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Lecture Learning Objectives
1. Use a Dynamic Programming algorithm design strategy to solve 

problems such as optimisation problems, graph problems and 
optionally optimal binary search trees construction, 
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Dynamic Programming  

 Dynamic Programming  is  a general algorithm design technique for 
solving problems defined by recurrences with overlapping 
subproblems, in which an optimal solution is related to the 
optimality of  the subproblems. 

•  Invented by American mathematician Richard Bellman in the  
1950s to solve optimization problems and later assimilated by CS 

•  “Programming” here means “planning” 
• Main idea: 
o set up a recurrence relating a solution to a larger instance  to 

solutions of  some smaller instances 
o solve smaller instances once 
o record solutions in a table  
o extract solution to the initial instance from that table



•  Recall definition of  Fibonacci numbers: 
F(n) = F(n-1) + F(n-2) 
F(0) = 0 
F(1) = 1 

• Computing the nth Fibonacci number  
recursively (top-down): 
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Example 1: Fibonacci numbers  



Iterative Fibonacci



Fibonacci Efficiency

Constant φ is known as the golden ratio. The most pleasing ratio of  a rectangle’s two sides to the human eye. 

Therefore the recursive algorithm computes F(n) by recursively adding F(n-1) +  F(n-2)  for each element from 2 : n, leading to 
additions A(n) ∈ Θ(φn) 

Applying the homogeneous second-order linear recurrence with constant coefficients theorem to our recurrence with the initial 
conditions given—see Appendix B—we obtain the formula :



Fibonacci Efficiency – Cont’d
The Iterative Algorithm makes n − 1 additions , therefore its efficiency is  Θ(n). We can also save space by storing the last two 
values in the sequence instead of  a complete array of  n size.  

We can also calculate F(n) using the formula: 

Using a brute force exponentiation algorithm with efficiency Θ(n) , or the use Horner’s rule for binary exponentiation with 
efficiency Θ(log n) 



Example 2:  Coin-row problem
There is a row of  n coins whose values are some positive integers 

c₁, c₂,...,cn, not necessarily distinct. The goal is to pick up the 
maximum amount of  money subject to the constraint that no 
two coins adjacent in the initial row can be picked up. 

E.g.:  5,  1,  2,  10,  6,  2.  What is the best selection?
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Let F(n) be the maximum amount that can be picked up from 
the row of  n coins.  To derive a recurrence for F(n), we 
partition all the allowed coin selections into two groups:  

those without last coin  – the max amount is ?  
those with the last coin -- the max amount is ?
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DP solution to the coin-row problem
Thus we have the following recurrence  

 F(n)  = max{cn + F(n-2),  F(n-1)}  for n > 1,  

 F(0)  = 0,  F(1)=c₁
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DP solution to the coin-row problem (cont.)

index 0      1      2 3     4     5     6

coins --      5      1     2    10     6     2

F( )

F(n)  = max{cn + F(n-2),  F(n-1)}  	 	 	 	 	 for n > 1,  
F(0)  = 0,  	 F(1)=c₁

Max amount:  
Coins of  optimal solution:  
Time efficiency: 
Space efficiency: 

Note: All smaller instances were solved.

0 5 5 7 15 15 17

17

backTrace, or store as you go: c6, c4, c1.
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Example 3: Change Making
Give change for amount n using the minimum number 
of  coins of  denominations d1 < d2 < . . . < dm, where d1 
= 1 
Let F(n) be the minimum number of  coins whose values add up to n; define F (0) = 0; and consider all coins to minimise F(n − dj)  
for all j = 1 ... m.  
Example: n = 6 and denominations d1 = 1, d2 = 3, d3 = 4:  

 

n 0      1      2 3     4     5     6

F( ) 0 1 2 1 1 2 2



DP Change Making
F(0) = 0   
F(j) = 1 + MIN (F(i-dj))   
where (1 <= j <= m) and (i-dj >= 0) and (0 <= i <= n) 

1. j goes from 1 to m because we have m coin denominations (d1 .. dm). 
2. (i-dj >= 0) because money values can not be negative so we exclude those (dj) 

values that yield negative value of  (i-dj). 
3. (0 <= i <= n) means i can be any values less than or equal to the money 

amount we need to make change for. 
4.Note also that sub problems are overlapping for example F(i-dj) represents 

one or more values depending on the value of  (j) but not all values are 
calculated every single time from the scratch. Values are saved in F(i) then 
looked up whenever needed. 



Change Making DP Algorithm

Number of  Coins: 2  
Time efficiency:   Θ (nm) 
Space efficiency: Θ(n)



Tracing for n = 9 and denominations {1, 3, 6, 
7}  

F(1) = 1 + MIN (F(1-1))    
     = 1 + MIN (F(0))    
     = 1 + 0    
     = 1   
   
F(2) = 1 + MIN (F(2-1))    
     = 1 + MIN (F(1))    
     = 1 + MIN (1)    
     = 2   
   
F(3) = 1 + MIN (F(3-1), F(3-3))    
     = 1 + MIN (F(2), F(0))    
     = 1 + MIN (2, 0)    
     = 1   
   
F(4) = 1 + MIN (F(4-1), F(4-3))    
     = 1 + MIN (F(3), F(1))    
     = 1 + MIN (1, 1)    
     = 2   
   
F(5) = 1 + MIN (F(5-1), F(5-3))    
     = 1 + MIN (F(4), F(2))    
     = 1 + MIN (2, 2)    
     = 3   
  

F(6) = 1 + MIN (F(6-1), F(6-3), F(6-6))    
     = 1 + MIN (F(5), F(3), F(0))    
     = 1 + MIN (3, 1, 0)    
     = 1   
   
F(7) = 1 + MIN (F(7-1), F(7-3), F(7-6), F(7-7))    
     = 1 + MIN (1, 2, 1, 0)    
     = 1   
   
F(8) = 1 + MIN (F(8-1), F(8-3), F(8-6), F(8-7))    
     = 1 + MIN (1, 3, 2, 1)    
     = 2   
   
F(9) = 1 + MIN (F(9-1), F(9-3), F(9-6), F(9-7))    
     = 1 + MIN (2, 1, 1, 2)    
     = 2  



Example 4: Coin-Collecting by robot
Several coins are placed in cells of  an n×m board.  A robot, located 
in the upper left cell of  the board, needs to collect as many of  the 
coins as possible and bring them to the bottom right cell.  On each 
step, the robot can move either one cell to the right or one cell down 
from its current location. 

1 2 3 4 5 6

1

2

3

4

5

Let F (i, j ) be the largest number of  
coins, coming from either F(i-1, j) or 
F(i, j-1): 

F(i,j)=max{F(i−1,j),F(i,j−1)}+cij 	 	
for1≤i≤n, 1≤j≤m 

F(0,j)=0 for1≤j≤m 		 	  

F(i,0)=0 	 	 for1≤i≤n,  



Coin-Collecting  DP Algorithm

Time efficiency:   Θ (nm) 
Space efficiency: Θ(nm)



Example 4: Solution
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Example 5: Path counting
Consider the problem of  
counting the number of  
shortest paths from point 
A to point B in a city with 
perfectly horizontal streets 
and vertical avenues

A

B

1



Other examples of  DP algorithms
 Computing a binomial coefficient (# 9, Exercises 8.1) 

  Some difficult discrete optimization problems: 
   - knapsack (Sec. 8.2) 
   - traveling salesman 

  Constructing an optimal binary search tree (Sec. 8.3) 

  Warshall’s algorithm for transitive closure  (Sec. 8.4) 
  Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)
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The 0/1 Knapsack Problem
Given: A set S of  n items, with each item i having 

wi - a positive weight 
vi - a positive benefit 

Goal: Choose items with maximum total benefit but with weight 
at most W. 

If  we are not allowed to take fractional amounts, then this is the 
0/1 knapsack problem. 
In this case, we let T denote the set of  items we take 

Objective: maximize 

Constraint:

∑
∈Ti

iv

∑
∈

≤
Ti

i Ww
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Given: A set S of  n items, with each item i having 
bi - a positive “benefit” 
wi - a positive “weight” 

Goal: Choose items with maximum total benefit but with weight at 
most W.

Example

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of  width 9 in
Solution: 

• item 5 ($80, 2 in) 
• item 3 ($6, 2in) 
• item 1 ($20, 4in)

“knapsack”
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A 0/1 Knapsack Algorithm, First 
Attempt

Sk: Set of  items numbered 1 to k. 
Define F[k] = best selection from Sk. 
Problem: does not have subproblem optimality: 

Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of  
(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:
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A 0/1 Knapsack Algorithm, Second 
Attempt

Sk: Set of  items numbered 1 to k. 
Define F[k,w] to be the best selection from Sk with weight at most 

w 
Good news: this does have subproblem optimality. 

I.e., the best subset of  Sk with weight at most w is either  
the best subset of  Sk-1 with weight at most w or  
the best subset of  Sk-1 with weight at most w−wk plus item k

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

vwwkFwkF
wwwkF

wkF



24

Knapsack Problem by DP
Consider instance defined by first i items and capacity j (j ≤ 
W), and value of  optimal solution F(i, j) to be the subset of  
most valuable subset of  the first i items that fit into knapsack 
of  capacity j...
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0/1 Knapsack Algorithm
Consider set S={(1,1),(2,2),(4,3),(2,2),(5,5)}  of  (benefit, weight) pairs and 

total weight W = 10
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0/1 Knapsack Algorithm
Trace back to find the items picked
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0/1 Knapsack Algorithm
Each diagonal arrow corresponds to adding one item into the bag 
Pick items 2,3,5 
{(2,2),(4,3),(5,5)} are what you will take away
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DP Knapsack Problem (example 2)

	 	 	 	 	 	 	 	 	 	 	      capacity j 

	 	                                  items i		 0   1   2   3   4     5 

	                                           		 	 0 

	 	 w1 = 2, v1= 12    		 	 1 
	 	 w2 = 1, v2= 10    		 	 2 
	 	 w3 = 3, v3= 20    		 	 3 
	 	 w4  = 2, v4= 15   		 	 4	 	 	        	 	 	 ?	



DP Knapsack Problem (example 2)
F(4, 5) = $37  
Items: 4, 2, 1  
Time efficiency:   Θ (nW) 
Space efficiency: Θ (nW) 
backTrace: O (n)

>

=

>

>



Knapsack Problem Bottom-up DP Memory 
Functions



Knapsack Problem by DP (example)
F(4, 5) = $37  
Items: 4, 2, 1  
Time efficiency:   Θ (nW) 
Space efficiency: Θ (nW) 
backTrace: O (n)
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0/1 Knapsack Algorithm

Recall the definition of  B[k,w] 
Since B[k,w] is defined in terms of  

B[k−1,*], we can use two arrays 
of  instead of  a matrix 

Running time: O(nW). 
Not a polynomial-time algorithm 

since W may be large 
This is a pseudo-polynomial time 

algorithm

Algorithm 01Knapsack(S, W): 
 Input: set S of n items with benefit bi    
 and weight wi; maximum weight W 
 Output: benefit of best subset of S with   
  weight at most W 
 let A and B be arrays of length W + 1 
 for w ← 0 to W do 

 B[w] ← 0  
for k ← 1 to n do 
 copy array B into array A  
 for w ← wk to W do 
  if A[w−wk] + bk > A[w] then 
    B[w] ← A[w−wk] + bk  
return B[W]   

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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Longest Common Subsequence
Given two strings, find a longest subsequence that they share 
substring vs. subsequence of  a string 

Substring: the characters in a substring of  S must occur contiguously in S 
Subsequence: the characters can be interspersed with gaps. 

Consider ababc and abdcb 

alignment 1 
ababc. 
abd.cb 
  the longest common subsequence is ab..c with length 3 
alignment 2 
aba.bc 
abdcb. 
  the longest common subsequence is ab..b with length 3



Let’s give a score M an alignment in this way, 
 M=sum s(xi,yi), where xi is the i character in the first aligned 
sequence 
    yi is the i character in the second aligned sequence 
  s(xi,yi)= 1 if xi= yi 

    s(xi,yi)= 0 if xi≠yi or any of them is a gap 

The score for alignment: 
 ababc. 
 abd.cb 

M=s(a,a)+s(b,b)+s(a,d)+s(b,.)+s(c,c)+s(.,b)=3 

To find the longest common subsequence between sequences S1 
and S2 is to find the alignment that maximizes score M.
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Longest Common Subsequence



35

Longest Common Subsequence

Subproblem optimality 
Consider two sequences  

Let the optimal alignment be 
	 	 x1x2x3…xn-1xn 
	 	 y1y2y3…yn-1yn 

There are three possible cases  
	 	 for the last pair (xn,yn): 

S1:  a1a2a3…ai 
S2:  b1b2b3…bj
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Longest Common Subsequence

Mi,j = MAX {Mi-1, j-1 + S (ai,bj) (match/mismatch) 
          Mi,j-1 + 0 (gap in sequence #1) 
          Mi-1,j + 0 (gap in sequence #2)      } 

Mi,j is the score for optimal alignment between strings a[1…i] (substring of a from index 1 to 
i) and b[1…j] 

S1:  a1a2a3…ai 
S2:  b1b2b3…bj     

There are three cases for (xn,yn) pair: 

x1x2x3…xn-1xn 
y1y2y3…yn-1yn
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Examples: 
G A A T T C A G T T A (sequence #1)  
G G A T C G A (sequence #2) 

s(ai,bj)= 1 if ai=bj 
s(ai,bj)= 0 if ai≠bj or any of them is a gap 

Mi,j = MAX { 
          Mi-1, j-1 + S(ai,bj) 
          Mi,j-1 + 0 
          Mi-1,j + 0 
         } 

Longest Common Subsequence



Longest Common Subsequence

M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1 

Fill the score matrix M and trace back table B

Score matrix M Trace back table B
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Longest Common Subsequence
Score matrix M Trace back table B

M7,11=6 (lower right corner of  Score matrix) 
This tells us that the best alignment has a score of  6 
What is the best alignment? 
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Longest Common Subsequence

We need to use trace back table to find out the best alignment, 
which has a score of  6

(1)Find the path from 
lower right  

corner to upper left 
corner



41

Longest Common Subsequence

(2) At the same time, write down the alignment backward

S1

S2

:Take one character from 
each sequence

:Take one character from 
sequence S1 (columns)

:Take one character from 
sequence S2 (rows)
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Longest Common Subsequence

:Take one character from 
each sequence

:Take one character from 
sequence S1 (columns)

:Take one character from 
sequence S2 (rows)
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Longest Common Subsequence
Thus, the optimal alignment is  

The longest common subsequence is   
G.A.T.C.G..A 

There might be multiple longest common subsequences (LCSs)  
between two given sequences.  

These LCSs have the same number of  characters (not include gaps)
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Longest Common Subsequence
Algorithm LCS (string A, string B) { 
Input strings A and B 
Output the longest common subsequence of  A and B 

	 M: Score Matrix 
	 B: trace back table (use letter a, b, c for                 ) 
	 n=A.length() 
	 m=B.length() 
	 // fill in M and B	 
	 for (i=0;i<m+1;i++) 
	     for (j=0;j<n+1;j++) 
	 	 if  (i==0) || (j==0)  
	 	 	 then M(i,j)=0; 
	 	 else if  (A[i]==B[j])	  
	 	      M(i,j)=max {M[i-1,j-1]+1, M[i-1,j], M[i,j-1]} 
	              {update the entry in trace table B} 
	 	 else  
	 	     M(i,j)=max {M[i-1,j-1], M[i-1,j], M[i,j-1]} 
	 	    {update the entry in trace table B} 

	 then use trace back table B to print out the optimal alignment 
	 …
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Warshall’s  Algorithm: Transitive Closure

• Computes the transitive closure of  a relation 
• Alternatively: existence of  all nontrivial paths in a digraph 
• Example of  transitive closure: 

3

4
2

1

0  0  1  0 
1  0  0  1 
0  0  0  0 
0  1  0  0

0  0  1  0 
1  1  1  1 
0  0  0  0 
1  1  1  1

3

4
2

1
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Warshall’s  Algorithm
Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices  
R(0), … , R(k), … , R(n)  where 
R(k)[i,j] = 1 iff there is nontrivial path from i to j  with only first k vertices allowed as 
intermediate  
Note that R(0) = A (adjacency matrix), R(n)

 = T  (transitive closure) 

3

42

1
3

42

1

     R(0) 

0  0  1  0 
1  0  0  1 
0  0  0  0 
0  1  0  0

     R(1) 

0  0  1  0 
1  1  1  1 
0  0  0  0 
1  1  0  1 

     R(2) 

0  0  1  0 
1  1  1  1 
0  0  0  0 
1  1  0  1

     R(3) 

0  0  1  0 
1  1  1  1 
0  0  0  0 
1  1  1  1

     R(4) 

0  0  1  0 
1  1  1  1 
0  0  0  0 
1  1  1  1

3

42

1
3

42

1
3

42

1
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Warshall’s  Algorithm (recurrence)
On the k-th iteration, the algorithm determines for every pair of  vertices i, j  if  a path exists from i and j with just vertices 1,…,k 
allowed as intermediate 

  	 	 	 	 R(k-1)[i,j]               	 (path using just 1 ,…,k-1) 
R(k)[i,j] = 	 	 	 	 	 	 	 	 	 	 or  

      R(k-1)[i,k]  and R(k-1)[k,j]   (path from i to k  
                                               and from k to i using  
	 	 	 	 	 	 	 	 	 	 	 just 1 ,…,k-1) 

i

j

k

{
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Warshall’s  Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of  R(k-1) is:  
R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1): 
•Rule 1  If  an element in row i and column j is 1 in R(k-1),  it remains 1 in R(k) 
•Rule 2  If  an element in row i and column j is 0 in R(k-1), it has to be changed to 1 in R(k) if  and only if  the element in its row i and 
column k and the element in its column j and row k are both 1’s in R(k-1) 
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Warshall’s Algorithm (example)
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Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3) 

Space efficiency: Matrices can be written over their predecessors
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Floyd’s Algorithm: All pairs shortest paths

Problem:    In a weighted (di)graph, find shortest paths between every pair of  vertices 

Same idea: construct solution through series of  matrices D(0), …, D (n) using increasing subsets of  the vertices allowed  as intermediate 

Example:

3

4
2

1

4

1
6 1

5

3
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Floyd’s Algorithm (matrix generation)
On the k-th iteration, the algorithm determines shortest paths between every 
pair of vertices i, j that use only vertices among 1,…,k as intermediate 

                D(k)[i,j] =  min {D(k-1)[i,j],  D(k-1)[i,k]  + D(k-1)[k,j]} 

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]
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Floyd’s Algorithm (example)
0   ∞  3   ∞ 2   0   ∞  ∞ 
∞  7   0   1 
6   ∞  ∞  0

D(0)  = 

0   ∞  3   ∞  
2   0   5   ∞ 
∞  7   0   1 
6   ∞  9   0D(1)  =

0   ∞  3   ∞ 
2   0   5   ∞ 
9   7   0   1 
6   ∞  9   0D(2)  =

0  10  3  4 
2   0   5  6 
9   7   0  1 
6  16  9  0 D(3)  =

0  10  3  4 
2   0   5  6 
7   7   0  1 
6  16  9  0D(4)  =

3 1

3

2

6 7

4

1 2
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Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3) 

Space efficiency: Matrices can be written over their predecessors 

Note: Shortest paths themselves can be found, too (Problem 10)



Assignment 3
Consider the change making problem,  design the 

trace back algorithm, or rewrite the algorithm to 
return the coins indices as well.



Bonus Assignment 2

Consider the knapsack problem,  design the trace 
back algorithm, or rewrite the algorithm to return 
the coins indices as well. – 2 marks


