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Lecture Learning Objectives
1. Use a Transform-and-Conquer algorithm design strategy to transform 

a problem to another easier representation such as Heap-sort, solving 
polynomials, and exponentiation. 

2. Understand how to apply a Transform-and-Conquer algorithm design 
strategy to reduce a problem to another that has an existing solution.

2



Heaps and Heapsort
Definition  A heap is a binary tree with keys at its nodes 

(one key per node) such that: 
It is essentially complete, i.e., all its levels are full 

except possibly the last level, where only some 
rightmost keys may be missing 

The key at each node is ≥ keys at its children
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Illustration of  the heap’s definition
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Note: Heap’s elements are ordered top down (along any path down from its root), but they are not ordered left to 
right
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Some Important Properties of  a Heap

• Given n, there exists a unique binary tree with n 
nodes that is essentially complete, with h = ⎣log2 n⎦ 

• The root contains the largest key 

• The subtree rooted at any node of  a heap is also a 
heap  

• A heap can be represented as an array
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Heap’s Array Representation
Store heap’s elements in an array (whose elements indexed, 

for convenience, 1 to n) in top-down left-to-right order 
Example: 

Left child of  node j is at 2j 
Right child of  node j is at 2j+1 
Parent of  node j is at ⎣j/2⎦  
Parental nodes are represented in the first ⎣n/2⎦  locations
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Step 0: Initialize the structure with keys in the order 
given 

Step 1: Starting with the last (rightmost) parental node, 
fix the heap rooted at it, if  it doesn’t satisfy the 
heap condition: keep exchanging  it with its 
largest child until the heap condition holds  

Step 2: Repeat Step 1 for the preceding parental node

Heap Construction (bottom-up)
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Example of  Heap Construction
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Construct a heap for the list 2, 9, 7, 6, 5, 8
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Pseudopodia of  bottom-up heap construction
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Insertion of  a New Element into a Heap
Insert the new element at last position in heap.  

Compare it with its parent and, if  it violates heap condition,  
exchange them 

Continue comparing the new element with nodes up the tree 
until the heap condition is satisfied 

Example:  Insert key 10 

Efficiency: O(log n)
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Heap Delete
• Exchange keys in the root and in the last (rightmost) leaf  
• Decrease heap size by 1 
• If  necessary,  swap new root with larger child until the heap 

condition holds 
Efficiency: O(log n) 

Deleting the root’s key from a heap. The key to be deleted is swapped with the last key after which the smaller tree is “heapified” by exchanging the new key in its root with the larger key in its 

children until the parental dominance requirement is satisfied.



Stage 1: Construct a heap for a given list of  n keys 

Stage 2: Repeat operation of  root removal n-1 times:

Heapsort
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Sort the list  2,  9,  7,  6,  5,  8  by heapsort
Example of  Sorting by Heapsort
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Stage 1: Build heap for a given list of  n keys 
worst-case 
         C(n) =   

 
 
Stage 2: Repeat operation of  root removal n-1 times (fix heap) 
worst-case 
         C(n) =  	 	 	 	 	 	 	  
 
Both worst-case and average-case efficiency: Θ(nlogn)  
In-place: yes  
Stability: no (e.g., 1  1)		 	

Σ 2(h-i) 2i       =   2 ( n – log2(n + 1))  ∈ Θ(n)

i=0

h-1

# nodes at level i

Σ
i=1

n-1
  2log2 i ∈ Θ(nlogn) 

Analysis of  Heapsort
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A priority queue  is the ADT of  a set of  elements with  
numerical priorities with the following operations: 
• find element with highest priority 
• delete element with highest priority 
• insert element with assigned priority (see below) 

Heap is a very efficient way for implementing priority 
queues  

Two ways to handle priority queue in which  
 highest priority = smallest number

Priority Queue
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Horner’s Rule For Polynomial Evaluation
Given a polynomial of  degree n 
	 	 	 p(x) = anxn + an-1xn-1 + … + a1x + a0 
and a specific value of  x, find the value of  p at that point. 

Two brute-force algorithms: 
p ← 0	 	 	 	 	          		 	 p ←  a0;   power ← 1 
for i ← n downto 0 do	 	    	 	 for i ← 1 to n do 
	 power ← 1 	 	 	 	   	 	 	 	 	 power ← power * x 
	 for j ← 1 to i do	 	 	 	   	 	 	 p ← p + ai * power 
	 	 	 power ← power * x            	 	 return p 
	 p ← p + ai * power 
return p 

Θ(n2)	, n2 multiplications, 	 	 	 Θ(n) with 2n multiplications   
n additions	 	 	 	 	 	 	 	 and n additions 16



Horner’s Rule

       Example: p(x) 		 = 2x4 - x3 + 3x2 + x - 5 
                                	 = x(2x3 - x2 + 3x + 1) - 5 
	 	         	 	 	 	 = x(x(2x2 - x + 3) + 1) - 5  
	 	         	 	 	 	 = x(x(x(2x - 1) + 3) + 1) - 5 
       Substitution into the last formula leads to a faster algorithm  

       Same sequence of  computations are obtained by simply  
       arranging the coefficient in a table and proceeding as follows: 
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Horner’s Rule pseudocode

Efficiency of  Horner’s Rule: # multiplications = # 
additions = n   
Synthetic division of  of  p(x) by (x-x0)  
Example: Let p(x) = 2x4 - x3 + 3x2 + x - 5.  Find p(x):(x-3) 
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Computing  an  (revisited)
Left-to-right binary exponentiation  
Initialize product accumulator by 1. 
Scan n’s binary expansion from left to right and do the following:  
If  the current binary digit is 0, square the accumulator (S);  
if  the binary digit is 1, square the accumulator and multiply it by a 
(SM). 

Example:   Compute a13.  Here, n = 13 = 11012  
binary rep. of  13:              1             1	      		 0                1 
	 	 	       	 	 	 	 SM         SM 	      S 	          SM  
accumulator:   1           12*a=a    a2*a = a3  (a3)2 = a6  (a6)2*a= a13   
(computed left-to-right) 

Efficiency:  ⌊log2 n⌋  ≤  M(n) ≤ 2⌊log2 n⌋ 19



Left-to-Right Binary Exponentiation



Computing  an  (cont.)
Right-to-left binary exponentiation  
Scan n’s binary expansion from right to left and compute an as the 
product of  terms a2 i corresponding to 1’s in this expansion.  

Example  Compute a13 by the right-to-left binary exponentiation.  
Here, n = 13 = 11012.   

	 	  

Efficiency: same as that of  left-to-right binary exponentiation  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Right-to-Left Binary Exponentiation



Horner’s rule By-products
Self  Study for a Bonus 3 marks: how to use 

Horner’s rule as a division algorithm: 
Hint: synthetic division 



Problem Reduction
This variation of  transform-and-conquer solves a 

problem by transforming it into a different problem 
for which an algorithm is already available. 

To be of  practical value, the combined time of  the 
transformation and solving the other problem should 
be smaller than solving the problem as given by 
another method.  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Examples of  Solving Problems by Reduction
• computing lcm(m, n) via computing gcd(m, n) 

• counting number of  paths of  length n in a graph by 
raising the graph’s adjacency matrix to the n-th power 

• transforming a maximization problem to a minimization 
problem and vice versa (also, min-heap construction)  

• linear programming 

• reduction to graph problems (e.g., solving puzzles via 
state-space graphs) 
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Assignment 2
a. Describe an algorithm to heapify an array using 

the top down approach, and compare its 
performance to the bottom up algorithm 
discussed. 

b. If  the data structure of  the heap is required to be 
a tree designed using pointers to left and right 
children, describe the bottom up heapify, insert a 
key, and delete a key algorithms, and analyse their 
efficiency.


