
Computer Algorithms

Lecture 9: Transform-and-Conquer– Ch 6 – Cont’d

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Transform-and-Conquer algorithm design strategy to transform

a problem to another easier representation such as Heap-sort, solving
polynomials, and exponentiation.

2. Understand how to apply a Transform-and-Conquer algorithm design
strategy to reduce a problem to another that has an existing solution.

2

Heaps and Heapsort
Definition A heap is a binary tree with keys at its nodes

(one key per node) such that:
It is essentially complete, i.e., all its levels are full

except possibly the last level, where only some
rightmost keys may be missing

The key at each node is ≥ keys at its children
3

Illustration of the heap’s definition

10

5

4 2

7

1

10

5

2

7

1

10

5

6 2

7

1

a heap not a heap not a heap

Note: Heap’s elements are ordered top down (along any path down from its root), but they are not ordered left to
right

4

Some Important Properties of a Heap

• Given n, there exists a unique binary tree with n
nodes that is essentially complete, with h = ⎣log2 n⎦ 

• The root contains the largest key

• The subtree rooted at any node of a heap is also a
heap  

• A heap can be represented as an array

5

Heap’s Array Representation
Store heap’s elements in an array (whose elements indexed,

for convenience, 1 to n) in top-down left-to-right order
Example:

Left child of node j is at 2j
Right child of node j is at 2j+1
Parent of node j is at ⎣j/2⎦
Parental nodes are represented in the first ⎣n/2⎦ locations

9

1

5 3

4 2

1 2 3 4 5 6

9 5 3 1 4 2

6

Step 0: Initialize the structure with keys in the order
given

Step 1: Starting with the last (rightmost) parental node,
fix the heap rooted at it, if it doesn’t satisfy the
heap condition: keep exchanging it with its
largest child until the heap condition holds  

Step 2: Repeat Step 1 for the preceding parental node

Heap Construction (bottom-up)

7

Example of Heap Construction

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

Construct a heap for the list 2, 9, 7, 6, 5, 8

8

Pseudopodia of bottom-up heap construction

9

Insertion of a New Element into a Heap
Insert the new element at last position in heap.

Compare it with its parent and, if it violates heap condition,  
exchange them

Continue comparing the new element with nodes up the tree
until the heap condition is satisfied

Example: Insert key 10

Efficiency: O(log n)
10

Heap Delete
• Exchange keys in the root and in the last (rightmost) leaf
• Decrease heap size by 1
• If necessary, swap new root with larger child until the heap

condition holds
Efficiency: O(log n)

Deleting the root’s key from a heap. The key to be deleted is swapped with the last key after which the smaller tree is “heapified” by exchanging the new key in its root with the larger key in its

children until the parental dominance requirement is satisfied.

Stage 1: Construct a heap for a given list of n keys

Stage 2: Repeat operation of root removal n-1 times:

Heapsort

12

Sort the list 2, 9, 7, 6, 5, 8 by heapsort
Example of Sorting by Heapsort

13

Stage 1: Build heap for a given list of n keys
worst-case
 C(n) =

 
 
Stage 2: Repeat operation of root removal n-1 times (fix heap)
worst-case
 C(n) = 	 	 	 	 	 	 	  
 
Both worst-case and average-case efficiency: Θ(nlogn)  
In-place: yes  
Stability: no (e.g., 1 1)		 	

Σ 2(h-i) 2i = 2 (n – log2(n + 1)) ∈ Θ(n)

i=0

h-1

nodes at level i

Σ
i=1

n-1
 2log2 i ∈ Θ(nlogn)

Analysis of Heapsort

14

A priority queue is the ADT of a set of elements with
numerical priorities with the following operations:
• find element with highest priority
• delete element with highest priority
• insert element with assigned priority (see below)

Heap is a very efficient way for implementing priority
queues  

Two ways to handle priority queue in which  
 highest priority = smallest number

Priority Queue

15

Horner’s Rule For Polynomial Evaluation
Given a polynomial of degree n
	 	 	 p(x) = anxn + an-1xn-1 + … + a1x + a0
and a specific value of x, find the value of p at that point.

Two brute-force algorithms:
p ← 0	 	 	 	 	 		 	 p ← a0; power ← 1
for i ← n downto 0 do	 	 	 	 for i ← 1 to n do
	 power ← 1 	 	 	 	 	 	 	 	 	 power ← power * x
	 for j ← 1 to i do	 	 	 	 	 	 	 p ← p + ai * power
	 	 	 power ← power * x 	 	 return p
	 p ← p + ai * power
return p

Θ(n2)	, n2 multiplications, 	 	 	 Θ(n) with 2n multiplications
n additions	 	 	 	 	 	 	 	 and n additions 16

Horner’s Rule

 Example: p(x) 		 = 2x4 - x3 + 3x2 + x - 5
 	 = x(2x3 - x2 + 3x + 1) - 5
	 	 	 	 	 	 = x(x(2x2 - x + 3) + 1) - 5
	 	 	 	 	 	 = x(x(x(2x - 1) + 3) + 1) - 5
 Substitution into the last formula leads to a faster algorithm

 Same sequence of computations are obtained by simply  
 arranging the coefficient in a table and proceeding as follows:

	

17

Horner’s Rule pseudocode

Efficiency of Horner’s Rule: # multiplications = #
additions = n  
Synthetic division of of p(x) by (x-x0)  
Example: Let p(x) = 2x4 - x3 + 3x2 + x - 5. Find p(x):(x-3)

18

Computing an (revisited)
Left-to-right binary exponentiation  
Initialize product accumulator by 1.
Scan n’s binary expansion from left to right and do the following:
If the current binary digit is 0, square the accumulator (S);  
if the binary digit is 1, square the accumulator and multiply it by a
(SM).

Example: Compute a13. Here, n = 13 = 11012  
binary rep. of 13: 1 1	 		 0 1 
	 	 	 	 	 	 	 SM SM 	 S 	 SM  
accumulator: 1 12*a=a a2*a = a3 (a3)2 = a6 (a6)2*a= a13
(computed left-to-right) 

Efficiency: ⌊log2 n⌋ ≤ M(n) ≤ 2⌊log2 n⌋ 19

Left-to-Right Binary Exponentiation

Computing an (cont.)
Right-to-left binary exponentiation
Scan n’s binary expansion from right to left and compute an as the
product of terms a2 i corresponding to 1’s in this expansion.

Example Compute a13 by the right-to-left binary exponentiation.
Here, n = 13 = 11012.

	 	

Efficiency: same as that of left-to-right binary exponentiation  
21

Right-to-Left Binary Exponentiation

Horner’s rule By-products
Self Study for a Bonus 3 marks: how to use

Horner’s rule as a division algorithm:
Hint: synthetic division

Problem Reduction
This variation of transform-and-conquer solves a

problem by transforming it into a different problem
for which an algorithm is already available.

To be of practical value, the combined time of the
transformation and solving the other problem should
be smaller than solving the problem as given by
another method.  

24

Examples of Solving Problems by Reduction
• computing lcm(m, n) via computing gcd(m, n) 

• counting number of paths of length n in a graph by
raising the graph’s adjacency matrix to the n-th power 

• transforming a maximization problem to a minimization
problem and vice versa (also, min-heap construction)  

• linear programming 

• reduction to graph problems (e.g., solving puzzles via
state-space graphs)

25

Assignment 2
a. Describe an algorithm to heapify an array using

the top down approach, and compare its
performance to the bottom up algorithm
discussed.

b. If the data structure of the heap is required to be
a tree designed using pointers to left and right
children, describe the bottom up heapify, insert a
key, and delete a key algorithms, and analyse their
efficiency.

