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Lecture Learning Objectives
1. Use a Divide & Conquer algorithm design strategy to solve an 

appropriate problem such as tree traversals , multiplication, closest pair 
and/or convex-hull.
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Divide-and-Conquer
The most-well known algorithm design strategy: 

1. Divide instance of  problem into two or more smaller 
instances 

2. Solve smaller instances recursively 

3. Obtain solution to original (larger) instance by 
combining these solutions



Binary Tree Traversals 
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Binary Tree Algorithms
Binary tree is a divide-and-conquer ready structure! 

Ex. 1: Classic traversals (preorder, inorder, postorder) 

Algorithm Inorder(T) 

    if T ≠  ∅           

        Inorder(Tleft)                    

        print(root of T)  

        Inorder(Tright)  

Efficiency: Θ(n) 



6

Binary Tree Algorithms (cont.)
Ex. 2: Computing the height of  a binary tree 

h(T) = max{h(TL), h(TR)} + 1  if  T ≠ ∅  and  h(∅) = -1 

Efficiency: Θ(n) 



7

Multiplication of  Large Integers 
Consider the problem of  multiplying two (large) n-digit integers 
represented by arrays of  their digits such as: 
 
A = 12345678901357986429    
B = 87654321284820912836  
The grade-school algorithm: 
	 	       	 	      a1  a2 …  an  
                     	 	 	 b1  b2 …  bn  
 	                     (d10) d11d12 … d1n 

                   (d20) d21d22 … d2n 

             … … … … … … …  
  (dn0) dn1dn2 … dnn 

  
 
Efficiency: n2 one-digit multiplications
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First Divide-and-Conquer Algorithm
A small example: A ∗ B where A = 23 = 2.101 + 3.100 and B = 14 = 1.101 + 4.100. 

23 ∗ 14 = (2.101 + 3.100) ∗ (1.101 + 4.100) 

= (2 ∗ 1)102 + (2 ∗ 4 + 3 ∗ 1)101 + (3 ∗ 4)100. 

A bigger example: A ∗ B where A = 2135 and B = 4014 
A = (21·102 + 35),  B = (40 ·102 + 14) 
So, A ∗ B = (21 ·102 + 35) ∗ (40 ·102 + 14)  
      = 21 ∗ 40 ·104  + (21 ∗ 14 + 35 ∗ 40) ·102 + 35 ∗ 14 

In general, if  A = A1A2 and B = B1B2   (where A and B are n-digit,  
A1, A2, B1, B2 are n/2-digit numbers), 
A ∗ B = A1 ∗ B1·10n  + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2 

Recurrence for the number of  one-digit multiplications M(n):  
                             M(n) = 4M(n/2),   M(1) = 1  
Solution: M(n) = n2 



First Divide-and-Conquer Pseudo-code
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Second Divide-and-Conquer Algorithm

A ∗ B = A1 ∗ B1·10n  + (A1 ∗ B2 + A2 ∗ B1) ·10n/2 + A2 ∗ B2 
The idea is to decrease the number of  multiplications from 4 to 3:   
(A1 + A2 ) ∗ (B1 + B2 ) = A1 ∗ B1 + (A1 ∗ B2 + A2 ∗ B1) + A2 ∗ B2, 

 
I.e., (A1 ∗ B2 + A2 ∗ B1) = (A1 + A2 ) ∗ (B1 + B2 ) - A1 ∗ B1 - A2 ∗ B2,  
which requires only 3 multiplications at the expense of  (4-1) extra add/
sub. 
 
Recurrence for the  number of  multiplications M(n):  
                             M(n) = 3M(n/2),   M(1) = 1  
Solution: M(n) = 3log 2n = nlog 23 ≈ n1.585 



Second Divide-and-Conquer Pseudo-code

2135 ∗ 4014

Exercise

28/03/2014 11:29 amDivide and Conquer t o Mult iply and Sort
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end of if

Ooooh!

Aaaah!

An Example

 I N  M u l t i p l y ( 1 9 8 0 ,  2 3 1 5 )
  1 9  8 0
  2 3  1 5
     I N  M u l t i p l y ( 1 9 ,  2 3 )
      1  9
      2  3
         I N  M u l t i p l y ( 1 ,  2 )
         r e t u r n  2
         I N  M u l t i p l y ( 9 ,  3 )
         r e t u r n  2 7
         I N  M u l t i p l y ( 1 0 ,  5 )
          1  0
          0  5
             I N  M u l t i p l y ( 1 ,  0 )
             r e t u r n  0
             I N  M u l t i p l y ( 0 ,  5 )
             r e t u r n  0
             I N  M u l t i p l y ( 1 ,  5 )
             r e t u r n  5
          5  -  0  -  0  =  5
          0
           5
            0
          - - -
           5 0
         r e t u r n  5 0
      5 0  -  2 7  -  2  =  2 1
      2
      2 1
       2 7
      - - -
      4 3 7
     r e t u r n  4 3 7
     I N  M u l t i p l y ( 8 0 ,  1 5 )
      8  0
      1  5
         I N  M u l t i p l y ( 8 ,  1 )
         r e t u r n  8
         I N  M u l t i p l y ( 0 ,  5 )
         r e t u r n  0
         I N  M u l t i p l y ( 8 ,  6 )
         r e t u r n  4 8
      4 8  -  8  -  0  =  4 0
       8
       4 0
         0
      - - - -
      1 2 0 0
     r e t u r n  1 2 0 0
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Strassen’s Matrix Multiplication

Strassen observed [1969] that  the product of  two 
matrices can be computed as follows
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Formulas for Strassen’s Algorithm
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Analysis of  Strassen’s Algorithm
If  n is not a power of  2, matrices can be padded with zeroes. 
Number of  multiplications: 
                                 M(n) = 7M(n/2),   M(1) = 1 
Solution: Since n = 2k, 
M(2k) = 7M(2k−1) = 7[7M(2k−2)]= 72M(2k−2) = … 
= 7iM(2k−i) . . . = 7kM(2k−k) = 7k. 
Since k = log2 n, 
M(n) = 7log

2
 n = nlog

2
 7 ≈ n2.807,    vs.  n3 of  brute-force 

algorithm. 
Algorithms with better asymptotic efficiency are known but 

they are even more complex. 
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Closest-Pair Problem by Divide-and-Conquer
1. Divide the set into two equal sized parts by the line l, 

and recursively compute the minimal distance in each 
part. 

2. Let d be the minimal of  the two minimal distances: 
O(1) 

3. Eliminate points that lie farther than d apart from l: 
O(n) 

4. Sort the remaining points according to their y-
coordinates: O(n log n) 

5. Scan the remaining points in the y order and compute 
the distances of  each point to its five neighbours(why?): 
O(n) 

6. If  any of  these distances is less than d then update d: 
O(1)
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Closest Pair by Divide-and-Conquer (cont.)

x = m

d l dr

d d
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Efficiency of  the Closest-Pair Algorithm

Running time of  the algorithm is described by  

          T(n) = 2T(n/2) + M(n),  where M(n) ∈ O(n)  

By the Master Theorem (with a = 2, b = 2, d = 1) 

          T(n) ∈ O(n log n)
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Quickhull Algorithm 
• Convex hull: smallest convex set that includes given points 
• Assume points are sorted by x-coordinate values 
• Identify extreme points P1 and P2  (leftmost and rightmost) 
• Compute upper hull recursively: 
o find point Pmax that is farthest away from line P1P2 
o compute the upper hull of  the points to the left of  line 

P1Pmax 
o compute the upper hull of  the points to the left of  line 

PmaxP2 
• Compute lower hull in a similar manner
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Efficiency of  Quickhull Algorithm
Finding point farthest away from line P1P2 can be done in 

linear time 
Time efficiency:  

worst case: Θ(n2)  (as quicksort) 
average case: Θ(n) (under reasonable assumptions about 

                                  distribution of  points given) 
If  points are not initially sorted by x-coordinate value, this 

can be accomplished in O(n log n) time 
Several O(n log n) algorithms for convex hull are known


