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Lecture Learning Objectives
1. Use a Iterative algorithm design strategy to solve optimisation problems
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Greedy Technique
• Constructs a solution to an optimization problem piece by  
• piece through a sequence of  choices that are:  

o feasible 

o locally optimal 

o irrevocable 

• For some problems, yields an optimal solution for every 
instance. 

• For most, does not but can be useful for fast approximations.
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Applications of  the Greedy Strategy

Optimal solutions: 
change making for “normal” coin denominations 
minimum spanning tree (MST) 
single-source shortest paths  
simple scheduling problems 
Huffman codes 

Approximations: 
traveling salesman problem (TSP) 
knapsack problem 
other combinatorial optimization problems
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Change-Making Greedy Approach

Given 30 cents, and coins {1, 5, 10, 25}  
§ Here is what a casher will do: always go with  

coins of  highest value first 
– Choose the coin with highest value 25 (1 quarter) 

  – Now we have 5 cents left (1 nickel) 
The solution is: 2 (one quarter + one nickel)  

Coins = {1, 3, 4, 5} and change required = 7 cents ?  
§ Greedy solution:  

– 3 coins: one 5 + two 1  
§ Optimal solution:  

– 2 coins: one 3 + one 4 
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Iterative Improvement
• Algorithm design technique for solving optimization problems  

• Start with a feasible solution, greedy method for example. 
• Repeat the following step until no improvement can be found: 
o change the current feasible solution to a feasible solution 

with a better value of  the objective function 
• Return the last feasible solution as optimal 

• Note: Typically, a change in a current solution is “small” (local 
search)  

• Major difficulty: Local optimum vs. global optimum
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Important Examples
• Simplex method  

• Ford-Fulkerson algorithm for maximum flow problem  

• Maximum matching of  graph vertices  

• Gale-Shapley algorithm for the stable marriage 
problem  

• Local search heuristics



Optimisation
EXAMPLE: Consider a university endowment that needs 

to invest $100 million. This sum has to be split between 
three types of  investments: stocks, bonds, and cash, 
expecting an annual return of  10%, 7%, and 3% for their 
stock, bond, and cash investments, respectively. Stocks are 
more risky than bonds, the endowment rules require the 
amount invested in stocks to be no more than one-third of  
the moneys invested in bonds. In addition, at least 25% of  
the total amount invested in stocks and bonds must be 
invested in cash. How should the managers invest the 
money to maximize the return? 



Linear Programming Solution
x is amount invested in Stocks 
y is amount invested in Bonds 
z is amount invested in Cash. 



Knapsack LP Formalisation
EXAMPLE 2: Given a knapsack of  capacity W and n 

items of  weights w1, . . . , wn and values v1, . . . , vn, find 
the most valuable subset of  the items that fits into the 
knapsack. 

In Fractional representation: let xj, j = 
1, . . . , n, be a variable representing a 
fraction of  item j taken into the 
knapsack, subject to 0 ≤ xj ≤ 1.

In Integer LP representation (discrete 
or 0-1) we are only allowed either to 
take a whole item or not to take it at 
all. 



Linear Programming Solution
x is amount invested in Stocks 
y is amount invested in Bonds 
z is amount invested in Cash. 
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Linear Programming
Linear programming (LP) problem is to optimize a linear 
function of  several variables subject to linear constraints: 

	  

The function z = c1 x1 + ...+ cn xn  is called the objective 
function; 
constraints x1 ≥ 0, ... , xn ≥ 0 are called nonnegativity 
constraints
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Example
maximize    	 3x + 5y	  

subject to      x +   y ≤ 4	 

	            	 	 x + 3y ≤ 6	  

            	 	 	 x ≥ 0,  y ≥ 0 

	

x

y

( 0, 2 )

( 0, 0 ) ( 4, 0 )

( 3, 1 )

x + y = 4

x + 3y = 6

Feasible region is the set of  points defined by 
the constraints 
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Geometric solution
maximize	 	 3x + 5y	 

subject to	   	 x +   y ≤ 4	  

	 	 	   	 x + 3y ≤ 6	  

                    	 x ≥ 0,  y ≥ 0 

Optimal solution: x = 3, y = 1
x

y

( 0, 2 )

( 0, 0 ) ( 4, 0 )

( 3, 1 )

3x + 5y = 10

3x + 5y = 14

3x + 5y = 20

Extreme Point Theorem    Any LP problem with a nonempty bounded 
feasible region has an optimal solution; moreover, an optimal solution 
can always be found at an extreme point of  the problem's feasible 
region.
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3 possible outcomes in solving an LP problem

• has a finite optimal solution, which 
may not be unique 

• unbounded: the objective function of  
maximization (minimization) LP 
problem is unbounded from above 
(below) on its feasible region   

• infeasible: there are no points 
satisfying all the constraints, i.e. the 
constraints are contradictory
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The Simplex Method
The classic method for solving LP problems;  

one of  the most important algorithms ever invented  

Invented by George Dantzig in 1947 

Based on the iterative improvement idea: 
	 Generates a sequence of  adjacent points of  the problem’s 

feasible region with improving values of  the objective 
function until no further improvement is possible
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Standard form of  LP problem
1. must be a maximization problem   
2. all constraints (except the nonnegativity constraints) must 

be in the form of  linear equations 
3. all the variables must be required to be nonnegative 

    Thus, the general linear programming problem in 
standard form with m constraints and n unknowns (n ≥ m) 
is 

 
	 maximize  c1 x1 + ...+ cn xn    

	 	 subject to  ai 1x1+ ...+ ain xn  = bi ,  i = 1,...,m,	                               
	 	        x1 ≥ 0, ... , xn ≥ 0 

    Every LP problem can be represented in such form
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Transforming to Standard Form
1. min f  (x) 	 	 	 	 	 	 	 max[−f  (x)]. 

2. maximize  3x + 5y	             maximize 3x + 5y + 0u + 0v 
subject to  x +   y ≤ 4     	 	 	 subject to   x +   y +  u  = 4  
	 	          x + 3y ≤ 6	 	         x + 3y +  v   = 6  
	 	 	 	 x≥0,   y≥0 	 	         x≥0,  y≥0,  u≥0,  v≥0 
	  
Variables u and v, transforming inequality constraints into 
 equality constrains, are called slack variables 

3. Unconstrained xj can be replaced by two non-negative variables 
as follows xj=x′ −x′′, x′ ≥0, x′′ ≥0 
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Basic feasible solutions
A basic solution to a system of  m linear equations in n 
unknowns (n ≥ m) is obtained by setting n – m variables to 0 
and solving the resulting system to get the values of  the other 
m variables.  The variables set to 0 are called nonbasic; the 
variables obtained by solving the system are called basic.  
A basic solution is called feasible if  all its (basic) variables are 
nonnegative.  
Example   x +   y + u  = 4  
	       	 	 x + 3y + v  = 6  

 	      (0,  0,  4,  6) is basic feasible solution  
                                         (x, y are nonbasic; u, v are basic) 
There is a 1-1 correspondence between extreme points of  
LP’s feasible region and its basic feasible solutions. 
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Simplex Tableau
maximize    z = 3x + 5y + 0u + 0v 

subject to            x +   y +  u            = 4  

                            x + 3y          +   v   = 6  

                            x≥0,  y≥0,  u≥0,  v≥0 

	

basic 
variables

objective row

basic feasible solution 

(0, 0, 4, 6)
1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

value of  z at (0, 0, 4, 6)
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Outline of  the Simplex Method
• Step 0 [Initialization]  Present a given LP problem in standard form and 	 	                         

set up initial tableau.  
• Step 1 [Optimality test] If  all entries in the objective row are nonnegative —	 	
	           stop: the tableau represents an optimal solution. 

• Step 2 [Find entering variable] Select (the most) negative entry in the 		                         
objective row.  Mark its column to indicate the entering  variable and the pivot 
column.  

• Step 3 [Find departing variable]  For each positive entry in the pivot column, 
calculate the θ-ratio by dividing that row's entry in the rightmost column by its 
entry in the pivot column.  (If  there are no positive entries in the pivot column — 
stop: the problem is unbounded.)  Find the row with the smallest θ-ratio, mark this 
row to indicate the departing variable and the pivot row.  

• Step 4 [Form the next tableau] Divide all the entries in the pivot row by its entry in 
the pivot column. Subtract from each of  the other rows, including the objective row, 
the new pivot row multiplied by the entry in the pivot column of  the row in 
question. Replace the label of  the pivot row by the variable's name of  the pivot 
column and go back to Step 1.
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Example of  Simplex Method Application

1 1 1 0 4

1 3 0 1 6

3 5 0 0 0

x y u v

u

v

2
3 0 1 1

3 2

1
3

1 0 1
3 2

4
3 0 0 5

3 10

x y u v

u

y

maximize    z = 3x + 5y + 0u + 0v 
subject to            x +   y +  u            = 4  
                            x + 3y          +   v   = 6  
                            x≥0,  y≥0,  u≥0,  v≥0 
	  

basic feasible sol. (0, 0, 
4, 6) 

z = 0

basic feasible sol. (0, 2, 
2, 0) 

z = 10

basic feasible sol. (3, 1, 
0, 0) 

z = 14

1 0 3
2

1
2 3

0 1 1
2

1
2 1

0 0 2 1 14

x y u v

x

y
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Notes on the Simplex Method
•  Finding an initial basic feasible solution may pose a problem  

•  Theoretical possibility of  cycling  

•  Typical number of  iterations is between m and 3m, where m is  
  the number of  equality constraints in the standard form  

•  Worse-case efficiency is exponential 

•  More recent interior-point algorithms such as Karmarkar’s 
 algorithm (1984) have polynomial worst-case efficiency and  
 have performed competitively with the simplex method in  
 empirical tests



Assignment 4
Can we apply the simplex method to solve the 

knapsack problem (see Example 2 in Section 6.6)? If  
you answer yes, indicate whether it is a good 
algorithm for the problem in question; if  you answer 
no, explain why not. 


