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Lecture Learning Objectives
1. Use a Divide & Conquer algorithm design strategy to solve an 

appropriate problem such as sorting.
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Divide-and-Conquer
The most-well known algorithm design strategy: 

1.  Divide instance of  problem into two or more smaller 
instances 

2. Solve smaller instances recursively 

3. Obtain solution to original (larger) instance by 
combining these solutions
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Divide-and-Conquer Technique 

subproblem 2  
of  size n/2

subproblem 1  
of  size n/2

a solution to  
subproblem 1

a solution to 
the original problem

a solution to  
subproblem 2

a problem of  size n
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Divide-and-Conquer Examples
• Sorting: mergesort and quicksort 

• Binary tree traversals 

• Multiplication of  large integers 

• Matrix multiplication: Strassen’s algorithm 

• Closest-pair and convex-hull algorithms 

• Binary search: decrease-by-half  (or degenerate 
divide&conq.)
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General Divide-and-Conquer 
Recurrence

Examples: T(n) = 4T(n/2) + n  ⇒  T(n) ∈ ? 
                   T(n) = 4T(n/2) + n2 ⇒  T(n) ∈ ? 
                   T(n) = 4T(n/2) + n3 ⇒  T(n) ∈ ? 

n can be divided into b instances of  size n/b, with a 
of  them need to be solved.  
f  (n) is a function that accounts for the time spent 
dividing and combining.
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Mergesort
• Split array A[0..n-1] in two about equal halves and 

make copies of  each half   in arrays B and C 
• Sort arrays B and C recursively 
• Merge sorted arrays B and C into array A as follows: 
o Repeat the following until no elements remain in one of  the 

arrays: 
▪ compare the first elements in the remaining unprocessed portions 

of  the arrays 
▪ copy the smaller of  the two into A, while incrementing the index 

indicating the unprocessed portion of  that array  
o Once all elements in one of  the arrays are processed, copy the 

remaining unprocessed elements from the other array into A.
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Pseudocode of  Mergesort
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Pseudocode of  Merge
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Mergesort Example
8  3  2  9  7  1  5  4

8  3  2  9 7  1  5  4

8  3  2  9 7 1 5  4

8 3 2 9 7 1 5 4

3  8 2  9 1  7 4  5

2  3  8  9 1  4  5  7

1  2  3  4  5  7  8   9
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Analysis of  Mergesort
• C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0. 

• Cmerge(n) = n − 1 

• All cases have same efficiency: Θ(n log n)  

• Number of  comparisons in the worst case is close to theoretical 
minimum for comparison-based sorting:  

                   ⎡log2 n!⎤   ≈    n log2 n  - 1.44n 

• Space requirement: Θ(n) (not in-place) 

• Can be implemented without recursion (bottom-up)
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Quicksort
• Select a pivot (partitioning element) – here, the first element 

• Rearrange the list so that all the elements in the first s positions are 
smaller than or equal to the pivot and all the elements in the remaining 
n-s positions are larger than or equal to the pivot (see next slide for an 
algorithm) 

• Exchange the pivot with the last element in the first (i.e., ≤) subarray — 
the pivot is now in its final position 

• Sort the two subarrays recursively

p

A[i]≤p A[i]≥p



Quicksort Pseudo-code
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Hoare’s Partitioning Algorithm

5   3   1   9   8   2   4   7 
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Analysis of  Quicksort
Cworst(n) = (n + 1) + n + ... + 3 = ((n + 1)(n + 2) /2) − 3 ∈ (n2). 

Worst case: sorted array! — Θ(n2)  

Average case: random arrays — Θ(n log n) 
Best case: split in the middle — Θ(n log n)  
Improvements: 

better pivot selection: median of  three partitioning  
switch to insertion sort on small subfiles 
elimination of  recursion 
These combine to 20-25% improvement 

Considered the method of  choice for internal sorting of  large files (n ≥ 
10000)


