
Computer Algorithms

Lecture 10: Dynamic Programming – Ch 8

Dr. Manal Helal, Spring 2014.	 	 	 	 	 	 	 http://moodle.manalhelal.com

Lecture Learning Objectives
1. Use a Dynamic Programming algorithm design strategy to solve

problems such as optimisation problems, graph problems and
optionally optimal binary search trees construction,

2

Dynamic Programming

 Dynamic Programming is a general algorithm design technique for
solving problems defined by recurrences with overlapping
subproblems, in which an optimal solution is related to the
optimality of the subproblems.

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”
• Main idea:
o set up a recurrence relating a solution to a larger instance to

solutions of some smaller instances
o solve smaller instances once
o record solutions in a table
o extract solution to the initial instance from that table

• Recall definition of Fibonacci numbers:
F(n) = F(n-1) + F(n-2)
F(0) = 0
F(1) = 1

• Computing the nth Fibonacci number
recursively (top-down):

4

Example 1: Fibonacci numbers

Iterative Fibonacci

Fibonacci Efficiency

Constant φ is known as the golden ratio. The most pleasing ratio of a rectangle’s two sides to the human eye.

Therefore the recursive algorithm computes F(n) by recursively adding F(n-1) + F(n-2) for each element from 2 : n, leading to
additions A(n) ∈ Θ(φn)

Applying the homogeneous second-order linear recurrence with constant coefficients theorem to our recurrence with the initial
conditions given—see Appendix B—we obtain the formula :

Fibonacci Efficiency – Cont’d
The Iterative Algorithm makes n − 1 additions , therefore its efficiency is Θ(n). We can also save space by storing the last two
values in the sequence instead of a complete array of n size.

We can also calculate F(n) using the formula:

Using a brute force exponentiation algorithm with efficiency Θ(n) , or the use Horner’s rule for binary exponentiation with
efficiency Θ(log n)

Example 2: Coin-row problem
There is a row of n coins whose values are some positive integers

c₁, c₂,...,cn, not necessarily distinct. The goal is to pick up the
maximum amount of money subject to the constraint that no
two coins adjacent in the initial row can be picked up.

E.g.: 5, 1, 2, 10, 6, 2. What is the best selection?

8

Let F(n) be the maximum amount that can be picked up from
the row of n coins. To derive a recurrence for F(n), we
partition all the allowed coin selections into two groups:  

those without last coin – the max amount is ?  
those with the last coin -- the max amount is ?

9

DP solution to the coin-row problem
Thus we have the following recurrence  

 F(n) = max{cn + F(n-2), F(n-1)} for n > 1,  

 F(0) = 0, F(1)=c₁

10

DP solution to the coin-row problem (cont.)

index 0 1 2 3 4 5 6

coins -- 5 1 2 10 6 2

F()

F(n) = max{cn + F(n-2), F(n-1)} 	 	 	 	 	 for n > 1,  
F(0) = 0, 	 F(1)=c₁

Max amount:  
Coins of optimal solution:  
Time efficiency: 
Space efficiency:

Note: All smaller instances were solved.

0 5 5 7 15 15 17

17

backTrace, or store as you go: c6, c4, c1.

11

Example 3: Change Making
Give change for amount n using the minimum number
of coins of denominations d1 < d2 < . . . < dm, where d1
= 1
Let F(n) be the minimum number of coins whose values add up to n; define F (0) = 0; and consider all coins to minimise F(n − dj)
for all j = 1 ... m.
Example: n = 6 and denominations d1 = 1, d2 = 3, d3 = 4:

n 0 1 2 3 4 5 6

F() 0 1 2 1 1 2 2

DP Change Making
F(0) = 0
F(j) = 1 + MIN (F(i-dj))
where (1 <= j <= m) and (i-dj >= 0) and (0 <= i <= n)

1. j goes from 1 to m because we have m coin denominations (d1 .. dm).
2. (i-dj >= 0) because money values can not be negative so we exclude those (dj)

values that yield negative value of (i-dj).
3. (0 <= i <= n) means i can be any values less than or equal to the money

amount we need to make change for.
4.Note also that sub problems are overlapping for example F(i-dj) represents

one or more values depending on the value of (j) but not all values are
calculated every single time from the scratch. Values are saved in F(i) then
looked up whenever needed.

Change Making DP Algorithm

Number of Coins: 2  
Time efficiency: Θ (nm) 
Space efficiency: Θ(n)

Tracing for n = 9 and denominations {1, 3, 6,
7}

F(1) = 1 + MIN (F(1-1))
 = 1 + MIN (F(0))
 = 1 + 0
 = 1

F(2) = 1 + MIN (F(2-1))
 = 1 + MIN (F(1))
 = 1 + MIN (1)
 = 2

F(3) = 1 + MIN (F(3-1), F(3-3))
 = 1 + MIN (F(2), F(0))
 = 1 + MIN (2, 0)
 = 1

F(4) = 1 + MIN (F(4-1), F(4-3))
 = 1 + MIN (F(3), F(1))
 = 1 + MIN (1, 1)
 = 2

F(5) = 1 + MIN (F(5-1), F(5-3))
 = 1 + MIN (F(4), F(2))
 = 1 + MIN (2, 2)
 = 3

F(6) = 1 + MIN (F(6-1), F(6-3), F(6-6))
 = 1 + MIN (F(5), F(3), F(0))
 = 1 + MIN (3, 1, 0)
 = 1

F(7) = 1 + MIN (F(7-1), F(7-3), F(7-6), F(7-7))
 = 1 + MIN (1, 2, 1, 0)
 = 1

F(8) = 1 + MIN (F(8-1), F(8-3), F(8-6), F(8-7))
 = 1 + MIN (1, 3, 2, 1)
 = 2

F(9) = 1 + MIN (F(9-1), F(9-3), F(9-6), F(9-7))
 = 1 + MIN (2, 1, 1, 2)
 = 2

Example 4: Coin-Collecting by robot
Several coins are placed in cells of an n×m board. A robot, located
in the upper left cell of the board, needs to collect as many of the
coins as possible and bring them to the bottom right cell. On each
step, the robot can move either one cell to the right or one cell down
from its current location.

1 2 3 4 5 6

1

2

3

4

5

Let F (i, j) be the largest number of
coins, coming from either F(i-1, j) or
F(i, j-1):

F(i,j)=max{F(i−1,j),F(i,j−1)}+cij 	 	
for1≤i≤n, 1≤j≤m

F(0,j)=0 for1≤j≤m 		 	

F(i,0)=0 	 	 for1≤i≤n,

Coin-Collecting DP Algorithm

Time efficiency: Θ (nm) 
Space efficiency: Θ(nm)

Example 4: Solution

18

Example 5: Path counting
Consider the problem of
counting the number of
shortest paths from point
A to point B in a city with
perfectly horizontal streets
and vertical avenues

A

B

1

Other examples of DP algorithms
 Computing a binomial coefficient (# 9, Exercises 8.1)

 Some difficult discrete optimization problems:
 - knapsack (Sec. 8.2)
 - traveling salesman

 Constructing an optimal binary search tree (Sec. 8.3)

 Warshall’s algorithm for transitive closure (Sec. 8.4)
 Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)

19

20

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having

wi - a positive weight
vi - a positive benefit

Goal: Choose items with maximum total benefit but with weight
at most W.

If we are not allowed to take fractional amounts, then this is the
0/1 knapsack problem.
In this case, we let T denote the set of items we take

Objective: maximize

Constraint:

∑
∈Ti

iv

∑
∈

≤
Ti

i Ww

21

Given: A set S of n items, with each item i having
bi - a positive “benefit”
wi - a positive “weight”

Goal: Choose items with maximum total benefit but with weight at
most W.

Example

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:

box of width 9 in
Solution:

• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

“knapsack”

22

A 0/1 Knapsack Algorithm, First
Attempt

Sk: Set of items numbered 1 to k.
Define F[k] = best selection from Sk.
Problem: does not have subproblem optimality:

Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of  
(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

23

A 0/1 Knapsack Algorithm, Second
Attempt

Sk: Set of items numbered 1 to k.
Define F[k,w] to be the best selection from Sk with weight at most

w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is either
the best subset of Sk-1 with weight at most w or
the best subset of Sk-1 with weight at most w−wk plus item k

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

vwwkFwkF
wwwkF

wkF

24

Knapsack Problem by DP
Consider instance defined by first i items and capacity j (j ≤
W), and value of optimal solution F(i, j) to be the subset of
most valuable subset of the first i items that fit into knapsack
of capacity j...

25

0/1 Knapsack Algorithm
Consider set S={(1,1),(2,2),(4,3),(2,2),(5,5)} of (benefit, weight) pairs and

total weight W = 10

26

0/1 Knapsack Algorithm
Trace back to find the items picked

27

0/1 Knapsack Algorithm
Each diagonal arrow corresponds to adding one item into the bag
Pick items 2,3,5
{(2,2),(4,3),(5,5)} are what you will take away

28

DP Knapsack Problem (example 2)

	 	 	 	 	 	 	 	 	 	 	 capacity j

	 	 items i		 0 1 2 3 4 5

	 		 	 0

	 	 w1 = 2, v1= 12 		 	 1
	 	 w2 = 1, v2= 10 		 	 2
	 	 w3 = 3, v3= 20 		 	 3
	 	 w4 = 2, v4= 15 		 	 4	 	 	 	 	 	 ?	

DP Knapsack Problem (example 2)
F(4, 5) = $37  
Items: 4, 2, 1  
Time efficiency: Θ (nW) 
Space efficiency: Θ (nW) 
backTrace: O (n)

>

=

>

>

Knapsack Problem Bottom-up DP Memory
Functions

Knapsack Problem by DP (example)
F(4, 5) = $37  
Items: 4, 2, 1  
Time efficiency: Θ (nW) 
Space efficiency: Θ (nW) 
backTrace: O (n)

32

0/1 Knapsack Algorithm

Recall the definition of B[k,w]
Since B[k,w] is defined in terms of

B[k−1,*], we can use two arrays
of instead of a matrix

Running time: O(nW).
Not a polynomial-time algorithm

since W may be large
This is a pseudo-polynomial time

algorithm

Algorithm 01Knapsack(S, W):
 Input: set S of n items with benefit bi
 and weight wi; maximum weight W
 Output: benefit of best subset of S with
 weight at most W
 let A and B be arrays of length W + 1
 for w ← 0 to W do

 B[w] ← 0
for k ← 1 to n do
 copy array B into array A
 for w ← wk to W do
 if A[w−wk] + bk > A[w] then
 B[w] ← A[w−wk] + bk
return B[W]

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

33

Longest Common Subsequence
Given two strings, find a longest subsequence that they share
substring vs. subsequence of a string

Substring: the characters in a substring of S must occur contiguously in S
Subsequence: the characters can be interspersed with gaps.

Consider ababc and abdcb

alignment 1
ababc.
abd.cb
 the longest common subsequence is ab..c with length 3
alignment 2
aba.bc
abdcb.
 the longest common subsequence is ab..b with length 3

Let’s give a score M an alignment in this way,
 M=sum s(xi,yi), where xi is the i character in the first aligned
sequence
 yi is the i character in the second aligned sequence
 s(xi,yi)= 1 if xi= yi

 s(xi,yi)= 0 if xi≠yi or any of them is a gap

The score for alignment:
 ababc.
 abd.cb

M=s(a,a)+s(b,b)+s(a,d)+s(b,.)+s(c,c)+s(.,b)=3

To find the longest common subsequence between sequences S1
and S2 is to find the alignment that maximizes score M.

34

Longest Common Subsequence

35

Longest Common Subsequence

Subproblem optimality
Consider two sequences

Let the optimal alignment be
	 	 x1x2x3…xn-1xn
	 	 y1y2y3…yn-1yn

There are three possible cases
	 	 for the last pair (xn,yn):

S1: a1a2a3…ai
S2: b1b2b3…bj

36

Longest Common Subsequence

Mi,j = MAX {Mi-1, j-1 + S (ai,bj) (match/mismatch)
 Mi,j-1 + 0 (gap in sequence #1)
 Mi-1,j + 0 (gap in sequence #2) }

Mi,j is the score for optimal alignment between strings a[1…i] (substring of a from index 1 to
i) and b[1…j]

S1: a1a2a3…ai
S2: b1b2b3…bj

There are three cases for (xn,yn) pair:

x1x2x3…xn-1xn
y1y2y3…yn-1yn

37

Examples:
G A A T T C A G T T A (sequence #1)
G G A T C G A (sequence #2)

s(ai,bj)= 1 if ai=bj
s(ai,bj)= 0 if ai≠bj or any of them is a gap

Mi,j = MAX {
 Mi-1, j-1 + S(ai,bj)
 Mi,j-1 + 0
 Mi-1,j + 0
 }

Longest Common Subsequence

Longest Common Subsequence

M1,1 = MAX[M0,0 + 1, M1, 0 + 0, M0,1 + 0] = MAX [1, 0, 0] = 1

Fill the score matrix M and trace back table B

Score matrix M Trace back table B

39

Longest Common Subsequence
Score matrix M Trace back table B

M7,11=6 (lower right corner of Score matrix)
This tells us that the best alignment has a score of 6
What is the best alignment?

40

Longest Common Subsequence

We need to use trace back table to find out the best alignment,
which has a score of 6

(1)Find the path from
lower right

corner to upper left
corner

41

Longest Common Subsequence

(2) At the same time, write down the alignment backward

S1

S2

:Take one character from
each sequence

:Take one character from
sequence S1 (columns)

:Take one character from
sequence S2 (rows)

42

Longest Common Subsequence

:Take one character from
each sequence

:Take one character from
sequence S1 (columns)

:Take one character from
sequence S2 (rows)

43

Longest Common Subsequence
Thus, the optimal alignment is

The longest common subsequence is
G.A.T.C.G..A

There might be multiple longest common subsequences (LCSs)
between two given sequences.

These LCSs have the same number of characters (not include gaps)

44

Longest Common Subsequence
Algorithm LCS (string A, string B) {
Input strings A and B
Output the longest common subsequence of A and B

	 M: Score Matrix
	 B: trace back table (use letter a, b, c for)
	 n=A.length()
	 m=B.length()
	 // fill in M and B	
	 for (i=0;i<m+1;i++)
	 for (j=0;j<n+1;j++)
	 	 if (i==0) || (j==0)
	 	 	 then M(i,j)=0;
	 	 else if (A[i]==B[j])	
	 	 M(i,j)=max {M[i-1,j-1]+1, M[i-1,j], M[i,j-1]}
	 {update the entry in trace table B}
	 	 else
	 	 M(i,j)=max {M[i-1,j-1], M[i-1,j], M[i,j-1]}
	 	 {update the entry in trace table B}

	 then use trace back table B to print out the optimal alignment
	 …

45

Warshall’s Algorithm: Transitive Closure

• Computes the transitive closure of a relation
• Alternatively: existence of all nontrivial paths in a digraph
• Example of transitive closure:

3

4
2

1

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

3

4
2

1

46

Warshall’s Algorithm
Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices
R(0), … , R(k), … , R(n) where
R(k)[i,j] = 1 iff there is nontrivial path from i to j with only first k vertices allowed as
intermediate
Note that R(0) = A (adjacency matrix), R(n)

 = T (transitive closure)

3

42

1
3

42

1

 R(0)

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

 R(1)

0 0 1 0
1 1 1 1
0 0 0 0
1 1 0 1

 R(2)

0 0 1 0
1 1 1 1
0 0 0 0
1 1 0 1

 R(3)

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

 R(4)

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

3

42

1
3

42

1
3

42

1

47

Warshall’s Algorithm (recurrence)
On the k-th iteration, the algorithm determines for every pair of vertices i, j if a path exists from i and j with just vertices 1,…,k
allowed as intermediate

 	 	 	 	 R(k-1)[i,j] 	 (path using just 1 ,…,k-1)
R(k)[i,j] = 	 	 	 	 	 	 	 	 	 	 or

 R(k-1)[i,k] and R(k-1)[k,j] (path from i to k
 and from k to i using
	 	 	 	 	 	 	 	 	 	 	 just 1 ,…,k-1)

i

j

k

{

48

Warshall’s Algorithm (matrix generation)

Recurrence relating elements R(k) to elements of R(k-1) is:
R(k)[i,j] = R(k-1)[i,j] or (R(k-1)[i,k] and R(k-1)[k,j])

It implies the following rules for generating R(k) from R(k-1):
•Rule 1 If an element in row i and column j is 1 in R(k-1), it remains 1 in R(k)
•Rule 2 If an element in row i and column j is 0 in R(k-1), it has to be changed to 1 in R(k) if and only if the element in its row i and
column k and the element in its column j and row k are both 1’s in R(k-1)

49

Warshall’s Algorithm (example)

50

Warshall’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

51

Floyd’s Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices D(0), …, D (n) using increasing subsets of the vertices allowed as intermediate

Example:

3

4
2

1

4

1
6 1

5

3

52

Floyd’s Algorithm (matrix generation)
On the k-th iteration, the algorithm determines shortest paths between every
pair of vertices i, j that use only vertices among 1,…,k as intermediate

 D(k)[i,j] = min {D(k-1)[i,j], D(k-1)[i,k] + D(k-1)[k,j]}

i

j

k

D(k-1)[i,j]

D(k-1)[i,k]

D(k-1)[k,j]

53

Floyd’s Algorithm (example)
0 ∞ 3 ∞ 2 0 ∞ ∞
∞ 7 0 1
6 ∞ ∞ 0

D(0) =

0 ∞ 3 ∞
2 0 5 ∞
∞ 7 0 1
6 ∞ 9 0D(1) =

0 ∞ 3 ∞
2 0 5 ∞
9 7 0 1
6 ∞ 9 0D(2) =

0 10 3 4
2 0 5 6
9 7 0 1
6 16 9 0 D(3) =

0 10 3 4
2 0 5 6
7 7 0 1
6 16 9 0D(4) =

3 1

3

2

6 7

4

1 2

54

Floyd’s Algorithm (pseudocode and analysis)

Time efficiency: Θ(n3)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too (Problem 10)

Assignment 3
Consider the change making problem, design the

trace back algorithm, or rewrite the algorithm to
return the coins indices as well.

Bonus Assignment 2

Consider the knapsack problem, design the trace
back algorithm, or rewrite the algorithm to return
the coins indices as well. – 2 marks

