PERMUTATION GENERATION METHODS

Robert Sedgewick
Princeton University

Motivation

PROBLEM Generate all N! permutations of N elements
Q: Why?

- Basic research on a fundamental problem
\checkmark Compute exact answers for insights into combinatorial problems
Structural basis for backtracking algorithms
Numerous published algorithms, dating back to 1650s

CAVEATS

$\checkmark N$ is between 10 and 20
can be the basis for extremely dumb algorithms
processing a perm often costs much more than generating it
N is between 10 and 20

N	number of perms	million/sec	billion/sec	trillion/sec
10	3628800		insignificant	
11	39916800	seconds		
12	479001600	minutes		
13	6227020800	hours	seconds	
14	87178291200	day	minute	
15	1307674368000	weeks	minutes	
16	20922789888000	months	hours	seconds
17	355687428096000	years	days	minutes
18	6402373705728000		months	hours
19	121645100408832000		years	days
20	2432902008176640000	impossib		month

Digression: analysis of graph algorithms

Typical graph-processing scenario:
\diamond input graph as a sequence of edges (vertex pairs)
\checkmark build adjacency-lists representation run graph-processing algorithm

Q: Does the order of the edges in the input matter?
A: Of course!
Q: How?
A: It depends on the graph
Q: How?
There are $2^{V^{2}}$ graphs, so full employment for algorithm analysts

Digression (continued)

Ex: compute a spanning forest (DFS, stop when V vertices hit) best case cost: V (right edge appears first on all lists)

Complete digraph on V vertices

worst case: V^{2}
average: $V \ln V$ (Kapidakis, 1990)
Same graph with single outlier

worst case: $O\left(V^{2}\right)$
average: $O\left(V^{2}\right)$
Can we estimate the average for a given graph?
Is there a simple way to reorder the edges to speed things up?
What impact does edge order have on other graph algorithms?

Digression: analysis of graph algorithms

Insight needed, so generate perms to study graphs
No shortage of interesting graphs with fewer than 10 edges

Algorithm to compute average generate perms, run graph algorithm

Goal of analysis

- faster algorithm to compute average

Method 1: backtracking

Compute all perms of a global array by exchanging each element to the end, then recursively permuting the others

```
exch (int i, int j)
    { int t = p[i]; p[i] = p[j]; p[j] = t; }
    generate(int N)
        { int c;
            if (N == 1) doit();
            for (c = 1; c <= N; c++)
                { exch(c, N); generate(N-1); exch(c, N); }
        }
```

Invoke by calling
generate(N);

| \mathbf{B} | \mathbf{C} | \mathbf{C} | \mathbf{D} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{D} | \mathbf{A} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{A} | \mathbf{B} | \mathbf{A} | \mathbf{B} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{B} | \mathbf{A} |
| :--- |
| \mathbf{C} | \mathbf{B} | \mathbf{D} | \mathbf{C} | \mathbf{D} | \mathbf{B} | \mathbf{C} | \mathbf{D} | \mathbf{A} | \mathbf{C} | \mathbf{A} | \mathbf{D} | \mathbf{D} | \mathbf{B} | \mathbf{A} | \mathbf{D} | \mathbf{A} | \mathbf{B} | \mathbf{D} | \mathbf{B} | \mathbf{A} | \mathbf{C} | \mathbf{A} | \mathbf{B} |
| \mathbf{D} | \mathbf{D} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{A} | \mathbf{D} | \mathbf{D} | \mathbf{C} | \mathbf{C} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{D} | \mathbf{D} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{C} |
| \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{A} | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{B} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{C} | \mathbf{D} | \mathbf{D} | \mathbf{D} | \mathbf{D} | \mathbf{D} | \mathbf{D} |

Problem: Too many (2N!) exchanges (!)

Method 2: "Plain changes"

Sweep first element back and forth to insert it into every position in each perm of the other elements

$\begin{array}{lllllllll}\mathrm{A} & \mathrm{B} & \mathrm{B} & \mathrm{C} & \mathrm{C} & \mathrm{A} \\ \mathrm{B} & \mathrm{A} & \mathrm{C} & \mathrm{B} & \mathrm{A} & \mathrm{C} \\ \mathrm{C} & \mathrm{C} & \mathrm{A} & \mathrm{A} & \mathrm{B} & \mathrm{B}\end{array}$

Generates all perms with N! exchanges of adjacent elements Dates back to 1650s (bell ringing patterns in English churches)

Exercise: recursive implementation with constant time per exch

General single-exch recursive scheme

Eliminate first exch in backtracking

```
exch (int i, int j)
    { int t = p[i]; p[i] = p[j]; p[j] = t; }
generate(int N)
    { int c;
        if (N == 1) doit();
        for (c = 1; c <= N; c++)
        { generate(N-1); exch(?,N); }
    }
```

Detail(?): Where is new item for $\mathrm{p}[\mathrm{N}]$ each time?

Index table computation

Q: how do we find a new element for the end?
A: compute an index table from the (known) perm for N -1

\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{E}	\mathbf{A}	\mathbf{B}	\mathbf{C}	
\mathbf{B}	\mathbf{C}	\mathbf{C}	\mathbf{E}	\mathbf{E}	\mathbf{A}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{D}	
\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{D}	\mathbf{E}	and so forth
\mathbf{D}	\mathbf{A}	\mathbf{A}	\mathbf{B}	\mathbf{B}	\mathbf{D}	\mathbf{D}	\mathbf{E}	\mathbf{E}	\mathbf{B}	
\mathbf{E}	\mathbf{E}	\mathbf{D}	\mathbf{D}	\mathbf{C}	\mathbf{C}	\mathbf{B}	\mathbf{B}	\mathbf{A}	\mathbf{A}	
	3		1		3		1			

Exercise: Write a program to compute this table

Method 3: general recursive single-exch

Use precomputed index table Generates perms with N! exchanges

Simple recursive algorithm

```
generate(int N)
    { int c;
    if (N == 1) doit();
    for (c = 1; c <= N; c++)
        { generate(N-1); exch(B[N][C], N); }
    }
```

No need to insist on particular sequence for last element specifies ($\mathrm{N}-1$)! ($\mathrm{N}-2$)!...3! 2 ! different algorithms

Table size is $N(N-1) / 2$ but N is less than 20
Do we need the table?

Method 4: Heap's* algorithm

Index table is not needed
Q: where can we find the next element to put at the end?
A : at 1 if N is odd; i if N is even

$\begin{array}{lllllllllllllllllllllllll}\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{B} & \mathbf{A} & \mathbf{D} & \mathbf{B} & \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{D} & \mathbf{A} & \mathbf{C} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{B} & \mathbf{D} & \mathbf{C} & \mathbf{B} \\ \mathbf{B} & \mathbf{A} & \mathbf{A} & \mathbf{C} & \mathbf{C} & \mathbf{B} & \mathbf{B} & \mathbf{D} & \mathbf{D} & \mathbf{A} & \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{A} & \mathbf{A} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf{D} & \mathbf{D} & \mathbf{B} & \mathbf{B} & \mathbf{C} \\ \mathbf{C} & \mathbf{C} & \mathbf{B} & \mathbf{B} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{B} & \mathbf{B} & \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf{A} & \mathbf{A} & \mathbf{B} & \mathbf{B} & \mathbf{C} & \mathbf{C} & \mathbf{D} & \mathbf{D} \\ \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{D} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{B} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A}\end{array}$
Exercise: Prove that it works!
*Note: no relationship between Heap and heap data structure

Implementation of Heap's method (recursive)

Simple recursive function

```
generate(int N)
    { int c;
        if (N == 1) { doit(); return; }
        for (c = 1; c <= N; c++)
            {
                generate(N-1);
                exch(N % 2 ? 1 : c, N)
            }
    }
```

N! exchanges
Starting point for code optimization techniques

Implementation of Heap's method (recursive)

Simple recursive function easily adapts to backtracking

```
generate(int N)
    { int c;
            if (test(N)) return;
            for (c = 1; c <= N; c++)
            {
                generate(N-1);
                    exch(N % 2 ? 1 : c, N)
            }
    }
```

N! exchanges saved when test succeeds

Factorial counting

Implementation of Heap's method (nonrecursive)

```
generate(int N)
    { int n, t, M;
    for (n = 1; n <= N; n++)
        { p[n] = n; C[n] = 1; }
    doit();
    for (n = 1; n <= N; )
        {
            if (C[n] < n)
            {
                        exch(N % 2 ? 1 : C,N)
                        C[n]++; n = 1;
                        doit();
                }
            else c[n++] = 1;
        }
    }
```

"Plain changes" and most other algs also fit this schema

Analysis of Heap's method

Most statements are executed N! times (by design) except
$B(N)$: the number of tests for N equal to 1 (loop iterations)
$A(N)$: the extra cost for N odd
Recurrence for B

$$
B(N)=N B(N-1)+1 \text { for } N>1 \text { with } B(1)=1
$$

Solve by dividing by $N!$ and telescoping

$$
\frac{B(N)}{N!}=\frac{B(N-1)}{(N-1)!}+\frac{1}{N!}=1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{N!}
$$

Therefore $B(N)=\lfloor N!(e-1)\rfloor$ and similarly $A(N)=\lfloor N!/ e\rfloor$
Typical running time: $19 \mathrm{~N}!+A(N)+10 B(N) \approx 36.55 \mathrm{~N}$!

Improved version of Heap's method (recursive)

```
generate(int N)
    { int c;
    if (N == 3)
        { doit();
            p1 = p[1]; p2 = p[2]; p3 = p[3];
            p[2] = p1; p[1] = p2; doit();
            p[1] = p3; p[3] = p2; doit();
            p[1] = p1; p[2] = p3; doit();
            p[1] = p2; p[3] = p1; doit();
            p[1] = p3; p[2] = p2; doit(); return;
        }
    for (c = 1; c <= N; c++)
        {
            generate(N-1);
            exch(N % 2 ? 1 : c, N)
        }
    }
```


Bottom line

Quick empirical study on this machine ($\mathrm{N}=12$)

Heap (recursive)	415.2 secs
cc -O4	54.1 secs
Java	442.8 secs
Heap (nonrecursive)	84.0 secs
inline $N=2$	92.4 secs
inline $N=3$	51.7 secs
cc -O4	3.2 secs

about (1/6) billion perms/second
Lower Bound: about 2N! register transfers

References

Heap, "Permutations by interchanges,"
Computer Journal, 1963
Knuth, The Art of Computer Programming, vol. 4 sec. 7.2.1.1
//www-cs-faculty.stanford.edu/~knuth/taocp.html
Ord-Smith, "Generation of permutation sequences,"
Computer Journal, 1970-71
Sedgewick, Permutation Generation Methods,
Computing Surveys, 1977
Trotter, "Perm (Algorithm 115),"
CACM, 1962
Wells, Elements of combinatorial computing, 1961
[see surveys for many more]

Digression: analysis of graph algorithms

Initial results (Dagstuhl, 2002)

