.~ Computer Algorithms

Lecture 10: Dynamic Programmung — Ch &

| Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives

1. Use a Dynamic Programming algorithm design strategy to solve
problems such as optimisation problems, graph problems and
optionally optimal binary search trees construction,

Dynamic Programming

Dynamic Programming 1s a general algorithm design technique for
solving problems defined by recurrences with overlapping
subproblems, in which an optimal solution 1s related to the
optimality of the subproblems.

* Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

* “Programming” here means “planning”

* Main 1dea:

O set up a recurrence relating a solution to a larger instance to
solutions of some smaller instances

solve smaller mstances once

record solutions 1n a table

O extract solution to the mnitial instance from that table

D)

Example 1: Fibonacci numbers

» Recall definition of Fibonacci numbers: A\
Fin) = Fin-1) + Fin-2)
F(O) =0 3 3
Sl
« Computing the n» Fibonacci number Ll G \,\ & v
recursively (top-down): O . 9 N

ALGORITHM F(n) b PRV @YETL
{/Computes the nth Fibonacci number recursively by using its definition
//Input: A nonnegative integer n
//Output: The nth Fibonacci number

F(5)
if n < | return n /

else return F(n — 1)+ F(n — 2) Fla)

\

Iterative Fibonacci

ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition
//Input: A nonnegative integer n
//Output: The nth Fibonacci number
F[0] < 0: F[1] <1
fori —2tondo
Fli]l| < Fli — 1]+ F|i — 2]
return F|n|

Fibonacci Ethiciency

Applying the homogeneous second-order linear recurrence with constant coefficients theorem to our recurrence with the initial
conditions given—see Appendix B—we obtain the formula :

1
F(n) = ﬁqb" where ¢ = (1 + v/5)/2 = 1.61803

Constant ¢ 1s known as the golden ratio. The most pleasing ratio of a rectangle’s two sides to the human eye.

Therefore the recursive algorithm computes F(n) by recursively adding F(n-1) + F(n-2) for each element from 2 : n, leading to

additions A(n) € O(¢")

Fibonacci Efhiciency — Cont’d

The Iterative Algorithm makes n — 1 additions , therefore its efficiency is O(n). We can also save space by storing the last two
values in the sequence instead of a complete array of n size.

We can also calculate F(n) using the formula:

Using a brute force exponentiation algorithm with efficiency O(n) , or the use Horner’s rule for binary exponentiation with
efficiency O(log n)

F(n)= L_¢"

Example 2: Coin-row problem

There 1s a row of n coins whose values are some positive integers
C1, C2,...,cn, not necessarily distinct. The goal 1s to pick up the
maximum amount of money subject to the constraint that no
two coins adjacent in the initial row can be picked up.

o 2 10,6, 2. What s the best selection?

Let F(n) be the maximum amount that can be picked up from
the row of n coins. To derive a recurrence for F(n), we
partition all the allowed coin selections into two groups:

those without last coin — the max amount s ?
those with the last coin -- the max amount 1s ?

DP solution to the coin-row problem

Thus we have the following recurrence
F(n) = max{c,+ F(n-2), F(n-1)} forn>1,

F(0) =0, F(1)=¢c;
ALGORITHM CoinRow(C|[1..n])

[IApplies formula (8.3) bottom up to find the maximum amount of money
//that can be picked up from a coin row without picking two adjacent coins
/lInput: Array C[1..n] of positive integers indicating the coin values
//Output: The maximum amount of money that can be picked up
F[0] < 0; F[1] < C[1]
fori < 2 tondo

Fli] « max(C[i])+ F[i = 2], F[i — 1))
return F|n| 9

DP solution to the coin-row problem (cont.)

F(n) = max{c, + F(n-2), F(n-1)} forn> 1,
FO0) =0, F(1)=c

index (0 1 2 3 4 5)
coins |- S 1 2 10) 2

F() 0 %)) o e 15 167

17

Max amoun s
Coins of optimal solution:
Time efficiency:
Space efficiency:

back Irace; orstore asyorEso- e e aes

& (n)
®(n)

Note: All smaller instances were solved.

10

Example 3: Change Making

Give change for amount n using the minimum number
of coins of denominationsd; <d, <...<d_, where d,
=1

Let F(n) be the minimum number of coins whose values add up to n; define F (0) = 0; and consider all coins to minimise F(n — d)
[i | b e A

Example: n = 6 and denominations d, = 1,d, = 3,d,; = 4:

F() 0 1 2 1 1 7 2

[

DP Change Making
F(0) = 0

FG) = 1 + MIN (F(i-dj))
where (1 <=j <=m) and (1-dj >= 0) and (0 <=1 <= n)

1.J goes from | to m because we have m coin denominations (d1 .. dm).
2.(1-dj >= 0) because money values can not be negative so we exclude those (dj)

values that yield negative value of (1-dj).
3.(0 <=1 <= n) means 1 can be any values less than or equal to the money

amount we need to make change for.

4.Note also that sub problems are overlapping for example F(i-dj) represents
one or more values depending on the value of (j) but not all values are
calculated every single time from the scratch. Values are saved in F(1) then

looked up whenever needed.

Change Making DP Algorithm

ALGORITHM ChangeMaking(D[1..m|, n)

/I Applies dynamic programming to find the minimum number of coins
/fof denominations dy < d» < - -+ < d,,, where d; = 1 that add up to a
//given amount n
//Input: Positive integer n and array D[1..m] of increasing positive
/! integers indicating the coin denominations where D[1]=1
//Output: The minimum number of coins that add up to n
F[0] « 0
fori < 1tondo
temp <« o00; j «1
while j =m and i = D[j]do
temp < min(F[i — D[]}, temp)
B, Number of Coins: 2
F[i] « temp + 1 Time efficiency: © (nm)
sctans 7o) Space efficiency: O(n)

Tracing for n = 9 and denominations {1, 3, 6,

F(1) = 1 + MIN (F(1-1))
= 1 + MIN (F(0))
=1+0
=1

F(2) = 1 + MIN (F(2-1))
=1 + MIN (F(1)

= | + MIN (1)
=)

F(3) = 1 + MIN (F(3-1), F(3-3))
= 1 + MIN (F(2), F(0))
=1 + MIN (2, 0)
=

F(4) = 1 + MIN (F(4-1), F(4-3))
= 1 + MIN (F(3), F(1)
=1+ MIN (I, 1)
=9

F(5) = 1 + MIN (F(5-1), F(5-3))
= 1 + MIN (F(4), F(2)
=1+ MIN (2, 2)
=3

73

F(6) = 1 + MIN (F(6-1), F(6-3), F(6-6)
= 1 + MIN (F(5), F(3), F(0)
=1+ MIN @3, 1, 0)

=1

F(7) = 1 + MIN (F(7-1), F(7-3), F(7-6), F(7-7))
1 +MIN (1, 2,1, 0)
1

F(8) = 1 + MIN (F(8-1), F(8-3), F(8-6), F(8-7))
=1+MIN(l, 3,2, 1)
=

F(9) = 1 + MIN (F(9-1), F(9-3), F(9-6), F(9-7))

=1 +MIN{2,1,1,9
=9

Amount [J] =2 M[j] Coins

-
-

o
>

I

- a
< >

Amount [J — Vi] = MIN [M[J-Vi]) Coins

o
-
i

Amount [\i] = one coin

-
>

Example 4: Coin-Collecting by robot

Several coins are placed 1n cells of an nXm board. A robot, located
in the upper lett cell of the board, needs to collect as many of the

coins as possible and bring them to the bottom right cell. On each
step, the robot can move either one cell to the right or one cell dowr

from 1ts current location.

Let I (1,)) be the largest number of =
coins, coming from either F(i-1, j) or
F(, 3-1): - = =
F(1y)=max{Fa—1,),F1j—1)}+c;

: ; 3 @) O
e S e e
F(0,5)=0 for] <j<m ? e ?
Fi,0=0 forl<i<n, HEE -

Coin-Collecting DP Algorithm

ALGORITHM RobotCoinCollection(C|1..n, 1..m])

[Applies dynamic programming to compute the largest number of
//coins a robot can collect on an n x m board by starting at (1, 1)
/fand moving right and down from upper left to down right corner
/[fInput: Matrix C[1..n. 1..m] whose elements are equal to 1 and 0
/lfor cells with and without a coin, respectively
//Output: Largest number of coins the robot can bring to cell (n, m)
F[1,1] < C[1,1}: for j < 2tomdo F[1. j] < F[1. j — 1]+ C[1. j]
fori < 2tondo

Fli,1] < Fli = 1, 1]+ C[i, 1]

for j < 2tomdo

Fli, j| < max(F|i — 1. j]. Fli, j — 1)) + C|i. j|

return F[n, m|

Time efficiency: O (nm)
Space efficiency: O(nm)

Example 4: Solution

e ==
o Heo=F9
20

o e

o IEDEE

o JEEET

N
r-+-9
'

'

&o—
L

10

Example 5: Path counting

Consider the problem of 5

counting the number of
shortest paths from point

A to point B 1n a city with
pertectly horizontal streets

and vertical avenues

18

Other examples of DP algorithms

Computing a binomial coetticient (# 9, Exercises 8.1)
Some ditficult discrete optimization problems:

- knapsack (Sec. 8.2)

- traveling salesman

Constructing an optimal binary search tree (Sec. 8.3)

Warshall’s algorithm for transitive closure (Sec. 8.4)
Floyd’s algorithm for all-pairs shortest paths (Sec. 8.4)

5]

The 0/1 Knapsack Problem

Given: A set S of n items, with each item 1 having
w: - a positive weight
v, - a positive benefit

Goal: Choose items with maximum total benefit but with weight
at most W.

If we are not allowed to take fractional amounts, then this 1s the

0/1 knapsack 1problem.

In this case, we let 1T denote the set of items we take

Objective: maximize E V. y /[
=ik . A \\
Constraint: < ‘j " @
EW" <W ((Mi{)f,\/
=/

20

)

4

Example %

o/

-
Given: A set S of n items, with each item 1 having
b. - a positive “benefit”

S (44 = 29
w; - a positive “weight

Goal: Choose items with maximum total benefit but with weight at

most W.
“knapsack”
ALGORTTHN

TGN

Items: G
box of width 9 1n

Weight: : - - _ : Solution:
4 1n T e §) R O % 1§ B T e item 5 ($80, 2 in)

- §20 $3 $6 $25 $80 + item 3 ($6, 2in)

e item 1 ($20, 4in)

21

A 0/1 Knapsack Algorithm, First
Attempt

S,: Set of 1tems numbered 1 to k.

Define F[k] = best selection from S, .

Problem: does not have subproblem optimality:
Consider set S={(3,2),(5,4),(8,9),(4,3),(10,9)} of
(benefit, weight) pairs and total weight W = 20

Best for S,:

Best for S.:

[3.2)] (5.4)

(8.5) (4.3)

(3.2)] (5.4)

(8.,5) (10,9)

20

RSl

o\l
(58

A 0/1 Knapsack Algorithm, Second
Attempt

S,: Set of 1tems numbered 1 to k.
Define F[k,w] to be the best selection from S, with weight at most

W
Good news: this does have subproblem optimality.

Flkow : Flk-1,w] itw, >w
s W] =<
max{F[k-1Lw], Flk-Lw-w,]+v, } clse

L.e., the best subset of S, with weight at most w 1s either

the best subset of S, ; with weight at most w or
the best subset of S, ; with weight at most w—w, plus item k

235

Knapsack Problem by DP

Consider nstance defined by first 2 items and capacity) (j =
W), and value of optimal solution k(1, j) to be the subset of
most valuable subset of the first 1 items that fit into knapsack

of capacity]...

max{F(i -1, j),v; + F(i =1, j —w;)} ifj—w; >0,

F(l, j) - F(l = l. _I) lf_] e ().

FQO,j)=0for j>0 and F(@, 0)=0 fori >0

24

0/1 Knapsack Algorithm

Consider set S={(1,1),(2,2),(4,3),(2,2),(5,5)} of (benefit, weight) pairs and
total weight W = 10

0/1 Knapsack Algorithm

"Irace back to find the items picked

0/1 Knapsack Algorithm

Each diagonal arrow corresponds to adding one item into the bag
eSS =205
{(2,2),(4,3),(5,5)} are what you will take away

1 0 add item 2

T

dd item 3

kz 23\‘
6
!
6

add item 5

DP Knapsack Problem (example 2)

F(i '>-|maX{F(i—1’j)‘ v+ P =1 j—w)} ifj—w20,
capacitv W=)> L FG=1D if j —w; <.
. - - 0 f“'V, , W
item weight value o [o - : :

1 2 $12 , e S
=110 Fii=1, j=-w) F(r=1,)
2 1 $10 w,vi i |0 Fli j)
3 3 $20 n |0 goal
4 2 $ I 5 capacity j
ftemst 0 == g
0
w, = 2,0,=12 |
w, = 3, v,=20 3
== =)

DP Knapsack Problem (example 2)

capacity W =35 femed o1
- = Time efficiency: O (nW)
item weight value Spacc efficiency: © mW)
backTrace: O (n)
1 2 $12
2 1 $10
3 3 $20
4 2 $15
capacity j
i (0 | 2 3 Rl S
() (0 0 (0
w =2, vy =12 | 0 0) 12 12
ws =1, va=10 2 0 10 _% 22 22
ws=3,v3=20 3 0 10 12 (22) 30 32)
Wy = = Vg = 15 R 0 10 15 25 .

Knapsack Problem Bottom-up DP Memory
Functions

ALGORITHM MFKnapsack(i, j)
//Implements the memory function method for the knapsack problem
//Input: A nonnegative integer i indicating the number of the first
I items being considered and a nonnegative integer j indicating
I the knapsack capacity
//Output: The value of an optimal feasible subset of the first i items
//Note: Uses as global variables input arrays Weights|1..n], Values|1..n],
/fand table F[0..n, 0..W] whose entries are initialized with —1's except for
/frow () and column () initialized with (s
if Fli, j]<0
if j < Weights[i]
value < MFKnapsack(i — 1. j)
else
value < max(MFKnapsack(i — 1, j).
Values|i]| + MFKnapsack(i — 1, j — Weightsl|i]))
Fli, j] « value
return F|i, j]

Knapsack Problem by DP (example)

capacity W =35 Fit 9.1
- = Time efficiency: © (nW)
l‘em we|ght va|ue Space efficiency: © (nW)
backTrace: O (n)
1 2 $12
2 1 $10
3 3 $20
4 2 $15
capacity j
i 0 1 2 3 4 5
0 0 0 0 0 0 0
wy=2, vy=12 1 0 0 12 12 12 12
w=1 v=10 2 0 — 12 22 — 22
B 0s = 01) - 0 — - 22 — 32
Wy=m2, vyg=15 4 0 — — — — 37

0/1 Knapsack Algorithmﬁ =
=

B[k -1,w] ifw, >w
Blk,w] =
max{B[k -1,w], Blk-1L,w-w,]+b,} clse
= Algorithm 01Knapsack(S, W):
Recall the deﬁnltlon of B [k, w] Input: set S of n items with benefit b,
Since B[k,w] 1s defined in terms of | .4 weight w.: maximum weight W

B[k—-1,*], we can use two arrays
of instead of a matrix

Running time: O(nW).

Not a polynomial-time algorithm

Output: benefit of best subset of § with
weight at most W

let 4 and 7 be arrays of length "+ |

since W may be large for v <= O to //"do
This 15 a pseudo-polynomial time Blw] < 0
algorithm for i < 1 to n do

copy array 7 into array A
for w <= w, to 1V do

if A[w-w,] + b, > A[w] then
Blw] < A[w-w,] + b,
return 2| V] 28

Longest Common Subsequence

Given two strings, find a longest subsequence that they share

substring vs. subsequence of a string
Substring: the characters in a substring of S must occur configuously in S
Subsequence: the characters can be interspersed with gaps.

Consider ababc and abdch

alignment 1
oo

abd. ch
the longest common subsequence 1s ab..c with length 3

alignment 2
aba.bc
abdch.

the longest common subsequence 1s ab..b with length 3

33

Longest Common Subsequence

Let’s give a score M an alignment 1n this way,
M=sum s(x,),), where x; 1s the 1 character 1n the first aligned

sequence
y; 1s the 1 character 1n the second aligned sequence

Sl L —
s(x,y.)= 0 1f x#y. or any of them is a gap

The score for alignment:

e .Cs

e b
M=s(a,a)+s(b,b)+s(a,d)+s(b,.)+s(c,c)+s(.,b)=3

To find the longest common subsequence between sequences S,
and S, 1s to find the alignment that maximizes score M.

e

Longest Common Subsequence

zubp.roblem optimality St da.a
onsider two sequences .

q St bibsbs.. .bj

: : Substitution |91-++(3

Let the optimal alignment be b,...b,

oo XX

Gap a7

AR SRS B A b,....|b

There are three possible cases - ablb i

|

for the last pair (x ,y,):

35

Longest Common Subsequence

There are three cases for (x_,y) pair:

S0 a;a,85...4, Substitution abl...aBi
S b bybs...b; 1| B;
X 1 XoXg. . . X X Gap e
Y- Yn i) by....| b,
Gap ;... |a

b,...b| -

i (M + S (q, b) (match/mismatch)

Mij_ s b téap n sequence #1)

M1 1 + 0 (gap in sequence #2) |}

M. .1s the score for optimal alignment between strings a// ..
z) and b/1...j]

M= M.y, 4 + S5 (match/mismatch)

M;= M, +w (gap in sequence #1)

M,; = M,; +w (gap in sequence #2)

.1/ (substring of a from index / to

36

Longest Common Subsequence

B = MAX {
Mi.1r 1 + S(a;,b;)
M, +0
M+ 0
s(a,b)=1if a,=b,
s(a,b,)=01f a7b; or any of them is a gap

Examples:

GAATTGCAGTT A (sequence #1)
G GATC G A (sequence #2)

37

Longest Common Subsequence

Fill the score matrix M and trace back table B

G & rrecagctrt a Substitution |1+ ali M; = M.y, 1 + S;; (match/mismatch)
Q10 (0|0 |O (O Q|0 (0|00 b1 j .
G
G Gap al...ai I _ B
A b b, M; = M, +w (gap in sequence 1)
LT i
T
c
G Gap e a|i M, = M. ; +w (gap in sequence #2)
N by...bj -
M= MAX[MQO sl 0, Nisaad=lEs MAX [1,0,0] =1
G A ATT CAGTT A G AATT CAGTT A
0| o|o|olo|lofofofofof0 Q0|00 O OfOf O O O] 0|0
G j*l G o) ™
G G
A A
T T
& E
G G
A A

Score matrix M Trace back table B

Longest Common Subsequence

Trace back table B

Score matrix M

GAATTTCGTTA
olo [o.{ofofofofololo]ole

g e | NPt [e | ore |2t |

L[1

1

52157 37

a
hId

=

| B3y 202> | 2

J 1A

-

[4

1 1 3
17

Aol lof L)1y)

G AATTCA GTT A
O (0 [0 |0 (0|0 |0 (0|0 (0[0]|0

I ENERENPRPECHEN RN N

v[3 [2V]3s[5

VI 120 1|30 4o | 41> | 4]

— et | | —] —

MEAVAR ALV EMES SRS

T T A

G AATTTCG
0/019.194919.19/9]9.19/9]0

G1e

410
T |8
C|¢
Glq

Ao (9 [3NT[6 |4]35> [5]6y

5

5

5

21212 |2

1

313|333

515155 |6

3

0|10 |0 (0[O]O O |0 (0[O

21212122 (2 |2)2 |2 |3

212 |3 (3 (4 |4 (4[4 |4 |4
2 (2 (3 (3 (4]4]5

213 (3 (3[4

6 (lower right corner of Score matrix)

G AATTUCA GTT A

0

— ot~]~ -

0

0

0
0
0

A

C
G
A

M7,11

This tells us that the best alignment has a score of 6

What is the best alignment?

39

Longest Common Subsequence

We need to use trace back table to find out the best alignment,
which has a score of 6

G AATTTC CA GTT A

0|0 |0 (0 [ONQ(O|O|0O([0]|0 |0

(1)Find the path from i LA LNLNE N ERENET AL AN

lower right Gl|O |1 |1 |1 |1 |1 |1 |1 |2|2|2|2

corner to upper left slolilalalalalalala a2 |3
corner

T(O[1 |2 (2 [3 |3 (3|3 |3 (3|3]3

ClO |1 (2 (2|3 (3[4 |4 (4|4 |4 |4

Gl|O |1 |22 |3|31|4 1415 |5]5]5

A0 1|23 |3 |3 |4|5]|5]|5 5|6

o
&

Longest Common Subsequence

A

, write down the alianment backward
(Seq #1)

(Seq #2) A

CA GTT A

T

(2) At the same time

Sl -
s,
1 & 7 3=
[clAbiE <
5 O e
S (O} i ®)
S e S 2
< ¥ e LA
= S R Tf A
TRt bT et oL = TN
Qs NiRin e i
SR E i O o <+
SR s =it
I G - e
LYl Dsrad L O
D) AR =D
e T Fof e
l i 4 =

o —

= |

L (N

H: H:

o' fay

u L)

un un
o|—~|a|a|n|=x|vn|vn||lo|—~|a|aln|=|A]n
S|~ | NN || ||| =N N ||
S|l |lin|n|OD|lo|l—~ ||| a]wv;]|n
011234451&01123445
S|l | = ||| g || = |[PD|S|—|—|xN|on| | |
=N s I el el el s = e Bl E e B e e el e
=N s I el el el s = Bl B B e el el e
S|~ ||| NN M| S|~ |~ NN | o
= LI IGIEIEE R R LI GII ES
3 | et | et | | | o~ o~ — GO 1111111
Solo|lo|lao|lao|lao|lo|o Slo|lao|lao|lao|la|lo|o

G
G
A
T
C
G
A

G
G
A
T
C
G
A

Longest Common Subsequence

) m m e
3= o ©)
S = [_
g = w = =
B} di e s
= © g O [|
@) s e A
< B OFE —
St Rl &S e Slits o o
S 5 = O = O
Yo A G L =t I
L = 7p 7P & ©
e il T AR400 S
b R LR E Sl
ALV BNy PR O 1D = — B
Sl AL R _4 3
= — —~ < o < O - _
. ZHTh SR
_ ! R -
= _ Lo
D —
by v M A
) o
i H U o
T012234<H5T012234cﬁ5
G012234556012234r\\5
001123444C01123\“44
A..01122223..ﬁ011%2223
A01122222.ﬁ011no\2222
Olo|l—|—~|—~|—~|—~|—~]|— GO!\w 11111
olo|laoalala|la|lao | o Sclololaoalaoa|lala | o
O 0O xOf = O 0O oG D O a2 = O O g

Longest Common Subsequence

Thus, the optimal alignment 1s

A TCALGTT A

T
| I I I
T C G A

G _ A
I |
(Seq #2) G G A

The longest common subsequence 1s

G HCH SN

There might be multiple longest common subsequences (LGSs)
between two given sequences.

These LCSs have the same number of characters (not include gaps)

43

Longest Common Subsequence

Algorithm LCS (string A, string B) {
Input strings A and B
Output the longest common subsequence of A and B

M: Score Matrix
B: trace back table (use letter a, b, c for NPy
n=A.length()
m=B.length()
// fillin M and B
for 1=0;1<m+1;1++)
for (] =0;j<n+1 J++)
if (i==0) || (j==0)
then M ,J) 0;
EECH N —— []])
M(ij)=max {M[i-1j-1]+1, M[i-1j], M[ij-1]}
1 {J update the entry in trace table B
else
M(ij)=max {M[i-1j-1], M[i-1j], M[i-1]}

{update the entry in trace table

then use trace back table B to print out the optimal alignment
=

Warshall’s Algorithm: Transitive Closure

® Computes the transitive closure of a relation
» Alternatively: existence of all nontrivial paths in a digraph

* Example of transitive closure:

=@

e ©

B e 0-=6:1=6
| e 5 ==
=00 OREE=(-56)
= B 2

45

Warshall's Algorithm

Constructs transitive closure T as the last matrix in the sequence of n-by-n matrices
RO .., R® .. R® where

R®J[1,j] = 1 iff there is nontrivial path from i to j with only first k vertices allowed as
intermediate

Note that RO = A (adjacency matrix), R®™W =T (transitive closure)

O (fé . :
(3) R4

RO RO R® R

B =0) Bezl-=6) === O ls0 ikl
JE20=0=] S & g2 Felerll, |8 G S et P
0000 =000 =020 P=0=0=0 Pi=0=0=0
F=E0=0 1101 Ek= 0] =Bkl [Segle 2]

46

Warshall’s Algorithm (recurrence)

On the £-th iteration, the algorithm determines for every pair of vertices ¢, j if a path exists from : and j with just vertices 1,....k
allowed as intermediate

RED[i4] (path using just 1 ,...,4-1)
R®[g] = or
RED[,k] and R*V[kj] (path fromito k
and from £ to ¢ using
JUSEAL ekl

® :

|
Warshall’s Algorithm (matrix generation

Recurrence relating elements R% to elements of R*V is:
RA[ij] = R&V[ig] or (R*V[34] and R<V[ky])

It implies the following rules for generating R% from R*1:
«Rule 1 If an element in row 7 and column jis | in R*V, it remains 1 in R®

*Rule 2 If an element in row z and column j is 0 in RV, it has to be changed to 1 in R® if and only if the element in its row ¢ and
column £ and the element in its column j and row £ are both 1’s in R*1

48

)

Warshall's Algorithm (example

Warshall's Algorithm (pseudocode and analysis)

ALGORITHM Warshall(A[l..n, 1..n])

/Tmplements Warshall’s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
[/Output: The transitive closure of the digraph
RO « A
fork < 1tondo
fori <« 1tondo
for j < 1tondo
R™Ii, j] « RV, jlor (R*~V[i, k] and R*~V[k, j])
return R

Time efficiency: O(n?)

Space efficiency: Matrices can be written over their predecessors

50

Floyd's Algorithm: All pairs shortest paths

Problem: In a weighted (di)graph, find shortest paths between every pair of vertices
Same idea: construct solution through series of matrices DU, ..., D " using increasing subsets of the vertices allowed as intermediatg

Example:

ek

Floyd’s Algorithm (matrix generation)

On the k-th 1teration, the algorithm determines shortest paths between every
pair of vertices i, j that use only vertices among 1,...,k as intermediate

D®[i,j] = min {D®D[ij], D&V[i,k] + D*D[k;j]}

3.

Floyd's Algorithm (example)

S
oW PO

A Gty VAR

@D G\

[0:0)
7
0

SHHCCNES

CEMIPNE
007

L f

S o>

6.-1-6-9-1

VP IR

0
e o £ .

6 16/ 9 0

8 8 —
CONIPES
8 o~
RN -

b+ 00-9-0

%]

Floyd's Algorithm (pseudocode and analysis)

ALGORITHM Floyd(W([1..n, 1..n])
/Tmplements Floyd’s algorithm for the all-pairs shortest-paths problem
/Input: The weight matrix W of a graph with no negative-length cycle
/[Output: The distance matrix of the shortest paths’ lengths
D <« W /[is not necessary if W can be overwritten
fork < 1tondo
fori < 1tondo
for j < 1tondo
D|i, j] « min{D[i, j), D[i, k] + D[k, j]}

return D

Time efficiency: O(n’)

Space efficiency: Matrices can be written over their predecessors

Note: Shortest paths themselves can be found, too (Problem 10)

o4

Assignment 3

Consider the change making problem, design the
trace back algorithm, or rewrite the algorithm to
return the coins indices as well.

Bonus Assignment 2

Consider the knapsack problem, design the trace
back algorithm, or rewrite the algorithm to return
the coins indices as well. — 2 marks

