
Computer Algorithms

Lecture 6: Divide-and-Conquer – Ch 5 – Cont’d

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Divide & Conquer algorithm design strategy to solve an

appropriate problem such as tree traversals , multiplication, closest pair
and/or convex-hull.

2

3

Divide-and-Conquer
The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller
instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

Binary Tree Traversals

5

Binary Tree Algorithms
Binary tree is a divide-and-conquer ready structure!

Ex. 1: Classic traversals (preorder, inorder, postorder)

Algorithm Inorder(T)

 if T ≠ ∅

 Inorder(Tleft)

 print(root of T)

 Inorder(Tright)

Efficiency: Θ(n)

6

Binary Tree Algorithms (cont.)
Ex. 2: Computing the height of a binary tree

h(T) = max{h(TL), h(TR)} + 1 if T ≠ ∅ and h(∅) = -1 

Efficiency: Θ(n)

7

Multiplication of Large Integers
Consider the problem of multiplying two (large) n-digit integers
represented by arrays of their digits such as: 
 
A = 12345678901357986429
B = 87654321284820912836  
The grade-school algorithm:
	 	 	 	 a1 a2 … an  
 	 	 	 b1 b2 … bn  
 	 (d10) d11d12 … d1n

 (d20) d21d22 … d2n

 … … … … … … …
 (dn0) dn1dn2 … dnn

  
 
Efficiency: n2 one-digit multiplications

8

First Divide-and-Conquer Algorithm
A small example: A ∗ B where A = 23 = 2.101 + 3.100 and B = 14 = 1.101 + 4.100.

23 ∗ 14 = (2.101 + 3.100) ∗ (1.101 + 4.100)

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100.

A bigger example: A ∗ B where A = 2135 and B = 4014
A = (21·102 + 35), B = (40 ·102 + 14)
So, A ∗ B = (21 ·102 + 35) ∗ (40 ·102 + 14)
 = 21 ∗ 40 ·104 + (21 ∗ 14 + 35 ∗ 40) ·102 + 35 ∗ 14 

In general, if A = A1A2 and B = B1B2 (where A and B are n-digit,
A1, A2, B1, B2 are n/2-digit numbers),
A ∗ B = A1 ∗ B1·10n + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2 

Recurrence for the number of one-digit multiplications M(n):
 M(n) = 4M(n/2), M(1) = 1  
Solution: M(n) = n2

First Divide-and-Conquer Pseudo-code

10

Second Divide-and-Conquer Algorithm

A ∗ B = A1 ∗ B1·10n + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2
The idea is to decrease the number of multiplications from 4 to 3:
(A1 + A2) ∗ (B1 + B2) = A1 ∗ B1 + (A1 ∗ B2 + A2 ∗ B1) + A2 ∗ B2, 

 
I.e., (A1 ∗ B2 + A2 ∗ B1) = (A1 + A2) ∗ (B1 + B2) - A1 ∗ B1 - A2 ∗ B2,  
which requires only 3 multiplications at the expense of (4-1) extra add/
sub.
 
Recurrence for the number of multiplications M(n):  
 M(n) = 3M(n/2), M(1) = 1  
Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585

Second Divide-and-Conquer Pseudo-code

2135 ∗ 4014

Exercise

28/03/2014 11:29 amDivide and Conquer t o Mult iply and Sort

Page 5 of 7ht tp:/ / www.cs.cmu.edu/ ~cburch/ pgss99/ lect ure/ 0721- divide.ht ml

end of if

Ooooh!

Aaaah!

An Example

 I N M u l t i p l y (1 9 8 0 , 2 3 1 5)
 1 9 8 0
 2 3 1 5
 I N M u l t i p l y (1 9 , 2 3)
 1 9
 2 3
 I N M u l t i p l y (1 , 2)
 r e t u r n 2
 I N M u l t i p l y (9 , 3)
 r e t u r n 2 7
 I N M u l t i p l y (1 0 , 5)
 1 0
 0 5
 I N M u l t i p l y (1 , 0)
 r e t u r n 0
 I N M u l t i p l y (0 , 5)
 r e t u r n 0
 I N M u l t i p l y (1 , 5)
 r e t u r n 5
 5 - 0 - 0 = 5
 0
 5
 0
 - - -
 5 0
 r e t u r n 5 0
 5 0 - 2 7 - 2 = 2 1
 2
 2 1
 2 7
 - - -
 4 3 7
 r e t u r n 4 3 7
 I N M u l t i p l y (8 0 , 1 5)
 8 0
 1 5
 I N M u l t i p l y (8 , 1)
 r e t u r n 8
 I N M u l t i p l y (0 , 5)
 r e t u r n 0
 I N M u l t i p l y (8 , 6)
 r e t u r n 4 8
 4 8 - 8 - 0 = 4 0
 8
 4 0
 0
 - - - -
 1 2 0 0
 r e t u r n 1 2 0 0

12

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two
matrices can be computed as follows

13

Formulas for Strassen’s Algorithm

14

Analysis of Strassen’s Algorithm
If n is not a power of 2, matrices can be padded with zeroes.
Number of multiplications:
 M(n) = 7M(n/2), M(1) = 1
Solution: Since n = 2k,
M(2k) = 7M(2k−1) = 7[7M(2k−2)]= 72M(2k−2) = …
= 7iM(2k−i) . . . = 7kM(2k−k) = 7k.
Since k = log2 n,
M(n) = 7log

2
 n = nlog

2
 7 ≈ n2.807, vs. n3 of brute-force

algorithm.
Algorithms with better asymptotic efficiency are known but

they are even more complex.

15

Closest-Pair Problem by Divide-and-Conquer
1. Divide the set into two equal sized parts by the line l,

and recursively compute the minimal distance in each
part.

2. Let d be the minimal of the two minimal distances:
O(1)

3. Eliminate points that lie farther than d apart from l:
O(n)

4. Sort the remaining points according to their y-
coordinates: O(n log n)

5. Scan the remaining points in the y order and compute
the distances of each point to its five neighbours(why?):
O(n)

6. If any of these distances is less than d then update d:
O(1)

16

Closest Pair by Divide-and-Conquer (cont.)

x = m

d l dr

d d

18

Efficiency of the Closest-Pair Algorithm

Running time of the algorithm is described by  

 T(n) = 2T(n/2) + M(n), where M(n) ∈ O(n)  

By the Master Theorem (with a = 2, b = 2, d = 1)

 T(n) ∈ O(n log n)

19

Quickhull Algorithm
• Convex hull: smallest convex set that includes given points
• Assume points are sorted by x-coordinate values
• Identify extreme points P1 and P2 (leftmost and rightmost)
• Compute upper hull recursively:
o find point Pmax that is farthest away from line P1P2
o compute the upper hull of the points to the left of line

P1Pmax
o compute the upper hull of the points to the left of line

PmaxP2
• Compute lower hull in a similar manner

21

Efficiency of Quickhull Algorithm
Finding point farthest away from line P1P2 can be done in

linear time
Time efficiency:

worst case: Θ(n2) (as quicksort)
average case: Θ(n) (under reasonable assumptions about 

 distribution of points given)
If points are not initially sorted by x-coordinate value, this

can be accomplished in O(n log n) time
Several O(n log n) algorithms for convex hull are known

