.~ Computer Algorithms

Lecture 6: Duwnde-and-Conguer — CGh 5 — Cont'd

| Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

I£:

Lecture Learning Objectives

Use a Divide & Conquer algorithm design strategy to solve an
appropriate problem such as tree traversals , multiplication, closest pair
and/or convex-hull.

Divide-and-Conquer

'The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller
Instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

Binary 'Iree Traversals

preorder: 3, b,d g e ¢ f
inorder: d g b, e a fc
postorder: g, d, e, b, f ¢, a

Binary Iree Algorithms

Binary tree 1s a divide-and-conquer ready structure!
Ex. 1: Classic traversals (preorder, inorder, postorder)
Algorithm Tnorder(T)

e

iSfileaie o)

|OnE EOEE CEele e e aa e

o rdor | Trl.ght)

Efficiency: O(n)

Binary Iree Algorithms (cont.)

Ex. 2: Computing the height of a binary tree

K(T) = max{h(T), H(Ty)} +1 if T= O and h(Q) = -1

Efficiency: ©(n)

Multiplication of Large Integers

Consider the problem of multiplying two (large) n-digit integers

represented by arrays of their digits such as:

A =12345678901357986429
B = 87654321284820912836
The grade-school algorithm:
Gty =
-l
(d10> d11d12 s dl/t
(dyp) ooy - dy,

n

d)dydyy ... d

A T e e 11,

Efficiency: n° one-digit multiplications

4573700

(& v

axb»bo

First Divide-and-Conquer Algorithm
A small example: A * B where A =23 = 2.10! + 3,10 and B = 14 = 1.10! + 4.10°.
23 % 14 =(2.10! + 3.10Y) = (1.10! + 4.109)

= (2% D102+ (2 %4+ 3 * 1)10! + (3 = 4)100.

A bigger example: A * B where A = 2135 and B = 4014
A =(21-10%°+ 35), B=(40 102 + 14)
50, A B=(2] 102+ 35) = (40 -10° + 14)

=21 %40 10* + (21 * 14 + 35 = 40) ‘102 + 35 * 14

In general, if A=A /A,and B = BB, (where A and B are n-digit,
Ay, Ay, B, B, are n/2-digit numbers),
e BT OEA e Bo+ A+ B) 1072+ A, B,

Recurrence for the number of one-digit multiplications M(n):
M(n) = 4M(n/2), M(1) =1
Solution: M(n) = n?

First Divide-and-Conauer Pseudo-code
Algorithm Divide-Mult(a,b):
if a or b has one digit, then:
return a * b.
else:
Let n be the number of digits in max{a, b}.
Let a; and ap be left and right halves of a.

Let by and by, be left and right halves of b.

Let x; hold Divide-Mult(ay, by).
aL =19 | 80 = aR

Let x5 hold Divide-Mult(ay, bg). |
Let x3 hold Divide-Mult(ap, by). bL =23 | 15 =DbR
Let x4 hold Divide-Mult(ap, bg). . .
return x ;¥ 10" + (x, + x3)*10"? + x,. x bL bR
end of if ~ aLbR aR bR
+ aL bL aR bL

aL bL aL bR + aR bL aR bR

Second Divide-and-Conquer Algorithm

b= e B0 (AL B+ Ay B 1072+ A =B,
The 1dea 1s to decrease the number of multiplications from 4 to 3:
A +A)) * (B +By)=A*B + (A *B,+Ay*B) + A, B,

Le, (Ap# By+ Ag# B)) = (A + Ay) * (B + By) - A # B, - Ay * By
which requires only 3 multiplications at the expense of (4-1) extra add/

sub.

aL bL
Recurrence for the number of multiplicd x2 = ar bR

M= 3Mu/2), M(l)5 *3 = (aL + aRr) (bL + bR)

Solution: M(n) = 3log2n = plog 23 = 5 1.985 aL ar
X bL bR

alL bL aL bR + aR bL aR bR
x1 X3 - x1 - x2 X2

»
[
o

Second Divide-and-Conquer Pseudo-code

Algorithm Karatsuba(a,b):

if a or b has one digit, then:
return a * b.

else:
Let n be the number of digits in max{a, b}.
Let a; and ap be left and right halves of a.
Let by and by, be left and right halves of b.
Let x; hold Karatsuba(ay, by).
Let x> hold Karatsuba(ay + ag, by + bp).

Let x; hold Karatsuba(ag, bg).

Exercise

2135 - 4014

return x;*10" + (x5 - x; - x3)¥10"? + x;.
end of if

Strassen’s Matrix Multiplication

Strassen observed [1969] that the product of two

matrices can be computed as follows

[Cm Cm] dyy) a()l]*[bﬂ() ”01]
g 1 Layy ap bio by

k ny - my — msg + n

ms - ms
M- + My my + mz — my + Mg

I

Formulas for Strassen’s Algorithm

my = (agy + ayy) * (byy + byy),
My = (a1 + ay1) * by,
may = agy * (by1 — byy),
my = ayy * (b1y — by).
mes = (apo + dg1) * byq.
meg = (a0 — ago) * (boo + byy).
ma = (apy — @) * (byo + b11).

13

Analysis of Strassen’s Algorithm

It 7 1s not a power of 2, matrices can be padded with zeroes
Number of multiplications:
M(n) = 7TM(n/2), M(l) =1

Solution: Since n = 2,

DO = TM =) = T[TM22)|= T°M(2=%) =

= T"M(2¥Y) ... = TAM(2FF) = T,

bIRceE f-= log, 7,

L =7 =t = 2% s, n’of brute-lonce
algorithm.

Algorithms with better asymptotic etficiency are known but
they are even more complex.

et

Closest-Pair Problem by Divide-and-Conquer
. Divide the set into two equal sized parts by the line /,
and recursively compute the minimal distance 1n each
part.

. Let d be the minimal of the two minimal distancess

O(1)
. Eliminate points that lie farther than 4 apart from /
O(n)

Sort the remaining points according to their y-
coordinates: O(n log n)

Scan the remaining points in the y order and compute
the distances of each point to its five neighbours(why?)s
O(n)

. It any of these distances is less than d then update d:
O(1)

5

Closest Pair by Divide-and-Conquer (cont.)

16

ALGORITHM EfficientClosestPair(P, Q)

/ISolves the closest-pair problem by divide-and-conquer
//Input: An array P of n = 2 points in the Cartesian plane sorted in
I nondecreasing order of their x coordinates and an array Q of the
I same points sorted in nondecreasing order of the y coordinates
//Output: Euclidean distance between the closest pair of points
ifn<3

return the minimal distance found by the brute-force algorithm
else

copy the first [n/2] points of P to array P,

copy the same [n/2] points from Q to array Q;

copy the remaining |n /2] points of P to array P,

copy the same |n/2] points from Q to array Q,

d) < EfficientClosestPair(P;, Q;)

d, < EfficientClosestPair(P,. Q,)

d «<min{d;. d,}

m < P[[n/2] —1]x

copy all the points of Q for which |x — m| < d into array S|0..num — 1]

dminsq <« d*

fori < 0tonum — 2 do

k<—i+1
while k < num — 1 and (S[k).y — S[i].v)* < dminsg
dminsqg < min((S[k).x — S[i].x)*>+ (S[k].y — S[i].»)%. dminsq)
k<—k+1

return sqri(dminsgq)

Efhiciency of the Closest-Pair Algorithm

Running time of the algorithm is described by
T(n) = 2T(n/2) + M(n), where M(n) € O(n)
By the Master Theorem (witha=2,6=2,d=1)

T(n) € O log n)

18

Quickhull Algorithm

* Convex hull: smallest convex set that includes given points
* Assume points are sorted by x-coordinate values
o Identfy extreme points P, and P, (leftmost and rightmost)

o Compute upper hull recursively:
o find point P___that 1s farthest away from hine P £,

O compute the upper hull of the points to the left of line
2P

max

O compute the upper hull of the points to the left of line
=P

max

» Compute lower hull 1n a stmilar manner

=)

[

Py

Ethciency of Quickhull Algorithm

Finding point farthest away from line P, £, can be done 1n

linear ttme

Bl ciicicncy:
worst case: O(n°) (as quicksort)
average case: O(n) (under reasonable assumptions about
distribution of points given)

It points are not mitially sorted by x-coordinate value, this
can be accomplished in O(z log n) time
Several O(n log n) algorithms for convex hull are known

28l

