
Computer Algorithms

Lecture 7: Transform-and-Conquer– Ch 6

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Transform-and-Conquer algorithm design strategy to transform

a problem to a simpler form to solve such as sorting, Gaussian
Elimination,

2. Use a Transform-and-Conquer algorithm design strategy to transform
a problem to another easier representation such as Search Trees.

2

3

Transform and Conquer
This group of techniques solves a problem by a transformation

to:
1.a simpler/more convenient instance of the same problem

(instance simplification)  

2.a different representation of the same instance (representation
change) 

3.a different problem for which an algorithm is already
available (problem reduction)  

Instance simplification - Presorting
Solve a problem’s instance by transforming it into
another simpler/easier instance of the same problem

Presorting
Many problems involving lists are easier when list is sorted,

e.g.
searching
computing the median (selection problem)
checking if all elements are distinct (element uniqueness) 

Also:
Topological sorting helps solving some problems for dags.
Presorting is used in many geometric algorithms.

4

How fast can we sort ?
Efficiency of algorithms involving sorting depends on
efficiency of sorting.

Theorem (see Sec. 11.2): ⎡log2 n!⎤ ≈ n log2 n comparisons
are necessary in the worst case to sort a list of size n by
any comparison-based algorithm.  

Note: About nlog2 n comparisons are also sufficient to sort
array of size n (by mergesort).

5

Mode
A mode is a value that occurs most often in a given list

of numbers. For example, for 5, 1, 5, 7, 6, 5, 7, the
mode is 5.

Efficiency: Θ(nlog n) + O(n)
	 	 = Θ(nlog n)  

6

Element Uniqueness with presorting
Presorting-based algorithm

 Stage 1: sort by efficient sorting algorithm (e.g. mergesort)
 Stage 2: scan array to check pairs of adjacent elements

 Efficiency: Θ(nlog n) + O(n) = Θ(nlog n)  

Brute force algorithm  
 Compare all pairs of elements  
 
 Efficiency: O(n2)

Another algorithm? Hashing

7

Searching with presorting
Problem: Search for a given K in A[0..n-1]

Presorting-based algorithm:
	 Stage 1 Sort the array by an efficient sorting algorithm
 Stage 2 Apply binary search

Efficiency: Θ(nlog n) + O(log n) = Θ(nlog n)

Good or bad?
Why do we have our dictionaries, telephone directories,

etc. sorted?  
8

Instance simplification – Gaussian Elimination
Solving 2 linear equations with 2 unknowns:
2x - 3y = 3, 4x - 2y = 10
y = -(10 – 4x)/2
2x+3((10-4x)/2) = 3
x = 3, y = 1

Given: A system of n linear equations in n unknowns with an arbitrary
coefficient matrix.  

Transform to: An equivalent system of n linear equations in n unknowns
with an upper triangular coefficient matrix.  
  
Solve the latter by substitutions starting with the last equation and moving
up to the first one. 
 

9

Gaussian Elimination (cont.)

In matrix notations, we can write this as

Ax=b ⇒ A′x=b′,

where

10

Elementary Operations
• Exchanging two equations of the system
• Replacing an equation with its nonzero multiple
• Replacing an equation with a sum or difference of this

equation and some multiple of another equation

• Gaussian Elimination:
o Make all x1 coefficients zeros in the equations below the first one

by a21/a11, a31/a11, … an1/a11.
o Make all x2 coefficients zeros in the equations below the second

one by a32/a22, a42/a22, … an2/a22.
o Repeat for each of the first n-1 variables to yield an upper-

triangular coefficient matrix.
o Back substitute from n-1 variable upwards.

11

Gaussian Elimination Example

Now we can obtain the solution by back substitutions:

x
3

=(−2)/2=−1, x
2

=(3−(−3)x
3

)/3=0, and x
1

=(1−x
3
−(−1)x

2
)/2=1

Gaussian Elimination (Stage 1)

Example: 2x1 - 4x2 + x3 = 6	  
 3x1 - x2 + x3 = 11 
 x1 + x2 - x3 = -3  
 

13

Algorithm BackSubstitutions  
	 for j ← n downto 1 do

 t ← 0
 for k ← j +1 to n do
 t ← t + A[j, k] * x[k]  

 x[j] ← (A[j, n+1] - t) / A[j, j]

  
Efficiency: Θ(n3) + Θ(n2) = Θ(n3)

Gaussian Elimination (Stage 2)

14

Example of Gaussian Elimination

Solve 2x1 - 4x2 + x3 = 6 	 	 	  
 3x1 - x2 + x3 = 11  
 x1 + x2 - x3 = -3
•Gaussian elimination
2 	 -4	 1	 6
3 	 -1	 1	 11 	 	 	 row2 – (3/2)*row1
1 	1	 -1	 -3 		 	 	 row3 – (1/2)*row1

2 	 -4	 1	 	 	 6
0 	5 	 -1/2	 2
0 	3	 -3/2	 -6 		 	 row3–(3/5)*row2

2	 -4	 1 	 6
0	 5	 -1/2	 2	 	 	 	 	 	 	 2. Backward substitution:
0	 0	 -6/5	 -36/5	
	 	 	 	 	 	 	 	 	 	 	 x3 = (-36/5) / (-6/5) = 6
	 	 	 	 	 	 	 	 	 	 	 x2 = (2+((1/2)*6)) / 5 = 1
	 	 	 	 	 	 	 	 	 	 	 x1 = (6 – (1*6) + (4*1))/2 = 2

Searching Problem
Problem: Given a (multi)set S of keys and a search  

 key K, find an occurrence of K in S, if any  

Searching must be considered in the context of:
file size (internal vs. external)
dynamics of data (static vs. dynamic)

Dictionary operations (dynamic data):
find (search)
insert
delete

16

Taxonomy of Searching Algorithms
List searching

sequential search
binary search
interpolation search

Tree searching
binary search tree
binary balanced trees: AVL trees, red-black trees
multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees

Hashing
open hashing (separate chaining)
closed hashing (open addressing)

17

Binary Search Tree
Arrange keys in a binary tree with the binary search tree
property:

K

<K >K

Example: 5, 3, 1, 10, 12, 7, 9

18

Dictionary Operations on Binary Search Trees

Searching – straightforward

Insertion – search for key, insert at leaf where search terminated
Deletion – 3 cases:

deleting key at a leaf
deleting key at node with single child
deleting key at node with two children

 Efficiency depends of the tree’s height: ⎣log2 n⎦ ≤ h ≤
n-1, 
 with height average (random files) be about 3log2 n

 Thus all three operations have
 worst case efficiency: Θ(n)
 average case efficiency: Θ(log n)
 

 Bonus: inorder traversal produces sorted list

19

Deletion from a Binary Search Tree
Delete node with no children

20

Deletion from a Binary Search Tree
Delete node with one child

21

Deletion from a Binary Search Tree
Delete node with two children

22

• How do we delete something from a binary search tree,
ensuring that it remains a binary search tree? What is the
complexity?
o First we have to find the element to delete which is O(h), then

it depends on how many children the node has.
▪ 0 children (i.e. leaf) – Straightforward, just set pointer from parent to

NULL and deallocate memory used for record of deleted node.
▪ 1 child – Again straightforward, replace the deleted node with its

single child.
▪ 2 children – More complicated, replace the node with its in-order

successor and delete the in-order successor (or replace the node
with its in-order predecessor and delete the in-order
predecessor).

Deletion from a Binary Search Tree

Balanced Search Trees
Attractiveness of binary search tree is marred by the bad
(linear) worst-case efficiency. Two ideas to overcome it are:  

 to rebalance binary search tree when a new insertion  
 makes the tree “too unbalanced”

 AVL trees
 red-black trees 

 to allow more than one key per node of a search tree
 2-3 trees
 2-3-4 trees
 B-trees

24

Balanced trees: AVL trees
Definition An AVL tree is a binary search tree in which, for
every node, the difference between the heights of its left
and right subtrees, called the balance factor, is at most 1 (with
the height of an empty tree defined as -1) 
 
 
 
 

25

(a) AVL tree. (b) Binary search tree that is not an AVL tree. The numbers above the nodes indicate the nodes’ balance factors.

Rotations
If a key insertion violates the balance requirement at some
node, the subtree rooted at that node is transformed via one
of the four rotations. (The rotation is always performed for a
subtree rooted at an “unbalanced” node closest to the new
leaf.)

26

Single R-rotation Double LR-rotation, L-rotation on the left subtree of the root, then R-rotation on
the root

P

RR

R
A

B

C D

Case 2 (Right left case):

P

R
A

RL

B

C D

(A, B, C and D are perfectly balanced subtrees)

Case 1 (Right right case):

AVL Tree Rebalancing
Consider a subtree with root node P which has balance

factor 2

P

RR

R

A

B

C D

RR

R

C D

P

A B

AVL Tree Rebalancing: Right Right Case
The right right case is fixed with a single left rotation

about R:

P

R

A

RL

B

C D

P

R

RL

A

C

D B

AVL Tree Rebalancing: Right left Case
The right left case is fixed with a right rotation about

RL which converts the tree to a right right case, fixed
as on previous slide by a further rotation:

AVL tree construction - an example
Construct an AVL tree for the list 5, 6, 8, 3, 2, 4, 7

 
 
 
 
 
 

AVL tree construction - an example (cont.)

Analysis of AVL trees

average height: 1.01 log2n + 0.1 for large n (found empirically)  

Search and insertion are O(log n)  

Deletion is more complicated but is also O(log n) 

Disadvantages:
frequent rotations
complexity  

A similar idea: red-black trees (height of subtrees is allowed to differ by
up to a factor of 2)

32

Multiway Search Trees
Definition A multiway search tree is a search tree that allows  
more than one key in the same node of the tree.

Definition A node of a search tree is called an n-node if it
contains n-1 ordered keys (which divide the entire key
range into n intervals pointed to by the node’s n links to its
children): 

	 	  

Note: Every node in a classical binary search tree is a 2-
node

k1 < k2 < … < kn-1

< k1 [k1, k2) ≥ kn-1

33

2-3 Tree
Definition A 2-3 tree is a search tree that

 may have 2-nodes and 3-nodes

 height-balanced (all leaves are on the same level)

A 2-3 tree is constructed by successive insertions of keys given,
with a new key always inserted into a leaf of the tree. If the
leaf is a 3-node, it’s split into two with the middle key
promoted to the parent. 34

2-3 tree construction – an example

Construct a 2-3 tree the list 9, 5, 8, 3, 2, 4, 7

9
>

8

955, 9 5, 8, 9

8

93, 5

2, 3, 5

8

9

>

>

3, 8

92 5

3, 8

92 4, 5

3, 8

4, 5, 72 9

> 3, 5, 8

2 4 7 9

5

3

42

8

97

35

Analysis of 2-3 trees
log3 (n + 1) - 1 ≤ h ≤ log2 (n + 1) - 1

Search, insertion, and deletion are in Θ(log n)  

The idea of 2-3 tree can be generalized by allowing
more keys per node
2-3-4 trees
B-trees 

36

