Arab Academy for Science & Technology and Maritime Transport (AASTMT) **College of Computing and Information Technology (CCIT)** Computing Alg. CS312 - Spring 2014

Dr. Manal Helal **Eng. Mohamed Moheeb**

Section 10 - May, 25, 2014

Q1. Solve the following linear programming problems geometrically.

a. maximize 3x + y

> subject to $-x+y \le 1$

> > $2x + y \le 4$

 $x \ge 0, y \ge 0$

b. maximize x + 2y

> subject to $4x \ge y$

> > y≤3+x

 $x \ge 0$, $y \ge 0$

Hint:

Sketch the feasible region of the problem in question. Follow this up by either applying the Extreme-Point Theorem or by inspecting level lines, whichever is more appropriate. Both methods were illustrated in the text.

Q2.		
Trace the sin	nplex method on the problem of Exercise Q1 (a. and b).	
Then use the	e online visualization tool on:	
http://www	.mathstools.com/section/main/simplex_online#	
and trace the	e source code uploaded on moodle	
Hint:		
Trace the sir	mplex method on the instances given, as was done for an exampl	e in