

Computer Algorithms $\frac{1}{2}$ Q.K

Lecture 6: Divide-and-Conquer – Ch 5 – Cont'd

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives

1. Use a Divide & Conquer algorithm design strategy to solve an appropriate problem such as tree traversals , multiplication, closest pair and/or convex-hull.

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances

- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

Binary Tree Traversals

 \boldsymbol{g}

preorder: a, b, d, g, e, c, f inorder: d, g, b, e, a, f, c postorder: g, d, e, b, f, c, a

Multiplication of Large Integers

Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

 $A = 12345678901357986429$ B = 87654321284820912836 The grade-school algorithm:

 $a_1 \, a_2 \, \ldots \, a_n$ b_1 b_2 ... b_n (d_{10}) d_{11} d_{12} … d_{1n} $(d_{20}) d_{21} d_{22} \dots d_{2n}$

… … … … … … …

 $(d_{n0}) d_{n1} d_{n2} \dots d_{nn}$

 $1980 = a$ $\begin{pmatrix} 2315 = b \end{pmatrix}$ 9900 1980 5940 -3960

 $4573700 = a \times b$

7

Efficiency: n^2 one-digit multiplications

First Divide-and-Conquer Algorithm

8

A small example: $A * B$ where $A = 23 = 2.10^1 + 3.10^0$ and $B = 14 = 1.10^1 + 4.10^0$.

```
23 * 14 = (2.10<sup>1</sup> + 3.10<sup>0</sup>) * (1.10<sup>1</sup> + 4.10<sup>0</sup>)
```
 $=(2 * 1)10^{2} + (2 * 4 + 3 * 1)10^{1} + (3 * 4)10^{0}.$

A bigger example: $A * B$ where $A = 2135$ and $B = 4014$ $A = (21 \cdot 10^2 + 35), B = (40 \cdot 10^2 + 14)$ So, $A * B = (21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$ $= 21 * 40 \cdot 10^{4} + (21 * 14 + 35 * 40) \cdot 10^{2} + 35 * 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are *n*-digit, A_1 , A_2 , B_1 , B_2 are $n/2$ -digit numbers), $A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$

Recurrence for the number of one-digit multiplications M(*n*): $M(n) = 4M(n/2), M(1) = 1$ **Solution**: $M(n) = n^2$

First Divide-and-Conquer Pseudo-code
Algorithm Divide-Mult(a,b): if a or b has one digit, then: return $a * b$. else: Let n be the number of digits in $max\{a, b\}$. Let a_L and a_R be left and right halves of a. Let b_L and b_R be left and right halves of b. Let x_1 hold Divide-Mult(a_1 , b_1). $aL = 19$ | $80 = aR$ Let x_2 hold Divide-Mult(a_1 , b_R). $bL = 23$ $115 = bR$ Let x_3 hold Divide-Mult(a_R , b_I). Let x_4 hold Divide-Mult(a_R , b_R).

return $x_1^*10^n + (x_2 + x_3)^*10^{n/2} + x_4$. end of if

a L a R bГ b R $\boldsymbol{\mathsf{x}}$ aR bR al bR $+$ aL bL aR bL $aL bL$ $aL bR + aR bL$ aR bR

Second Divide-and-Conquer Algorithm

 $A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$ The idea is to decrease the number of multiplications from 4 to 3: $(A_1 + A_2) * (B_1 + B_2) = A_1 * B_1 + (A_1 * B_2 + A_2 * B_1) + A_2 * B_2$

I.e., $(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$ which requires only 3 multiplications at the expense of (4-1) extra add/ sub.

Second Divide-and-Conquer Pseudo-code

Algorithm Karatsuba (a,b) : if a or b has one digit, then: return $a * b$.

else:

Ooooh!

Aaaah!

Let n be the number of digits in max{a, b}. Let a_L and a_R be left and right halves of a. Let b_L and b_R be left and right halves of b. Let x_1 hold Karatsuba(a_1 , b_1). Let x_2 hold Karatsuba($a_L + a_R$, $b_L + b_R$). Let x_3 hold Karatsuba(a_R , b_R). Divide and Conquer t o Mult iply and Sort 28/03/2014 11:29 am

end ofif

Exercise

2135 ∗ **4014**

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows

$$
\begin{bmatrix}\nc_{00} & c_{01} \\
c_{10} & c_{11}\n\end{bmatrix} =\n\begin{bmatrix}\na_{00} & a_{01} \\
a_{10} & a_{11}\n\end{bmatrix} * \begin{bmatrix}\nb_{00} & b_{01} \\
b_{10} & b_{11}\n\end{bmatrix}
$$
\n
$$
= \begin{bmatrix}\nm_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\
m_2 + m_4 & m_1 + m_3 - m_2 + m_6\n\end{bmatrix}
$$

Formulas for Strassen's Algorithm $m_1 = (a_{00} + a_{11}) * (b_{00} + b_{11}),$ $m_2 = (a_{10} + a_{11}) * b_{00},$ $m_3 = a_{00} * (b_{01} - b_{11}),$ $m_4 = a_{11} * (b_{10} - b_{00}),$ $m_5 = (a_{00} + a_{01}) * b_{11}$ $m_6 = (a_{10} - a_{00}) * (b_{00} + b_{01}),$ $m_7 = (a_{01} - a_{11}) * (b_{10} + b_{11}).$ 13

Analysis of Strassen's Algorithm If *n* is not a power of 2, matrices can be padded with zeroes. Number of multiplications: $M(n) = 7M(n/2), M(1) = 1$ **Solution:** Since $n = 2^k$, $M(2^k) = 7M(2^{k-1}) = 7[7M(2^{k-2})] = 7^2M(2^{k-2}) = ...$ $= 7^{i}M(2^{k-i})$... $= 7^{k}M(2^{k-k}) = 7^{k}.$ Since $k = \log_2 n$, $M(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}$, vs. n^3 of brute-force algorithm. Algorithms with better asymptotic efficiency are known but they are even more complex.

Closest-Pair Problem by Divide-and-Conquer 1. Divide the set into two equal sized parts by the line *l*, and recursively compute the minimal distance in each part.

- 2. Let *d* be the minimal of the two minimal distances**:** $O(1)$
- 3. Eliminate points that lie farther than *d* apart from *l***:** $O(n)$
- 4. Sort the remaining points according to their *y*coordinates**: O(***n log n***)**

 $O(1)$

5. Scan the remaining points in the *y* order and compute the distances of each point to its five neighbours(why?)**:** $O(n)$ 6. If any of these distances is less than *d* then update *d***:**

ALGORITHM *EfficientClosestPair(P, Q)*

//Solves the closest-pair problem by divide-and-conquer //Input: An array P of $n \ge 2$ points in the Cartesian plane sorted in nondecreasing order of their x coordinates and an array Q of the $\frac{1}{2}$ \mathcal{U} same points sorted in nondecreasing order of the y coordinates //Output: Euclidean distance between the closest pair of points if $n < 3$

return the minimal distance found by the brute-force algorithm

else

copy the first $\lceil n/2 \rceil$ points of P to array P_l copy the same $\lceil n/2 \rceil$ points from Q to array Q_l copy the remaining $\lfloor n/2 \rfloor$ points of P to array P_r copy the same $\lfloor n/2 \rfloor$ points from Q to array Q_r $d_l \leftarrow EfficientClosestPair(P_l, Q_l)$ $d_r \leftarrow EfficientClosestPair(P_r, Q_r)$ $d \leftarrow min\{d_1, d_*\}$ $m \leftarrow P[\lceil n/2 \rceil - 1]$.x copy all the points of Q for which $|x - m| < d$ into array $S[0..num - 1]$ dminsq $\leftarrow d^2$ for $i \leftarrow 0$ to num - 2 do $k \leftarrow i + 1$ while $k \leq num - 1$ and $(S[k], y - S[i], y)^2 <$ dminsq *dminsq* ← min($(S[k], x - S[i], x)^2$ + $(S[k], y - S[i], y)^2$, *dminsq*) $k \leftarrow k + 1$ return $sqrt(dminsq)$

Efficiency of the Closest-Pair Algorithm
Running time of the algorithm is described by

$$
T(n) = 2T(n/2) + M(n), \text{ where } M(n) \in O(n)
$$
By the Master Theorem (with $a = 2, b = 2, d = 1$)

$$
T(n) \in O(n \log n)
$$

Quickhull Algorithm

- *• Convex hull*: smallest convex set that includes given points
- Assume points are sorted by *x*-coordinate values
- **Identify** *extreme points* P_1 and P_2 (leftmost and rightmost)
- Compute *upper hull* recursively:
- \circ find point P_{max} that is farthest away from line P_1P_2
- o compute the upper hull of the points to the left of line P_1 *P*_{max}
- o compute the upper hull of the points to the left of line $P_{\text{max}}P_2$
- Compute *lower hull* in a similar manner

Efficiency of Quickhull Algorithm

Finding point farthest away from line P_1P_2 can be done in linear time Time efficiency: worst case: Θ(*n2*) (as quicksort) average case: Θ(*n*) (under reasonable assumptions about distribution of points given) If points are not initially sorted by *x*-coordinate value, this can be accomplished in O(*n* log *n*) time Several $O(n \log n)$ algorithms for convex hull are known