

Computer Algorithms

Lecture 6: Divide-and-Conquer – Ch 5 – Cont'd

Dr. Manal Helal, Spring 2014.

http://moodle.manalhelal.com

Lecture Learning Objectives

1. Use a Divide & Conquer algorithm design strategy to solve an appropriate problem such as tree traversals, multiplication, closest pair and/or convex-hull.

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances

- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

Binary Tree Traversals

g

preorder: a, b, d, g, e, c, f inorder: d, g, b, e, a, f, c postorder: g, d, e, b, f, c, a

Multiplication of Large Integers

Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

A = 12345678901357986429B = 87654321284820912836The grade-school algorithm:

> >

 $(d_{n0}) d_{n1} d_{n2} \dots d_{nn}$

1980 = a 2315 = b 9900 1980 5940 3960 4573700 = a x b

7

Efficiency: n^2 one-digit multiplications

First Divide-and-Conquer Algorithm

8

A small example: A * B where A = $23 = 2.10^{1} + 3.10^{0}$ and B = $14 = 1.10^{1} + 4.10^{0}$.

```
23 * 14 = (2.10^{1} + 3.10^{0}) * (1.10^{1} + 4.10^{0})
```

 $= (2 * 1)10^{2} + (2 * 4 + 3 * 1)10^{1} + (3 * 4)10^{0}.$

A bigger example: A * B where A = 2135 and B = 4014 A = $(21 \cdot 10^2 + 35)$, B = $(40 \cdot 10^2 + 14)$ So, A * B = $(21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$ = $21 * 40 \cdot 10^4 + (21 * 14 + 35 * 40) \cdot 10^2 + 35 * 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are *n*-digit, A₁, A₂, B₁, B₂ are *n*/2-digit numbers), A * B = A₁ * B₁ · 10^{*n*} + (A₁ * B₂ + A₂ * B₁) · 10^{*n*/2} + A₂ * B₂

Recurrence for the number of one-digit multiplications M(n): M(n) = 4M(n/2), M(1) = 1**Solution**: $M(n) = n^2$

First Divide-and-Conquer Pseudo-code Algorithm Divide-Mult(a,b): if a or b has one digit, then: return a * b. else: Let n be the number of digits in max{a, b}. Let a_L and a_R be left and right halves of a. Let b_L and b_R be left and right halves of b. Let x_1 hold Divide-Mult (a_I, b_I) . aL = 19 | 80 = aRLet x_2 hold Divide-Mult(a_I , b_R). $bL = 23 \ I \ 15 = bR$ Let x_3 hold Divide-Mult(a_R, b_I). Let x_4 hold Divide-Mult(a_R, b_R). аL a R return $x_1 * 10^n + (x_2 + x_3) * 10^{n/2} + x_4$. bL bR X end of if aR bR al bR + aL bL aR bL aL bL aL bR + aR bL aR bR

Second Divide-and-Conquer Algorithm

A * B = A₁ * B₁ · 10ⁿ + (A₁ * B₂ + A₂ * B₁) · 10^{n/2} + A₂ * B₂ The idea is to decrease the number of multiplications from 4 to 3: (A₁ + A₂) * (B₁ + B₂) = A₁ * B₁ + (A₁ * B₂ + A₂ * B₁) + A₂ * B₂,

I.e., $(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2$, which requires only 3 multiplications at the expense of (4-1) extra add/ sub.

Recurrence for the number of multiplication $M(n) = 3M(n/2), M(1) = 3M(n/2)$	x1 x2 x3	= aL bL = aR bR = (aL + aR) ((bL + bR)
Solution: $M(n) = 3^{\log 2^n} = n^{\log 2^3} \approx n^{1.585}$	x	aL bL	aR bR
	aL bL x1	aL bR + aR x3 - x1 -	bL aR bR x2 x2

Second Divide-and-Conquer Pseudo-code

Algorithm Karatsuba(a,b): if a or b has one digit, then: return a * b.

else:

Let n be the number of digits in max{a, b}. Let a_L and a_R be left and right halves of a. Let b_L and b_R be left and right halves of b. Let x_1 hold Karatsuba (a_L, b_L) . Let x_2 hold Karatsuba $(a_L + a_R, b_L + b_R)$. Let x_3 hold Karatsuba (a_R, b_R) .

return $x_1 * 10^n + (x_2 - x_1 - x_3) * 10^{n/2} + x_3$. end of if Exercise

2135 * 4014

Strassen's Matrix Multiplication Strassen observed [1969] that the product of two matrices can be computed as follows

$$\begin{bmatrix} c_{00} & c_{01} \\ c_{10} & c_{11} \end{bmatrix} = \begin{bmatrix} a_{00} & a_{01} \\ a_{10} & a_{11} \end{bmatrix} * \begin{bmatrix} b_{00} & b_{01} \\ b_{10} & b_{11} \end{bmatrix}$$
$$= \begin{bmatrix} m_1 + m_4 - m_5 + m_7 & m_3 + m_5 \\ m_2 + m_4 & m_1 + m_3 - m_2 + m_6 \end{bmatrix}$$

Formulas for Strassen's Algorithm $m_1 = (a_{00} + a_{11}) * (b_{00} + b_{11}),$ $m_2 = (a_{10} + a_{11}) * b_{00},$ $m_3 = a_{00} * (b_{01} - b_{11}),$ $m_4 = a_{11} * (b_{10} - b_{00}),$ $m_5 = (a_{00} + a_{01}) * b_{11},$ $m_6 = (a_{10} - a_{00}) * (b_{00} + b_{01}),$ $m_7 = (a_{01} - a_{11}) * (b_{10} + b_{11}).$ 13

Analysis of Strassen's Algorithm If *n* is not a power of 2, matrices can be padded with zeroes Number of multiplications: M(n) = 7M(n/2), M(1) = 1**Solution:** Since $n = 2^k$, $M(2^{k}) = 7M(2^{k-1}) = 7[7M(2^{k-2})] = 7^{2}M(2^{k-2}) = \dots$ $= 7^{i}M(2^{k-i})\ldots = 7^{k}M(2^{k-k}) = 7^{k}.$ Since $k = \log_2 n$, $M(n) = 7^{\log_2 n} = n^{\log_2 7} \approx n^{2.807}$, vs. n^3 of brute-force algorithm. Algorithms with better asymptotic efficiency are known but they are even more complex.

Closest-Pair Problem by Divide-and-Conquer Divide the set into two equal sized parts by the line *l*, and recursively compute the minimal distance in each part.

- Let d be the minimal of the two minimal distances:
 O(1)
- 3. Eliminate points that lie farther than d apart from l:
 O(n)
- Sort the remaining points according to their *y*coordinates: O(n log n)
- Scan the remaining points in the *y* order and compute the distances of each point to its five neighbours(why?): O(n)
 If any of these distances is less than *d* then update *d*: O(1)

ALGORITHM EfficientClosestPair(P, Q)

//Solves the closest-pair problem by divide-and-conquer //Input: An array P of $n \ge 2$ points in the Cartesian plane sorted in nondecreasing order of their x coordinates and an array Q of the same points sorted in nondecreasing order of the y coordinates //Output: Euclidean distance between the closest pair of points if $n \le 3$

return the minimal distance found by the brute-force algorithm

else

copy the first $\lceil n/2 \rceil$ points of P to array P_l copy the same $\lceil n/2 \rceil$ points from Q to array Q_1 copy the remaining $\lfloor n/2 \rfloor$ points of P to array P_r copy the same $\lfloor n/2 \rfloor$ points from Q to array Q_r $d_l \leftarrow EfficientClosestPair(P_l, Q_l)$ $d_r \leftarrow EfficientClosestPair(P_r, Q_r)$ $d \leftarrow \min\{d_i, d_i\}$ $m \leftarrow P[[n/2] - 1].x$ copy all the points of Q for which |x - m| < d into array S[0..num - 1] dminsq $\leftarrow d^2$ for $i \leftarrow 0$ to num - 2 do $k \leftarrow i + 1$ while $k \le num - 1$ and $(S[k], y - S[i], y)^2 < dminsq$ $dminsq \leftarrow \min((S[k], x - S[i], x)^2 + (S[k], y - S[i], y)^2, dminsq)$ $k \leftarrow k+1$ return sqrt(dminsq)

Efficiency of the Closest-Pair Algorithm
Running time of the algorithm is described by
$$T(n) = 2T(n/2) + M(n), \text{ where } M(n) \in O(n)$$
By the Master Theorem (with $a = 2, b = 2, d = 1$)
$$T(n) \in O(n \log n)$$

Quickhull Algorithm

- Convex hull: smallest convex set that includes given points
- Assume points are sorted by x-coordinate values
- Identify extreme points P_1 and P_2 (leftmost and rightmost)
- Compute *upper hull* recursively:
- o find point P_{max} that is farthest away from line P_1P_2
- compute the upper hull of the points to the left of line $P_1 P_{\text{max}}$
- compute the upper hull of the points to the left of line $P_{\text{max}}P_2$
- Compute lower hull in a similar manner

Efficiency of Quickhull Algorithm

Finding point farthest away from line P_1P_2 can be done in linear time Time efficiency: worst case: $\Theta(n^2)$ (as quicksort) average case: $\Theta(n)$ (under reasonable assumptions about distribution of points given) If points are not initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time Several $O(n \log n)$ algorithms for convex hull are known