.~ Computer Algorithms

Lecture 5: Diwide-and-Conguer — Ch 5

| Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

I£:

Lecture Learning Objectives

Use a Divide & Conquer algorithm design strategy to solve an
appropriate problem such as sorting.

Divide-and-Conquer

'The most-well known algorithm design strategy:

1. Divide mstance of problem into two or more smaller
Instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

Divide-and-Conquer Technique

subproblem 1 subproblem 2
of size n/2 of size n/2

a solution to a solution to
subproblem 1 subproblem 2

a solution to
the original problem

Divide-and-Conquer Examples

* Dorting: mergesort and quicksort
* Binary tree traversals
* Multiplication of large integers

e Matrix multiplication: Strassen’s algorithm

* (losest-pair and convex-hull algorithms

* Binary search: decrease-by-half (or degenerate

divide&congq.)

5

General Divide-and-Conquer
Recurrence n can be divided into b instances of size n/b, with a

of them need to be solved.
T(n)=aT(n/b) + f(n), / (n) 1s a function that accounts for the time spent
dividing and combining,

Master Theorem If f(n) € ®(n?) where d = 0 in recurrence (5.1), then

@ (n) if a < b4,
T(m)ye{ Om?logn) ifa=>»,
@ (n'o8 @) if a > b?.

Analogous results hold for the O and € notations, too.

Examples: T(n) = 4T(n/2) +n = T(n) E?
T(n)=4T(n/2) + n?=> T(n)E?
T(n)=4T(n/2) + nw’ = T(n)E?

Mergesort

Split array A[0..n-1] 1n two about equal halves and
make copies of each half in arrays B and G

Sort arrays B and C recursively

Merge sorted arrays B and C into array A as follows:
O Repeat the following until no elements remain 1n one of the
arrays:

= compare the first elements in the remaining unprocessed portions
of the arrays

= copy the smaller of the two into A, while incrementing the index
indicating the unprocessed portion of that array

O Once all elements in one of the arrays are processed, copy the
remaining unprocessed elements from the other array into A.

Pseudocode of Mergesort

ALGORITHM Mergesort(A[0.n — 1])

/ISorts array A[0..n — 1] by recursive mergesort
/Input: An array A[0..n — 1] of orderable elements
/[Output: Array A[0..n — 1] sorted in nondecreasing order
ifn =1
copy A[0..|n/2) —1]to B[0..|n/2) — 1]
copy A[|n/2]..n —1]to C[0..[n/2] — 1]
Mergesort(B|0..|n/2] —1])
Mergesort(C|0..[n/2] —1])
Merge(B, C, A) [/see below

Pseudocode of Merge

ALGORITHM Merge(B[0..p — 1], C|0..q — 1], A[0..p + g — 1])

//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p — 1] and C[0..q — 1] both sorted
/[/Output: Sorted array A[0..p + g — 1] of the elements of B and C
i <0, j«0;, k «<0(
while i < pand j < g do

if B[i] = C[j]

Alk] « B[i]; i «i+1

else A[k] « C[j]; j <« j+1

k—k+1
Hi=p

copy C[j..q — 1]to A[k..p +q — 1]
else copy Bli..p — 1]to Alk..p + g — 1]

Mergesort Example

88888888

/\ /\
/\ /\ /\ /\
e
T

11111111

Analysis of Mergesort

@i C i) C(nilorn > 1-CGil =0

erge
Cmerge(n) s (o 1
All cases have same efhiciency: O(n log n)

Number of comparisons in the worst case 1s close to theoretical

minimum for comparison-based sorting:
[log, n!] = nlog,n -1.44n

Space requirement: O(n) (not in-place)

Can be implemented without recursion (bottom-up)

11

Quucksort

Select a pwot (partitioning element) — here, the first element

Rearrange the list so that all the elements 1n the first s positions are
smaller than or equal to the pivot and all the elements in the remaining
n-s positions are larger than or equal to the pivot (see next slide for an
algorithm)

= =N =
e

=p Ali]=zp

Exchange the pivot with the last element 1n the first (1.e., <) subarray —
the pivot 1s now 1n its final position

Sort the two subarrays recursively
12

Quicksort Pseudo-code

ALGORITHM Quicksort(All..r])

/[Sorts a subarray by quicksort
/[Input: Subarray of array A[0..n — 1]. defined by its left and right
I indices / and r
/[Output: Subarray A[/..r]| sorted in nondecreasing order
ifl <r
s «Partition(A[l..r]) /s is a split position
Quicksort(A[l..s — 1])
Quicksort(Als + 1..r])

=

Hoare's Partitioning Algorithm

ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element
/ as a pivot

//Input: Subarray of array A|0..n — 1], defined by its left and right

! indices/andr (I < r)

//Output: Partition of A|l..r|, with the split position returned as

I this function’s value

p < All]

il j<—r+1 BEoE e 2 4 7

repeat

repeati < i + luntil A[i| = p
repeat j <— j — luntil A[j]| < p
swap(A[i]. AlJ])
until / = j
swap(A[i]. Alj]) //undo last swap wheni = j
swap(A[l]. A[j])
return ; 14

Analysis of Quicksort
O e e e e SRR e e SR NS e

Worst case: sorted array! — O(n?)

. n—-1

1 .
Cave(n) = - E [(n4+1)+ Chpp(s) + Cppe(n = 1=5)] forn>1,
o g :

s=l)
Coae(0) =0, Cpye(1) =0.
Average case: random arrays — O(n log n)

Best case: split in the middle — O(n log n)

Improvements:

better pivot selection: median of three partitioning
switch to insertion sort on small subfiles
elimination of recursion

These combine to 20-25% improvement

Considered the method of choice for internal sorting of large files (n =

10000)

5

