

Computer Algorithms $\frac{1}{2}$ $\frac{1}{2}$ *Lecture 5: Divide-and-Conquer – Ch 5*

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives

1. Use a Divide & Conquer algorithm design strategy to solve an appropriate problem such as sorting.

Divide-and-Conquer

The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller instances

3

- 2. Solve smaller instances recursively
- 3. Obtain solution to original (larger) instance by combining these solutions

Divide-and-Conquer Examples

- Sorting: mergesort and quicksort
- Binary tree traversals
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Closest-pair and convex-hull algorithms
- 5 • Binary search: decrease-by-half (or degenerate divide&conq.)

General Divide-and-Conquer

Recurrence

 $T(n) = aT(n/b) + f(n),$

n can be divided into *b* instances of size *n/b*, with *a* of them need to be solved. *f (n)* is a function that accounts for the time spent dividing and combining.

6

Master Theorem If $f(n) \in \Theta(n^d)$ where $d \ge 0$ in recurrence (5.1), then

$$
T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d, \\ \Theta(n^d \log n) & \text{if } a = b^d, \\ \Theta(n^{\log_b a}) & \text{if } a > b^d. \end{cases}
$$

Analogous results hold for the O and Ω notations, too.

Examples: $T(n) = 4T(n/2) + n \Rightarrow T(n) \in ?$ $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ?$ $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in \mathbb{P}$

Mergesort

- Split array A^{[0.. *n*-1] in two about equal halves and} make copies of each half in arrays B and C
- Sort arrays B and C recursively
- Merge sorted arrays B and C into array A as follows:
	- o Repeat the following until no elements remain in one of the arrays:
		- **Example 1** compare the first elements in the remaining unprocessed portions of the arrays
		- \blacksquare copy the smaller of the two into A, while incrementing the index indicating the unprocessed portion of that array

7

o Once all elements in one of the arrays are processed, copy the remaining unprocessed elements from the other array into A.

Pseudocode of Mergesort

 $ALGORITHM$ Mergesort(A[0..n - 1])

//Sorts array $A[0..n-1]$ by recursive merges ort //Input: An array $A[0..n-1]$ of orderable elements //Output: Array $A[0..n-1]$ sorted in nondecreasing order if $n > 1$

8

copy $A[0..|n/2] - 1$ to $B[0..|n/2] - 1$ copy $A[|n/2]$... $n-1$] to $C[0..[n/2]-1]$ $Mergesort(B[0..|n/2]-1])$ $Mergesort(C[0..[n/2]-1])$ $Merge(B, C, A)$ //see below

Pseudocode of Merge

ALGORITHM $Merge(B[0..p-1], C[0..q-1], A[0..p+q-1])$

//Merges two sorted arrays into one sorted array //Input: Arrays $B[0..p-1]$ and $C[0..q-1]$ both sorted //Output: Sorted array $A[0..p+q-1]$ of the elements of B and C $i \leftarrow 0$; $j \leftarrow 0$; $k \leftarrow 0$ while $i < p$ and $j < q$ do if $B[i] \leq C[j]$ $A[k] \leftarrow B[i]; i \leftarrow i + 1$ else $A[k] \leftarrow C[j]$; $j \leftarrow j + 1$ $k \leftarrow k + 1$ if $i = p$ copy $C[j..q-1]$ to $A[k..p+q-1]$ else copy $B[i..p-1]$ to $A[k..p+q-1]$

9

Analysis of Mergesort

- $C(n) = 2C(n/2) + C_{merge}(n)$ for $n > 1$, $C(1) = 0$.
- $C_{merge}(n) = n 1$
- All cases have same efficiency: Θ(*n* log *n*)
- Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting: $\lceil \log_2 n! \rceil \approx n \log_2 n - 1.44n$
- Space requirement: Θ(*n*) (not in-place)
- Can be implemented without recursion (bottom-up)

Quicksort

- Select a *pivot* (partitioning element) here, the first element
- Rearrange the list so that all the elements in the first *s* positions are smaller than or equal to the pivot and all the elements in the remaining *n-s* positions are larger than or equal to the pivot (see next slide for an algorithm)

12

- Exchange the pivot with the last element in the first (i.e., \leq) subarray \leq the pivot is now in its final position
- Sort the two subarrays recursively

Quicksort Pseudo-code

ALGORITHM Quicksort(A[I..r])

//Sorts a subarray by quicksort

//Input: Subarray of array $A[0..n-1]$, defined by its left and right

indices l and r

 $\frac{1}{2}$

//Output: Subarray $A[l..r]$ sorted in nondecreasing order $if $l < r$$

 $s \leftarrow$ *Partition*($A[l..r]$) //s is a split position $Quicksort(A[l..s-1])$ $Quicksort(A[s+1..r])$

Hoare's Partitioning Algorithm

14

ALGORITHM *HoarePartition*(A[I..r])

```
//Partitions a subarray by Hoare's algorithm, using the first element
         as a pivot
\prime\prime//Input: Subarray of array A[0..n-1], defined by its left and right
|| indices l and r (l < r)//Output: Partition of A[l..r], with the split position returned as
\frac{1}{2} this function's value
p \leftarrow A[l]5 3 1 9 8 2 4 7i \leftarrow l; j \leftarrow r+1repeat
    repeat i \leftarrow i + 1 until A[i] \geq prepeat j \leftarrow j - 1 until A[j] \leq pswap(A[i], A[j])until i \geq jswap(A[i], A[j]) //undo last swap when i \ge jswap(A[l], A[j])return j
```
Analysis of Quicksort $C_{\text{nonrst}}(n) = (n + 1) + n + ... + 3 = ((n + 1)(n + 2) / 2) - 3 \in (n^2)$. Worst case: sorted array! — $\Theta(n^2)$
 $C_{avg}(n) = \frac{1}{n} \sum_{k=0}^{n-1} [(n+1) + C_{avg}(s) + C_{avg}(n-1-s)]$ for $n > 1$, $C_{avg}(0) = 0$, $C_{avg}(1) = 0$.
Average case: random arrays \rightarrow $\Theta(n \log n)$ Best case: split in the middle — $\Theta(n \log n)$

Improvements:

better pivot selection: median of three partitioning switch to insertion sort on small subfiles elimination of recursion

These combine to 20-25% improvement

Considered the method of choice for internal sorting of large files ($n \geq$ 10000)