 $20
• 5 $30
• 10 $50
• 5 $10

23

Knapsack Problem by Exhaustive Search

Subset Total weight Total value
 {1} 2 $20
 {2} 5 $30
 {3} 10 $50
 {4} 5 $10
 {1,2} 7 $50
 {1,3} 12 $70
 {1,4} 7 $30
 {2,3} 15 $80
 {2,4} 10 $40
 {3,4} 15 $60
 {1,2,3} 17 not feasible
 {1,2,4} 12 $60
 {1,3,4} 17 not feasible
 {2,3,4} 20 not feasible
{1,2,3,4} 22 not feasible

24

Efficiency:

Example 3: The Assignment Problem
There are n people who need to be assigned to n jobs, one
person per job. The cost of assigning person i to job j is
C[i,j]. Find an assignment that minimizes the total cost.

Algorithmic Plan: Generate all legitimate assignments,
compute their costs, and select the cheapest one.
How many assignments are there?
Pose the problem as the one about a cost matrix:

25

Assignment Problem by Exhaustive Search

 	 	 	 	 	 	 	 Assignment (col.#s)	 	 Total Cost

	 	 	 	 etc.
(For this particular instance, the optimal assignment can be found by exploiting
the specific features of the number given. It is:)

26

Final Comments on Exhaustive Search

Exhaustive-search algorithms run in a realistic amount of
time only on very small instances

In some cases, there are much better alternatives!
Euler circuits
shortest paths
minimum spanning tree
assignment problem

In many cases, exhaustive search or its variation is the
only known way to get exact solution

27

Graph Traversal Algorithms
Many problems require processing all graph vertices

(and edges) in systematic fashion

Graph traversal algorithms:

Depth-first search (DFS)

Breadth-first search (BFS)

28

Depth-First Search (DFS)
 Visits graph’s vertices by always moving away from last 
 visited vertex to unvisited one, backtracks if no
adjacent unvisited vertex is available.  

 Uses a stack
a vertex is pushed onto the stack when it’s reached for the first time
a vertex is popped off the stack when it becomes a dead end, i.e.,

when there is no adjacent unvisited vertex “Redraws” graph in
tree-like fashion (with tree edges and back edges for undirected
graph)

29

Pseudocode of DFS

30

Pseudocode of DFS 
Pre-Order/Depth-first 

31

Example: DFS traversal of undirected graph

32

a b

e f

c d

g h

DFS traversal stack: DFS tree:

Notes on DFS
• DFS can be implemented with graphs represented as:
• adjacency matrices: Θ(V2)
• adjacency lists: Θ(|V|+|E|)

• Yields two distinct ordering of vertices:
• order in which vertices are first encountered (pushed onto

stack) order in which vertices become dead-ends (popped off
stack)

• Applications: checking connectivity, finding connected
components checking acyclicity finding articulation points and
biconnected components searching state-space of problems for
solution (AI)

33

Breadth-first search (BFS)
• Visits graph vertices by moving across to all the

neighbors of last visited vertex

• Instead of a stack, BFS uses a queue

• Similar to level-by-level tree traversal  

• “Redraws” graph in tree-like fashion (with tree
edges and cross edges for undirected graph)

34

Pseudocode of BFS

35

Pseudocode of BFS 
Level-Order/breadth-first / top- down traversal  

36

Example of BFS traversal of undirected graph

BFS traversal queue:

37

a b

e f

c d

g h

BFS tree:

Notes on BFS
• BFS has same efficiency as DFS and can be

implemented with graphs represented as:
• adjacency matrices: Θ(V2)
• adjacency lists: Θ(|V|+|E|)

• Yields single ordering of vertices (order added/
deleted from queue is the same) 

• Applications: same as DFS, but can also find paths
from a vertex to all other vertices with the smallest
number of edges

38

