Computer Algorithms Ne の上
 Lecture 7: Transform-and-Conquer-Ch 6

Lecture Learning Objectives

1. Use a Transform-and-Conquer algorithm design strategy to transform a problem to a simpler form to solve such as sorting, Gaussian Elimination,
2. Use a Transform-and-Conquer algorithm design strategy to transform a problem to another easier representation such as Search Trees.

Transform and Conquer

This group of techniques solves a problem by a transformation to:
1.a simpler/more convenient instance of the same problem (instance simplification)
2.a different representation of the same instance (representation change)
3.a different problem for which an algorithm is already available (problem reduction)

| simpler instance
 or
 problem's
 instance
 or |
| :---: | :---: |
| another representation |
| another problem's instance |

Instance simplification - Presorting

Solve a problem's instance by transforming it into another simpler/easier instance of the same problem

Presorting

Many problems involving lists are easier when list is sorted, e.g.
searching
computing the median (selection problem)
checking if all elements are distinct (element uniqueness)
Also:
Topological sorting helps solving some problems for dags. Presorting is used in many geometric algorithms.

How fast can we sort?

Efficiency of algorithms involving sorting depends on efficiency of sorting.

Theorem (see Sec. 11.2): $\left\lceil\log _{2} n!\right\rceil \approx n \log _{2} n$ comparisons are necessary in the worst case to sort a list of size n by any comparison-based algorithm.

Note: About $n \log _{2} n$ comparisons are also sufficient to sort array of size n (by mergesort).

Mode

A mode is a value that occurs most often in a given list of numbers. For example, for $5,1,5,7,6,5,7$, the mode is 5 .

ALGORITHM PresortMode(A[0..n-1])
//Computes the mode of an array by sorting it first //Input: An array $A[0 . . n-1]$ of orderable elements //Output: The array's mode
sort the array A
$i \leftarrow 0 \quad$ //current run begins at position i
modefrequency $\leftarrow 0 \quad$ //highest frequency seen so far
while $i \leq n-1$ do
runlength $\leftarrow 1 ;$ runvalue $\leftarrow A[i]$
while $i+$ runlength $\leq n-1$ and $A[i+$ runlength $]=$ runvalue
runlength \leftarrow runlength +1
if runlength $>$ modef requency
modefrequency \leftarrow runlength; modevalue \leftarrow runvalue
$i \leftarrow i+$ runlength
return modevalue

Element Uniqueness with presorting

Presorting-based algorithm
Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
Stage 2: scan array to check pairs of adjacent elements
Efficiency: $\Theta(n \log n)+\mathrm{O}(n)=\Theta(n \log n)$
Brute force algorithm
Compare all pairs of elements
Efficiency: $\mathrm{O}\left(n^{2}\right)$
Another algorithm? Hashing

Searching with presorting

Problem: Search for a given K in $\mathrm{A}[0 . . n-1]$
Presorting-based algorithm:
Stage 1 Sort the array by an efficient sorting algorithm Stage 2 Apply binary search

Efficiency: $\Theta(n \log n)+\mathrm{O}(\log n)=\Theta(n \log n)$
Good or bad?
Why do we have our dictionaries, telephone directories, etc. sorted?

Instance simplification - Gaussian Elimination

Solving 2 linear equations with 2 unknowns:
$2 \mathrm{x}-3 \mathrm{y}=3,4 \mathrm{x}-2 \mathrm{y}=10$
$y=-(10-4 x) / 2$
$2 x+3((10-4 x) / 2)=3$
$\mathrm{x}=3, \mathrm{y}=1$
Given: A system of n linear equations in n unknowns with an arbitrary coefficient matrix.

Transform to: An equivalent system of n linear equations in n unknown with an upper triangular coefficient matrix.

Solve the latter by substitutions starting with the last equation and movin $\$$ up to the first one.

Gaussian Elimination (cont.)

$$
\begin{array}{crr}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} & & a_{11}^{\prime} x_{1}+a_{12}^{\prime} x_{2}+\cdots+a_{1 n}^{\prime} x_{n}=b_{1}^{\prime} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} & & a_{22}^{\prime} x_{2}+\cdots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
\vdots & \Longrightarrow & \vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n} & \Longrightarrow & a_{n n}^{\prime} x_{n}=b_{n}^{\prime}
\end{array}
$$

In matrix notations, we can write this as

$$
A x=b \Rightarrow A x=b^{\prime},
$$

where
$A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & & & \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right], b=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right], A^{\prime}=\left[\begin{array}{cccc}a_{11}^{\prime} & a_{12}^{\prime} & \ldots & a_{1 n}^{\prime} \\ 0 & a_{22}^{\prime} & \ldots & a_{2 n}^{\prime} \\ \vdots & & & \\ 0 & 0 & \ldots & a_{n n}^{\prime}\end{array}\right], b=\left[\begin{array}{c}b_{1}^{\prime} \\ b_{2}^{\prime} \\ \vdots \\ b_{n}^{\prime}\end{array}\right]$

Elementary Operations

- Exchanging two equations of the system
- Replacing an equation with its nonzero multiple
- Replacing an equation with a sum or difference of this equation and some multiple of another equation
- Gaussian Elimination:
- Make all x_{1} coefficients zeros in the equations below the first one by $a_{21} / a_{11}, a_{31} / a_{11}, \ldots a_{n 1} / a_{11}$.
- Make all x_{2} coefficients zeros in the equations below the second one by $\mathrm{a}_{32} / \mathrm{a}_{22}, \mathrm{a}_{42} / \mathrm{a}_{22}, \ldots \mathrm{a}_{\mathrm{n} 2} / \mathrm{a}_{22}$.
- Repeat for each of the first $\mathrm{n}-1$ variables to yield an uppertriangular coefficient matrix.
- Back substitute from $\mathrm{n}-1$ variable upwards.

Gaussian Elimination Example

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=1 \\
4 x_{1}+x_{2}-x_{3}=5 \\
x_{1}+x_{2}+x_{3}=0 . \\
{\left[\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
4 & 1 & -1 & 5 \\
1 & 1 & 1 & 0
\end{array}\right] \text { row } 2-\frac{4}{2} \text { row } 1} \\
\text { row } 3-\frac{1}{2} \text { row } 1 \\
{\left[\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
0 & 3 & -3 & 3 \\
0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2}
\end{array}\right] \text { row 3- } \frac{1}{2} \text { row } 2} \\
{\left[\begin{array}{rrrr}
2 & -1 & 1 & 1 \\
0 & 3 & -3 & 3 \\
0 & 0 & 2 & -2
\end{array}\right]}
\end{gathered}
$$

Now we can obtain the solution by back substitutions:
$x_{0}=(-2) / 2=-1, x_{2}=\left(3-(-3) x_{0}\right) / 3=0$, and $x=\left(1-x,-(-1) x_{2}\right) / 2=1$

Gaussian Elimination (Stage 1)

ALGORITHM ForwardElimination(A[1..n, 1..n], $b[1 . . n]$)
//Applies Gaussian elimination to matrix A of a system's coefficients, //augmented with vector b of the system's right-hand side values $/ /$ Input: Matrix $A[1 . n, 1 . . n]$ and column-vector $b[1 . . n]$ //Output: An equivalent upper-triangular matrix in place of A with the //corresponding right-hand side values in the ($n+1$)st column for $i \leftarrow 1$ to n do $A[i, n+1] \leftarrow b[i] \quad / / a u g m e n t s ~ t h e ~ m a t r i x ~$ for $i \leftarrow 1$ to $n-1$ do

$$
\text { for } j \leftarrow i+1 \text { to } n \text { do }
$$

for $k \leftarrow i$ to $n+1$ do

$$
A[j, k] \leftarrow A[j, k]-A[i, k] * A[j, i] / A[i, i]
$$

$$
\text { Example: } 2 x_{1}-4 x_{2}+x_{3}=6
$$

$$
3 x_{1}-x_{2}+x_{3}=11
$$

$$
x_{1}+x_{2}-x_{3}=-3
$$

Gaussian Elimination (Stage 2)

Algorithm BackSubstitutions
for $j \leftarrow n$ downto 1 do

```
\leftarrow
for }k\leftarrowj+1\mathrm{ to }n\mathrm{ do
t<t+A[j,k]*x[k]
    x[j]}\leftarrow(A[j,n+1]-t)/A[j,j
```

Efficiency: $\Theta\left(n^{3}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)$

Example of Gaussian Elimination

Solve

$$
\begin{array}{r}
2 x_{1}-4 x_{2}+x_{3}=6 \\
3 x_{1}-x_{2}+x_{3}=11 \\
x_{1}+x_{2}-x_{3}=-3
\end{array}
$$

-Gaussian elimination

$$
\begin{aligned}
& \left(\begin{array}{llll}
2 & -4 & 1 & 6 \\
3 & -1 & 1 & 11 \\
1 & 1 & -1 & -3
\end{array}\right) \\
& \left(\begin{array}{llll}
2 & -4 & 1 & \\
0 & 5 & -1 / 2 & 2 \\
0 & 3 & -3 / 2 & -6
\end{array}\right) 6 \\
& \begin{array}{l}
\text { row } 2-(3 / 2) * \text { row } 1 \\
\text { row } 3-(1 / 2) * \text { row } 1
\end{array} \\
& \text { row3-(3/5)*row2 } \\
& \left(\begin{array}{llll}
2 & -4 & 1 & 6 \\
0 & 5 & -1 / 2 & 2 \\
0 & 0 & -6 / 5 & -36 / 5
\end{array}\right) \\
& \text { 2. Backward substitution: } \\
& x_{3}=(-36 / 5) /(-6 / 5)=6 \\
& x_{2}=(2+((1 / 2) * 6)) / 5=1 \\
& x_{1}=(6-(1 * 6)+(4 * 1)) / 2=2
\end{aligned}
$$

Searching Problem

Problem: Given a (multi)set S of keys and a search key K, find an occurrence of K in S, if any

Searching must be considered in the context of:
file size (internal vs. external) dynamics of data (static vs. dynamic)

Dictionary operations (dynamic data): find (search) insert
delete

Taxonomy of Searching Algorithms

List searching

sequential search
binary search
interpolation search

Tree searching

binary search tree
binary balanced trees: AVL trees, red-black trees
multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

Hashing

open hashing (separate chaining)
closed hashing (open addressing)

Binary Search Tree

Arrange keys in a binary tree with the binary search tree property:

Example: 5, 3, 1, 10, 12, 7, 9

Dictionary Operations on Binary Search Trees

Searching - straightforward
Insertion - search for key, insert at leaf where search terminated
Deletion - 3 cases:
deleting key at a leaf
deleting key at node with single child
deleting key at node with two children
Efficiency depends of the tree's height: $\left\lfloor\log _{2} n\right\rfloor \leq h \leq$ $n-1$,
with height average (random files) be about $3 \log _{2} n$
Thus all three operations have
worst case efficiency: $\Theta(n)$ average case efficiency: $\boldsymbol{\Theta}(\log n)$
Bonus: inorder traversal produces sorted list

Deletion from a Binary Search Tree

Delete node with no children

Deletion from a Binary Search Tree

Delete node with one child

Deletion from a Binary Search Tree

Delete node with two children

Deletion from a Binary Search Tree

- How do we delete something from a binary search tree, ensuring that it remains a binary search tree? What is the complexity?
- First we have to find the element to delete which is $\mathrm{O}(\mathrm{h})$, then it depends on how many children the node has.
- 0 children (i.e. leaf) - Straightforward, just set pointer from parent to NULL and deallocate memory used for record of deleted node.
- 1 child - Again straightforward, replace the deleted node with its single child.
- 2 children - More complicated, replace the node with its in-order successor and delete the in-order successor (or replace the node with its in-order predecessor and delete the in-order predecessor).

Balanced Search Trees

Attractiveness of binary search tree is marred by the bad (linear) worst-case efficiency. Two ideas to overcome it are:
to rebalance binary search tree when a new insertion makes the tree "too unbalanced"
AVL trees
red-black trees
to allow more than one key per node of a search tree 2-3 trees
2-3-4 trees
B-trees

Balanced trees: AVL trees

Definition An AVL tree is a binary search tree in which, for every node, the difference between the heights of its left and right subtrees, called the balance factor, is at most 1 (with the height of an empty tree defined as -1)

Rotations

If a key insertion violates the balance requirement at some node, the subtree rooted at that node is transformed via one of the four rotations. (The rotation is always performed for a subtree rooted at an "unbalanced" node closest to the new leaf.)

Single R-rotation

Double LR-rotation, L-rotation on the left subtree of the root, then R-rotation on the root

AVL Tree Rebalancing

Consider a subtree with root node P which has balance

 factor 2Case 1 (Right right case):
Case 2 (Right left case):

(A, B, C and D are perfectly balanced subtrees)

AVL Tree Rebalancing: Right Right Case

The right right case is fixed with a single left rotation about R:

AVL Tree Rebalancing: Right left Case

The right left case is fixed with a right rotation about RL which converts the tree to a right right case, fixed as on previous slide by a further rotation:

AVL tree construction - an example
Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7
(5)

AVL tree construction - an example (cont.)

Analysis of AVL trees

$\left\lfloor\log _{2} n\right\rfloor \leq h<1.4405 \log _{2}(n+2)-1.3277$
average height: $1.01 \log _{2} n+0.1$ for large n (found empirically)

Search and insertion are $\mathrm{O}(\log n)$
Deletion is more complicated but is also $\mathrm{O}(\log n)$
Disadvantages:
frequent rotations
complexity
A similar idea: red-black trees (height of subtrees is allowed to differ b up to a factor of 2)

Multiway Search Trees

Definition A multizeay search tree is a search tree that allows more than one key in the same node of the tree.

Definition A node of a search tree is called an n-node if it contains n-1 ordered keys (which divide the entire key range into n intervals pointed to by the node's n links to its children):

Note: Every node in a classical binary search tree is a 2node

2-3 Tree

Definition A 2-3 tree is a search tree that may have 2-nodes and 3-nodes height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given, with a new key always inserted into a leaf of the tree. If the leaf is a 3-node, it's split into two with the middle key promoted to the parent.

2-3 tree construction - an example

Construct a 2-3 tree the list $9,5,8,3,2,4,7$

Analysis of 2-3 trees

$\log _{3}(n+1)-1 \leq h \leq \log _{2}(n+1)-1$

Search, insertion, and deletion are in $\Theta(\log n)$
The idea of 2-3 tree can be generalized by allowing more keys per node 2-3-4 trees
B-trees

