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Lecture Learning Objectives
1. Use a Transform-and-Conquer algorithm design strategy to transform 

a problem to a simpler form to solve such as sorting, Gaussian 
Elimination,  

2. Use a Transform-and-Conquer algorithm design strategy to transform 
a problem to another easier representation such as Search Trees.
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Transform and Conquer
This group of  techniques solves a problem by a transformation 

to: 
1.a simpler/more convenient instance of  the same  problem 

(instance simplification)  

2.a different representation of  the same instance (representation 
change) 

3.a different problem for which an algorithm is already 
available (problem reduction)  



Instance simplification - Presorting
Solve a problem’s instance  by transforming it into 
another simpler/easier instance of  the same problem 

Presorting 
Many problems involving lists are easier when list is sorted, 

e.g. 
searching  
computing the median (selection problem) 
checking if  all elements  are distinct (element uniqueness) 

Also:  
Topological sorting helps solving some problems for dags. 
Presorting is used in many geometric algorithms.
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How fast can we sort ?
Efficiency of  algorithms involving sorting depends on 
efficiency of  sorting. 

Theorem (see Sec. 11.2):  ⎡log2 n!⎤ ≈ n log2 n  comparisons 
are necessary in the worst case to sort a list of  size n by 
any comparison-based algorithm.  

Note: About nlog2 n comparisons are also sufficient to sort 
array of  size n (by mergesort).
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Mode
A mode is a value that occurs most often in a given list 

of  numbers. For example, for 5, 1, 5, 7, 6, 5, 7, the 
mode is 5. 

Efficiency: Θ(nlog n) + O(n)  
	 	      = Θ(nlog n)  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Element Uniqueness with presorting
Presorting-based algorithm 

 Stage 1: sort by efficient sorting algorithm (e.g. mergesort) 
 Stage 2: scan array to check pairs of  adjacent elements 

 Efficiency: Θ(nlog n) + O(n) = Θ(nlog n)  

Brute force algorithm  
  Compare all pairs of  elements  
 
  Efficiency: O(n2)  

Another algorithm?  Hashing
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Searching with presorting
Problem: Search for a given K in A[0..n-1]  

Presorting-based algorithm: 
	 Stage 1  Sort the array by an efficient sorting algorithm 
    Stage 2  Apply binary search  

Efficiency: Θ(nlog n) + O(log n) = Θ(nlog n)  

Good or bad? 
Why do we have our dictionaries, telephone directories, 

etc. sorted?  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Instance simplification – Gaussian Elimination
Solving 2 linear equations with 2 unknowns: 
2x - 3y = 3, 4x - 2y = 10 
y = -(10 – 4x)/2 
2x+3((10-4x)/2) = 3 
x = 3, y = 1  

Given: A system of  n linear equations in n unknowns with an arbitrary 
coefficient matrix.  

Transform to: An equivalent system of  n linear equations in n unknowns 
with an upper triangular coefficient matrix.  
  
Solve the latter by substitutions starting with the last equation  and moving 
up to the first one. 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Gaussian Elimination (cont.)

In matrix notations, we can write this as 

Ax=b ⇒ A′x=b′, 

where
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Elementary Operations
• Exchanging two equations of  the system  
• Replacing an equation with its nonzero multiple  
• Replacing an equation with a sum or difference of  this 

equation and some multiple of  another equation  

• Gaussian Elimination: 
o Make all x1 coefficients zeros in the equations below the first one 

by a21/a11, a31/a11, … an1/a11.  
o Make all x2 coefficients zeros in the equations below the second 

one by a32/a22, a42/a22, … an2/a22. 
o Repeat for each of  the first n-1 variables to yield an upper-

triangular coefficient matrix. 
o Back substitute from n-1 variable upwards.
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Gaussian Elimination Example

Now we can obtain the solution by back substitutions: 

x
3

=(−2)/2=−1, x
2

=(3−(−3)x
3

)/3=0, and x
1

=(1−x
3
−(−1)x

2
)/2=1



Gaussian Elimination (Stage 1)

Example:   2x1 - 4x2  + x3 =   6	          
               3x1 -   x2    + x3 = 11 
                 x1 +  x2    -  x3 = -3  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Algorithm BackSubstitutions  
	 for j ← n downto 1 do 

      t ← 0 
      for k ← j +1 to n do 
            t ← t + A[j, k] * x[k]  

      x[j] ← (A[j, n+1] - t) / A[j, j]  

  
Efficiency: Θ(n3) + Θ(n2) = Θ(n3)

Gaussian Elimination (Stage 2)
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Example of  Gaussian Elimination

Solve        2x1 - 4x2  + x3 =   6  	 	 	          
                 3x1 -   x2    + x3 = 11  
                   x1 +  x2    -  x3 = -3  
•Gaussian elimination 
2  	 -4	 1	 6  
3  	 -1	 1	 11  	 	 	 row2 – (3/2)*row1 
1   	1	 -1	 -3  		 	 	 row3 – (1/2)*row1 

2  	 -4	 1	 	 	 6  
0   	5  	 -1/2	 2  
0   	3	 -3/2	 -6  		 	 row3–(3/5)*row2 

2	 -4	 1     	 6 
0	 5	 -1/2	 2	 	 	 	 	 	 	 2. Backward substitution: 
0	 0	 -6/5	 -36/5	  
	 	 	 	 	 	 	 	 	 	 	 x3 = (-36/5) / (-6/5) = 6 
	 	 	 	 	 	 	 	 	 	 	 x2 = (2+((1/2)*6)) / 5 = 1 
	 	 	 	 	 	 	 	 	 	 	 x1 = (6 – (1*6) + (4*1))/2 = 2



Searching Problem
Problem: Given a (multi)set S of  keys  and a search   

             key K, find an occurrence of  K in S, if  any  

Searching must be considered in the context of: 
file size (internal vs. external) 
dynamics of  data (static vs. dynamic) 

Dictionary operations (dynamic data): 
find (search) 
insert 
delete
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Taxonomy of  Searching Algorithms
List searching 

sequential search 
binary search 
interpolation search 

Tree searching  
binary search tree 
binary balanced trees: AVL trees, red-black trees 
multiway balanced trees: 2-3 trees, 2-3-4 trees, B trees 

Hashing 
open hashing (separate chaining) 
closed hashing (open addressing)
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Binary Search Tree
Arrange keys in a binary tree with the binary search tree  
property:

K

<K >K

Example: 5, 3, 1, 10, 12, 7, 9

18



Dictionary Operations on Binary Search Trees

Searching – straightforward 

Insertion – search for key, insert at leaf  where search terminated 
Deletion – 3 cases: 

deleting key at a leaf  
deleting key at node with single child 
deleting key at node with two children 

 Efficiency depends of  the tree’s height: ⎣log2 n⎦  ≤  h  ≤  
n-1, 
 with height  average (random files) be about 3log2 n 

 Thus all three operations have 
  worst case efficiency: Θ(n)  
  average case efficiency: Θ(log n)  
 

 Bonus: inorder traversal produces sorted list
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Deletion from a Binary Search Tree
Delete node with no children
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Deletion from a Binary Search Tree
Delete node with one child
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Deletion from a Binary Search Tree
Delete node with two children
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• How do we delete something from a binary search tree, 
ensuring that it remains a binary search tree? What is the 
complexity? 
o First we have to find the element to delete which is O(h), then 

it depends on how many children the node has. 
▪ 0 children (i.e. leaf) – Straightforward, just set pointer from parent to 

NULL and deallocate memory used for record of  deleted node. 
▪ 1 child – Again straightforward, replace the deleted node with its 

single child. 
▪ 2 children – More complicated, replace the node with its in-order 

successor and delete the in-order successor (or replace the node 
with its in-order predecessor and delete the in-order 
predecessor ).

Deletion from a Binary Search Tree



Balanced Search Trees 
Attractiveness of  binary search tree is marred by the bad 
(linear) worst-case efficiency.  Two ideas to overcome it are:  

  to rebalance binary search tree when a new insertion  
    makes the tree “too unbalanced” 

 AVL trees 
 red-black trees 

   to allow more than one key per node of  a search tree 
 2-3 trees 
 2-3-4 trees 
 B-trees
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Balanced trees:  AVL trees
Definition   An AVL tree is a binary search tree in which, for 
every node, the difference between the heights of  its left 
and right subtrees, called the balance factor, is at most 1 (with 
the height of  an empty tree defined as -1) 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(a) AVL tree. (b) Binary search tree that is not an AVL tree. The numbers above the nodes indicate the nodes’ balance factors.



Rotations
If  a key insertion violates the balance requirement at some 
node, the subtree rooted at that node is transformed via one 
of  the four rotations.  (The rotation is always performed for a 
subtree rooted at an “unbalanced” node closest to the new 
leaf.)
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Single R-rotation Double LR-rotation, L-rotation on the left subtree of  the root, then R-rotation on 
the root
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Case 2 (Right left case):

P

R
A
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C D

(A, B, C and D are perfectly balanced subtrees)

Case 1 (Right right case):

AVL Tree Rebalancing
Consider a subtree with root node P which has balance 

factor 2
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AVL Tree Rebalancing: Right Right Case
The right right case is fixed with a single left rotation 

about R:
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AVL Tree Rebalancing: Right left Case
The right left case is fixed with a right rotation about 

RL which converts the tree to a right right case, fixed 
as on previous slide by a further rotation:



AVL tree construction - an example
Construct an AVL tree for the list  5, 6, 8, 3, 2, 4, 7  

 
 
 
 
 
 



AVL tree construction - an example (cont.)



Analysis of  AVL trees

average height: 1.01 log2n +  0.1 for large n (found empirically)  

Search and insertion are O(log n)  

Deletion is more complicated but is also O(log n) 

Disadvantages:  
frequent rotations 
complexity  

A similar idea: red-black trees (height of  subtrees is allowed to differ by 
up to a factor of  2) 

32



Multiway Search Trees
Definition   A multiway search tree is a search tree that allows  
more than one key in the same node of  the tree. 

Definition   A node of  a search tree is called an n-node if  it 
contains n-1 ordered keys (which divide the entire key 
range into n intervals pointed to by the node’s  n links to its 
children): 

	 	  

                                                                                                    

Note: Every node in a classical binary search tree is a 2-
node

k1  <  k2  < … <  kn-1

< k1 [k1, k2 ) ≥ kn-1
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2-3 Tree 
Definition   A 2-3 tree is a search tree that 

  may have 2-nodes and 3-nodes 

  height-balanced (all leaves are on the same level) 

A 2-3 tree is constructed by successive insertions of  keys given, 
with a new key always inserted into a leaf  of  the tree.  If  the 
leaf  is a 3-node, it’s split into two with the middle key 
promoted to the parent. 34



2-3 tree construction – an example

Construct a 2-3 tree the list  9, 5, 8, 3, 2, 4, 7 

9
>

8

955, 9 5, 8, 9

8

93, 5

2, 3, 5

8

9

>

>

3, 8

92 5

3, 8

92 4, 5

3, 8

4, 5, 72 9

> 3, 5, 8

2 4 7 9

5

3

42

8

97
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Analysis of  2-3 trees
log3 (n + 1) - 1 ≤ h   ≤  log2 (n + 1)  - 1 

Search, insertion, and deletion are in Θ(log n)  

The idea of  2-3 tree can be generalized by allowing 
more keys per node  
2-3-4 trees  
B-trees 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