
Computer Algorithms

Lecture 5: Divide-and-Conquer – Ch 5

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Divide & Conquer algorithm design strategy to solve an

appropriate problem such as sorting.

2

3

Divide-and-Conquer
The most-well known algorithm design strategy:

1. Divide instance of problem into two or more smaller
instances

2. Solve smaller instances recursively

3. Obtain solution to original (larger) instance by
combining these solutions

4

Divide-and-Conquer Technique

subproblem 2
of size n/2

subproblem 1
of size n/2

a solution to
subproblem 1

a solution to
the original problem

a solution to
subproblem 2

a problem of size n

5

Divide-and-Conquer Examples
• Sorting: mergesort and quicksort

• Binary tree traversals

• Multiplication of large integers

• Matrix multiplication: Strassen’s algorithm

• Closest-pair and convex-hull algorithms

• Binary search: decrease-by-half (or degenerate
divide&conq.)

6

General Divide-and-Conquer
Recurrence

Examples: T(n) = 4T(n/2) + n ⇒ T(n) ∈ ?
 T(n) = 4T(n/2) + n2 ⇒ T(n) ∈ ?
 T(n) = 4T(n/2) + n3 ⇒ T(n) ∈ ?

n can be divided into b instances of size n/b, with a
of them need to be solved.
f (n) is a function that accounts for the time spent
dividing and combining.

7

Mergesort
• Split array A[0..n-1] in two about equal halves and

make copies of each half in arrays B and C
• Sort arrays B and C recursively
• Merge sorted arrays B and C into array A as follows:
o Repeat the following until no elements remain in one of the

arrays:
▪ compare the first elements in the remaining unprocessed portions

of the arrays
▪ copy the smaller of the two into A, while incrementing the index

indicating the unprocessed portion of that array
o Once all elements in one of the arrays are processed, copy the

remaining unprocessed elements from the other array into A.

8

Pseudocode of Mergesort

9

Pseudocode of Merge

10

Mergesort Example
8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 7 8 9

11

Analysis of Mergesort
• C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0.

• Cmerge(n) = n − 1

• All cases have same efficiency: Θ(n log n)

• Number of comparisons in the worst case is close to theoretical
minimum for comparison-based sorting:

 ⎡log2 n!⎤ ≈ n log2 n - 1.44n

• Space requirement: Θ(n) (not in-place)

• Can be implemented without recursion (bottom-up)

12

Quicksort
• Select a pivot (partitioning element) – here, the first element

• Rearrange the list so that all the elements in the first s positions are
smaller than or equal to the pivot and all the elements in the remaining
n-s positions are larger than or equal to the pivot (see next slide for an
algorithm)

• Exchange the pivot with the last element in the first (i.e., ≤) subarray —
the pivot is now in its final position

• Sort the two subarrays recursively

p

A[i]≤p A[i]≥p

Quicksort Pseudo-code

13

14

Hoare’s Partitioning Algorithm

5 3 1 9 8 2 4 7

15

Analysis of Quicksort
Cworst(n) = (n + 1) + n + ... + 3 = ((n + 1)(n + 2) /2) − 3 ∈ (n2).

Worst case: sorted array! — Θ(n2)

Average case: random arrays — Θ(n log n)
Best case: split in the middle — Θ(n log n)
Improvements:

better pivot selection: median of three partitioning
switch to insertion sort on small subfiles
elimination of recursion
These combine to 20-25% improvement

Considered the method of choice for internal sorting of large files (n ≥
10000)

